HW 9

1. Let $S \in \mathbb{R}^{n+1}$ consist of (x, y) where $x \in Q \subset \mathbb{R}^{n}$ (where Q is a closed rectangle) and $y \in \mathbb{R}$ such that $\phi_{1}(x) \leq y \leq \phi_{2}(x) \forall x \in Q$ for two smooth functions $\phi_{1}(x), \phi_{2}(x): \mathbb{R}^{n} \rightarrow \mathbb{R}$. Suppose $f: S \rightarrow \mathbb{R}$ is a continuous function. Prove that f is Riemann integrable and write its integral over S as an iterated integral (with proof of course).
2. Let $A \subset \mathbb{R}^{2}$ be defined by $A=\{(x, y) \mid x>1$ and $0<y<1 / x\}$. Calculate $\int_{A} \frac{1}{x \sqrt{y}}$ if it exists.
3. In this exercise, you shall prove that if $S \subset \mathbb{R}^{n}$ is any set with measure zero in \mathbb{R}^{n}, and $f: U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a C^{1} function (where $S \subset U$ and U is an open set), then $f(S) \subset \mathbb{R}^{n}$ has measure zero.
(a) Let C_{N} be a compact rectifiable exhaustion of U and $S=\cup_{N} S_{N}$ where $S_{N}=$ $S \cap C_{N}$. Prove that it is enough to show that S_{N} has measure 0 for all N. Now fix N for the rest of the exercise.
(b) Given a rectangle Q and a number $\delta>0$, prove that there is a finite cover of Q by rectangles of width $<\delta$ and total volume $<2 v(Q)$.
(c) Prove that there exists $M>0$ such that $\forall x, y \in C_{N+1},\|f(x)-f(y)\| \leq$ $M\|x-y\|$. As a consequence prove that if Q is a rectangle of width $<\delta$ in C_{N+1}, $f(Q)$ is contained in a rectangle Q^{\prime} of width $<2 M \delta$ and $v\left(Q^{\prime}\right)<(2 M)^{n} v(Q)$.
(d) Prove that $f\left(S_{N}\right)$ has measure zero.
