HW 9

- 1. Let $S \in \mathbb{R}^{n+1}$ consist of (x, y) where $x \in Q \subset \mathbb{R}^n$ (where Q is a closed rectangle) and $y \in \mathbb{R}$ such that $\phi_1(x) \leq y \leq \phi_2(x) \forall x \in Q$ for two smooth functions $\phi_1(x), \phi_2(x) : \mathbb{R}^n \to \mathbb{R}$. Suppose $f : S \to \mathbb{R}$ is a continuous function. Prove that f is Riemann integrable and write its integral over S as an iterated integral (with proof of course).
- 2. Let $A \subset \mathbb{R}^2$ be defined by $A = \{(x, y) \mid x > 1 \text{ and } 0 < y < 1/x\}$. Calculate $\int_A \frac{1}{x\sqrt{y}}$ if it exists.
- 3. In this exercise, you shall prove that if $S \subset \mathbb{R}^n$ is any set with measure zero in \mathbb{R}^n , and $f: U \subset \mathbb{R}^n \to \mathbb{R}^n$ is a C^1 function (where $S \subset U$ and U is an open set), then $f(S) \subset \mathbb{R}^n$ has measure zero.
 - (a) Let C_N be a compact rectifiable exhaustion of U and $S = \bigcup_N S_N$ where $S_N = S \cap C_N$. Prove that it is enough to show that S_N has measure 0 for all N. Now fix N for the rest of the exercise.
 - (b) Given a rectangle Q and a number $\delta > 0$, prove that there is a finite cover of Q by rectangles of width $< \delta$ and total volume < 2v(Q).
 - (c) Prove that there exists M > 0 such that $\forall x, y \in C_{N+1}$, $||f(x) f(y)|| \le M ||x-y||$. As a consequence prove that if Q is a rectangle of width $< \delta$ in C_{N+1} , f(Q) is contained in a rectangle Q' of width $< 2M\delta$ and $v(Q') < (2M)^n v(Q)$.
 - (d) Prove that $f(S_N)$ has measure zero.