
MA 200 - Lecture 26

1 Recap
1. Proved that the dim of Λk(V ) was

(
n
k

)
by introducing the basis ϵI .

2. Tried a naive definition of the wedge product (but failed to prove basis inde-
pendence)! Nonetheless, we proved a bunch of properties assuming that the
definition was well-defined. In fact, these properties uniquely determine the
wedge product (if it exists) - this is easy to prove.

3. Defined T ∗ω. It is easy to show that (G ◦ F )∗ = F ∗ ◦G∗.

2 Wedge product (Spivak’s book)
Let us prove the existence of the wedge product (satisfying the properties we want).
Firstly, taking cue from 2A = (A+AT ) + (A−AT ), we define the following operation:
Let T be a k-tensor on V . Then Alt(T )(v1, . . . , vk) =

1
k!

∑
σ∈Sk

sgn(σ)T (vσ(1), . . .).
So if T is a 2-tensor, then Alt(T )(v, w) = 1

2
(T (v, w) − T (w, v)), that is, our familiar

antisymmetrisation operation. In general, we have the following result.

Theorem 1. 1. Alt(T ) ∈ Λk(V )

2. If ω is a k-form, then Alt(ω) = ω

3. Alt(Alt(T )) = Alt(T )

Proof. 1. k!Alt(T )(vτ(1), . . .) =
∑

σ sgn(σ)T (vσ(τ(1)), . . .) = sgn(τ)
∑

σ sgn(σ
′ = σ ◦

τ)T (vσ′(1), . . .). But σ → σ′ is an isomorphism and hence the summation over σ is
the same as the summation over σ′. Hence we are done.

2. Alt(ω)(v1, . . .) =
1
k!

∑
σ sgn(σ)ω(vσ(1), . . .) =

1
k!

∑
σ sgn(σ)sgn(σ)ω(v1, . . .) = ω(v1, . . .).

3. Trivially from the first two properties.

Def: We define the wedge product ω ∧ η as (k+l)!
k!l!

Alt(ω ⊗ η).
It satisfies the following properties:

1. Bilinearity in f, g: Easy (because the tensor product is so).
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2. T ∗(ω∧η) = T ∗ω∧T ∗η: (k+l)!
k!l!

∑
sgn(σ)ω⊗η(Tvσ(1), . . .) =

(k+l)!
k!l!

∑
sgn(σ)ω(Tvσ(1), . . .)η(Tvσ(k+1), . . .) =

T ∗ω ∧ T ∗η.

3. f ∧ (g ∧ h) = (f ∧ g) ∧ h.

4. f ∧ g = (−1)klg ∧ h.

5. ϵI = ϵi1 ∧ . . .: The properties above follow from the observation that ω ∧ η =∑
ωIηJϵI ∧ ϵJ and the fact that ϵI ∧ ϵJ = ϵIJ : ϵI ∧ ϵJ(eα1 , . . .) = 0 if α1, . . . is

not a permutation of IJ (why?). If it is a permutation, then ϵI ∧ ϵJ(eα1 , . . .) =
1
k!l!

∑
σ∈Sk+l

sgn(σ)ϵI(eασ(1)
, . . .)ϵJ(eασ(k+1)

, . . .). Since we know that the wedge
product produces k + l forms, the αi are all distinct (otherwise we will get
zero anyway). Likewise, we can assume WLOG that (α1, . . . , αk) = I and
(αk+1, . . .) = J . Moreover, only those permutations survive in the summation
that are of the form σ = σ1σ2 where σ1 permutes only the I indices and σ2 only
the J-indices (in particular, if I and J have indices in common, ϵI ∧ ϵJ is 0). Thus,
ϵI ∧ ϵJ(eα1 , . . .) =

1
k!l!

∑
σ1,σ2

1 = 1 which is exactly ϵIJ(ei1 , . . . , ej1 , . . .).

3 Form fields in Rn

Just as there are vector fields on Rn (basically, nicely varying collections of vectors,
one for each point, like the electric and magnetic fields - and not like the BS fields of
“positive" and “negative" “energy" spouted by pseudoscientists), we can define tensor
fields and form fields:
Def: A smooth k-tensor field T on a set S ⊂ Rn is simply a tensor for every point x ∈ S
such that T (x) =

∑
I cI(x)ϕI where cI(x) are smooth functions on S. A k form field

ω, or sometimes a differential k-form, or sometimes, fondly (if you have nothing else
to be fond of), a smooth k-form is simply a k-form for every point x ∈ S such that
ω(x) =

∑
i1<i2<... ωI(x)ϵI where ωI(x) are smooth functions on S.

For instance, ω = x2ϵ12 + eyzϵ23 + sin(sin(cos(xzw)))ϵ14 is a 2-form field on R4.
We can define the wedge product of these differential forms: ω ∧ η(x) := ω(x) ∧ η(x).
When k = 0, we are talking about a number for every point x that varies smoothly, i.e.,
a smooth 0-form is simply a smooth function.

