HW 7

1. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a C^{r} (where $r \geq 1$) function. Suppose $f^{-1}(0) \neq \phi$ and whenever $x \in f^{-1}(0), \nabla f(x) \neq 0$. Then prove that $f^{-1}(0)$ is a C^{r}-manifold with dimension $n-1$.
2. In the Taylor theorem in multivariable calculus, prove that the Taylor polynomial is the unique such polynomial upto degree k.
3. Find the local extrema of $f(x, y)=2 x^{2}-2 x^{2} y^{2}+2 y^{2}+24 y-x^{4}-y^{4}$ on \mathbb{R}^{2} and classify them.
4. Write the Taylor polynomial around $(0,0)$ of degree 3 (with justification) of $f(x, y)=$ $5 x^{4} y+3 x y-\pi x y^{3}+\pi^{2} x^{2} y^{2}+e x^{2} y+100 x y^{2}-\frac{1}{100} x y+\frac{e}{\pi^{e}} x+42$.
5. This is a vague question: If the Hessian of a smooth function is not invertible at a, and the third derivatives are all zero at a point where $\nabla f(a)=0$, how can you hope to classify the point as a local extremum or a saddle point (under suitable hypotheses)?
