HW 8

- 1. Prove the following theorem: Let $f : Q \subset \mathbb{R}^n \to \mathbb{R}$ be a bounded function on a closed rectangle Q. Then f is Riemann integrable over Q iff for every $\epsilon > 0$ there exists a $\delta > 0$ such that for every partition P whose mesh is $< \delta, U(P, f) L(P, f) < \epsilon$.
- 2. Show that if $A \subset \mathbb{R}^n$ has measure 0, then \overline{A} need not have measure zero.
- 3. Show that no open subset of \mathbb{R}^n has measure 0 in \mathbb{R}^n .
- 4. Show that $\mathbb{R}^2 \times \{0\}$ has measure 0 in \mathbb{R}^3 .
- 5. Let $S \subset \mathbb{R}^n$ be a compact set and let $f: S \to \mathbb{R}$ be a continuous function.
 - (a) Prove that the graph $G_f \subset \mathbb{R}^{n+1}$ has measure 0.
 - (b) Let $f : \mathbb{R}^n \to \mathbb{R}$ be a C^r function (where $r \ge 1$) be such that $S = f^{-1}(0)$ is not empty and $\nabla f(x) \ne 0 \ \forall x \in f^{-1}(0)$. Prove that $S \subset \mathbb{R}^n$ has measure 0 in \mathbb{R}^n .