4 Exterior derivative
We now want to generalise curl. Before that, we speak of the gradient in terms of
forms:
Def: Let U ⊂ Rk or U ⊂ Hk be an open set and f : U → R be a smooth 0-
form, i.e., a smooth function. Then df : U → Λ1 is a smooth 1-form defined as
df(v) = ∂f

∂x1
v1 +

∂f
∂x2

v2 + . . ..
With this definition, note that dx1(v) = v1, dx2(v) = v2 and so on, i.e., ϵi = dxi (if e1, . . .
is the standard basis), ϵI = dxi1 ∧ dxi2 . . .. Also, df =

∑
i

∂f
∂xi

dxi. This is one way of
trying to make Newton’s “infinitesimals" in early calculus rigorous. (Indeed, if you
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move infinitesimally for a time dt in a direction v, then f is expected to change by∑
i

∂f
∂xi

vidt and moreover, df ∧ df = 0 (“second order"). But be careful! dxi ∧ dxj ̸= 0.
The correct way to make sense of infinitesimals is through ultrafilters (non-standard
analysis) and is very complicated.)
More generally, we want to define the “curl" of ω where ω is a smooth k-form on
U . We can naively try the same algorithm as the usual curl (∇ × F⃗ ), i.e., “d × ω =
( ∂
∂x1

dx1+ . . .)∧ω =
∑

Iinc,j
∂ωI

∂xj
dxj∧dxI =

∑
I dωI ∧dxI". Indeed, we have the following

theorem:

Theorem 2. LetU ⊂ Rk orHk be open. Denote byΩk(U) the infinite-dimensional vector space
of smooth k-form fields on U . Then there exists a unique linear map d : Ωk(U) → Ωk+1(U)
called the exterior derivative satisfying the following properties.

1. If f is a smooth 0-form on U , then df(x) = ∂f
∂x1

v1 + . . ..

2. If ω, η and k, l-forms respectively, then d(ω ∧ η) = dω ∧ η + (−1)kω ∧ dη (that is, you
almost pretend that d is a 1-form, just as you pretend that ∇ is a vector).

3. d(dω) = 0 for all ω (the analogue of ∇.(∇× F⃗ ) = 0⃗).

Proof. Define dω as above by dω :=
∑

I dωI ∧ ϵI (and df as above for any function f ).
Clearly, this d is linear in ω. If ω, η are k, l forms, d(ω ∧ η) = d(

∑
Iinc,Jinc

ωIηJϵIJ) =∑
(dωIηJ ∧ ϵIJ +ωIdηJ ∧ ϵIJ) = dω ∧ η+

∑
ωI(−1)kϵI ∧ dηJ ∧ ϵJ = dω∧ η+(−1)kω∧ dη.

Lastly, d(dω) = d(
∑

i1<... dωI ∧ ϵI) =
∑

d(dωI) ∧ ϵI − dωId(ϵI) =
∑

d(dωI) ∧ ϵI . Now
d(df) =

∑
i d(

∂f
∂xi

ϵi) =
∂2f

∂xj∂xi
ϵj ∧ ϵi = 0 because of Clairaut.

Now we prove uniqueness: Suppose ω =
∑

Iinc
ωIϵI . Then dω by linearity is

∑
d(ωIϵI)

which by the second property is
∑

dωI ∧ ϵI + ωId(ϵI). Now ϵi = dxi by the first
property. Moreover, d(dxi) = 0 by the third property. Hence, by induction and the
second property, d(ϵI) = 0 and we are done.

Examples:

1. d(x3 + y2) = 3x2dx+ 2ydy.

2. d(x2ydx ∧ dy + ywdz ∧ dx) ∧ (eyxdz + sin(xw)dw) = (0 + wdy ∧ dz ∧ dx + ydw ∧
dz ∧ dx) ∧ (eyxdz + sin(xw)dw) which is w sin(xw)dy ∧ dz ∧ dx ∧ dw.

3. Let F⃗ = (P,Q,R). Consider the 1-form ω = Pdx + Qdy + Rdz. Then dω =

(∂R
∂y

− ∂Q
∂z
)dy ∧ dz + . . . which corrresponds to ∇× F⃗ .

4. d(ydx−xdy
x2+y2

) = 0 but ydx−xdy
x2+y2

̸= df for any smooth function f : R2 − {(0, 0} → R. In
general, a form is said to be closed if dω = 0 and exact if ω = dη. Clearly exact
forms are closed but this example shows that the other way round is not true.
This is true for certain kinds of sets. For instance, it is true if the domain of ω is
all of Rn. (How much this property fails tells us something about the shape of
the domain. In fact, the quotient space of closed k-forms by exact k-forms is a
useful object. It is called the kth de Rham cohomology of the domain.)
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Suppose you consider a form ω = x2dy + y2dx on R2. If γ(t) = (cos(t), sin(t)), we’d
ideally like to say that “along γ, dx = − sin(t)dt, dy = cos(t)dt, ω = (cos3(t)− sin3(t))dt"
but the problem is that ω, dx, dy are form fields on R2 whereas dt is a form field on R!
Even pointwise, ω, dx, dy at a point γ(t0) = p are in Λ1(R2) whereas dt at a point t0 is
in Λ1(R). However, given a γ, we have a standard linear map that takes R to R2, i.e.,
v → Dγ(v) = ⟨γ′(t), v⟩. We can use the T ∗ construction now to make a definition:
Def: Suppose F : U ⊂ Rk or Hk to Rn is a smooth map, and ω is a smooth k ≥ 1-
form on V ⊂ Rk or Hk such that F (U) ⊂ V . Then the pullback F ∗ω is a smooth
k-form on U defined as F ∗ω at the point x is simply DF ∗ω at the point F (x), i.e.,
(F ∗ω)(x)(v1, . . . , vk) = ω(f(x))(Dfv1, Dfv2, . . .).
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