
MA 200 - Lecture 2

1 Recap
Discussed why to care about multivariable calculus. Reviewed linear algebra (vector
spaces, dimension, basis, linear maps, matrices, rank, determinant, inner products,
and norms).

2 Review of (real) linear algebra
Here are two (of course equivalent) norms on the space of matrices:

1. The operator norm: ‖A‖op := sup‖x‖l2=1 ‖Ax‖l2 . (Why is this a norm?) Note
that if A is diagonalisable with orthonormal eigenvectors ei forming a basis, then
‖Ax‖l2 = ‖

∑
i λixiei‖ =

√∑
i |λi|2x2i ≤ maxi |λi|. In this case, the operator norm

is maxi |λi|. In general, it may not be the case even if A is diagonalisable! For

instance, take A =

[
1 1
0 0

]
.

2. The Frobenius/Hilbert-Schmidt norm: ‖A‖2HS :=
∑

i,j ||aij|2 = tr(ATA). This
norm is the usual inner product norm pretending that the space of matrices is
Rmn.

Bothof thesematrixnorms satisfy ‖AB‖ ≤ ‖A‖‖B‖. As a consequence, ifA is invertible,
1 ≤ ‖A‖‖A−1‖.

3 Review of topology of Rn

The inner product norm induces a metric in the sense of metric spaces, i.e., d(x, y) =
d(y, x), d(x, z) ≤ d(x, y) + d(y, z), d(x, y) ≥ 0 with equality iff x = y. Recall that once
we have a way to talk about distances, we can define open balls Ba(r). Once we
have these, we can talk of open sets, interiors, and closed sets (including limits points
and closure). We can also talk of convergence of sequences: d(xn, x) < ε whenever
n > N . Moreover, every closed and bounded set is compact (and vice-versa), i.e., every
open cover has a finite subcover, and equivalently, every sequence has a convergent
subsequence. Hopefully you did connected sets too: A set is connected iff it cannot
be written as a disjoint union of two relatively open subsets. Moreover, a set in R is
connected iff it is an interval.
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Consider a function f : U ⊂ Rn → Rm. Then limx→x0,x∈U f(x) = L if ‖f(x)− L‖ < ε
whenever 0 < ‖x−x0‖ < δ and x ∈ U . One can prove that this limit can be equivalently
defined using sequences. A function is said to be continuous at x0 if limx→x0,x∈U f(x) =
f(x0). If we restrict the domain of a continuous function, it still remains continuous
(and likewise for limits). (But beware! if you enlarge the domain, the function might
stop being continuous!) Equivalently, a function is continuous iff the inverse image of
an open set is open.

Continuous functions take compact sets to compact sets. As a consequence, we
have the extreme-value theorem. Also, uniform continuity. Continuous functions also
take connected sets to connected sets. Continuous functions satisfy various properties
(sum, product, quotient (these three hold for limits too), and composition). One can
come up several examples (using continuity/limit laws. Polynomials for instance
are continuous) and non-examples (using sequences along different paths). Another
example of a continuous function:

f(x, y) =

{
x2y

x2+y2
when (x, y) 6= (0, 0)

0 otherwise.
(1)

4 Derivatives

Recall that in one-variable calculus, f ′(a) = lim
h→0

f(a+ h)− f(a)
h

. In more than one
variable, unfortunately, this naive definition cannot work (becausewe cannot divide by
a vector). A reasonable substitute is the notion of a directional derivative of a function
f : U ⊂ Rn → R at an interior (why?) point a ∈ U along a vector ~v: ∇vf(a) =

df(a+tv)
dt
|t=0.

(Caution: When v = 0, the name “directional derivative" is somewhat of a misnomer.
Moreover, since ∇cvf(a) = c∇vf(a), again this name is not completely appropriate.)
Examples:

1. When v = ei, the resulting directional derivative is called the partial derivative
of f w.r.t xi and is denoted as ∂f

∂xi
. This quantity can be calculated easily using

the various rules for one-variable differentiation. (Tidbit: The laws of nature are
partial differential equations, i.e., equations involving partial derivatives.)

2. One can have directional derivatives at all points in all directions: Polynomials
for instance (note that this is a one-variable question!)

3. It is certainly possible to have directional derivatives along some directions and
not along some others:

f(x, y) =

{
xy

x2+y2
when (x, y) 6= (0, 0)

0 otherwise
(2)

has directional derivatives at (0, 0) along e1 for instance but not along e1 + e2.
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4. It is possible to have directional derivatives along all directions at all points in a
domain and yet fail to be even continuous!

f(x, y) =

{
x2y

x4+y2
when (x, y) 6= (0, 0)

0 otherwise
(3)

The last example illustrates that the notion of a directional derivative is not a good
enough notion. Indeed, differentiability is a “nicer" condition than continuity. It
must imply continuity at the very least! (Another problem (albeit less important) with
directional derivatives is that, apparently, we need to keep track of infinitely many
numbers (one for each direction) at even a single point of the domain to understand
how quickly the function changes at that point.)
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