
NOTES FOR 10 OCT (THURSDAY)

1. Recap

(1) Proved all the familiar formulae about determinants, including Cramer’s rule and a formula
for the inverse.

2. Eigenvalues and Eigenvectors

Consider these two problems :

(1) Given a matrix R that represents a rotation in R3, find its axis of rotation.
(2) Solve dx

dt = 2x + 3y, dy
dt = 3x + 2y.

(3) The chance of it raining tomorrow if it rains today is 0.7 and if it does not rain, it is 0.5. Given
that it rained today, what is the chance of it raining after many days ?

We already discussed the solutions of the first and the third.

(1) Change the variables z1 = x + y, z2 = x − y. Then dz1
dt = 5z1, dz2

dt = −z2 whose solution is
z1 = ae5t, z2 = be−t. Hence, x = ae5t

−be−t

2 , y = ae5t
−be−t

2 . (Morally, d~vdt = A~v. So we expect
~v = eAt~v0, whatever eAt means.)

The above problems suggest that given an n × n matrix A, finding vectors v such that Av = λv
is helpful. It is even more helpful if one can “change variables” to v, i.e., if the v’s so obtained
form a basis. So we define : Given a linear map T : V → V where V is a finite-dimensional vector
space over a fieldF, a non-zero vector v ∈ V is called an eigenvector of T with eigenvalueλ if Tv = λv.

Lemma 2.1. λ is an eigenvalue of T iff it is a root of the characteristic polynomial det(λI − T).

Proof. λ is an eigenvalue of T iff there exists a non-zero v ∈ V such that Tv = λv iff (T − λI)v = 0 iff
T − λI is singular iff det(λI − T) = 0. �

It is easy to see that the collection of vectors v ∈ V such that Tv = λv is a subspace of V (whose
dimension is > 0 iff λ is an eigenvalue). When λ is an eigenvalue, the subspace is called the
“eigenspace of λ”. The dimension of the eigenspace of λ is called the geometric multiplicity of λ.
More generally, a subspace W ⊂ V is said to be an invariant subspace if T(W) ⊂ W. Here is an
observation : If e1, . . . , ew is a basis for W and ew+1, . . . , en extends it to V, then the matrix of T in this

basis is
[

A B
0 C

]
. Here are examples/non-examples.

(1) Let T : Z2
3 → Z2

3 be the linear map Tx = Ax where A =

[
1 1
1 2

]
. The characteristic

polynomial is (λ − 1)(λ − 2) − 1. It is never zero. So no eigenvalues.
(2) T : Q2

→ Q2 such that Tx = Ax where A is as above. Even here there are no eigenvalues. If

we allow reals, then λ = 3±
√

5
2 .
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(3) However, if A =

[
0 −1
1 0

]
, then there are no real eigenvalues. There are complex ones

though.

(4) Let A =

[
a b
b c

]
where a, b, c ∈ R. Then p(λ) = λ2

− (a + c)λ + ac − b2. Firstly, note that

a + c = tr(A) and ac− b2 = det(A). Secondly, this matrix has two (not necessarily distinct) real
eigenvalues regardless of a, b, c.

(5) Let V be the space of all abstract complex polynomials. Then T : V → V given by T(p) = xp
has no eigenvectors or eigenvalues.

These examples/non-examples suggest that
(1) Eigenvalues need not exist in F. However, by the fundamental theorem of algebra, an

n × n matrix with complex entries has n eigenvalues (when counted with multiplicity). In
particular, there is at least one eigenvector. Here is a definition : If p(λ) = (λ−λ1)a1(λ−λ2)a2 . . .,
then λi is said to have algebraic multiplicity equal to ai. Clearly, ai ≤ n and

∑
i ai = n.

(2) Infinite-dimensions are badly behaved with regard to eigenvalues and vectors.
(3) The coefficients of the characteristic polynomial can potentially tell us about the trace and

determinant. Actually,

Lemma 2.2. Let F be any field and let A ∈ Matn×n(F). The characteristic polynomial is invariant
under similarity. Moreover, the constant term is (−1)n det(A) and the coefficient of λn−1 is −tr(A).
Also, A and AT have the same characteristic polynomials.

Proof. det(λI − PAP−1) = det(P(λI − A)P−1) = pA(λ). Also, pAT (λ) = det((λI − A)T) = pA(λ).
p(0) = det(−A) = (−1)n det(A). We prove the trace equality inductively (on n). The n = 1 case
is trivial. Assuming truth for 1, 2 . . . ,n−1, det(λI−A) = (λ−a11)M11−a12M12 . . .. So coe f f (λn−1)
in pA(λ) is −a11coe f f (λn−1) in M11 plus similar terms for a12 etc plus −tr([A](n−1)×(n−1) induc-
tively. We are done because terms like M12 do not have λn−1. �

(4) Real symmetric matrices might have real eigenvalues. We will return to this observation
much later.

Going back to the motivating problems above, we make a definition : A linear map T : V → V is
called diagonalisable if there is a basis of V consisting of eigenvectors. Note that in such a basis, if
V is finite-dimensional, the matrix of T is diagonal (D) with diagonal entries being the eigenvalues.
If the matrix is A in some other basis and A~vsome other = ~veigenvector basis, then D = PAP−1 where the ith

column of P−1 is the ith eigenvector (in some order) written in the “some other” basis. Taking cue
from this, a matrix A is called diagonalisable if it is similar to a diagonal matrix. (Note that diagonal
matrices are of course diagonalisable.)

The point is if A = P−1DP, then Ak = P−1DkP. So powers can be calculated easily. Here are
examples/non-examples.

(1) The matrix A =

[
0 1
0 0

]
has only one eigenvalue : 0. It’s algebraic multiplicity is 2 and

geometric multiplicity is 1 (spanned by (1, 0)). It is clearly not diagonalisable (only one
linearly independent eigenvector). Nonetheless, it is in upper-triangular form. Also, p(λ) =
λ2 and p(A) = A2 = [0]2×2. Curious !

(2) The matrix A =

[
a b
b c

]
has two (not neccesarily distinct) real eigenvalues if a, b, c ∈ R. An

explicit calculation shows that it is diagonalisable. Moreover, p(A) = (A − λ1)(A − λ2) =
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P(D−λ1)(D−λ2)P−1 = 0. The algebraic multiplicity of each eigenvalue equals its GM in this
case.

(3) The matrix A =

[
0 1
0 1

]
has p(λ) = λ(λ−1). The AM of each eigenvalue is 1. (1, 0), (1, 1) form

a basis of eigenvectors. (So the GM equals AM for each eigenvalue.) It is diagonalisable and
p(A) = 0.

So we observe/comment/question :
(1) Not every matrix/linear map (even over finite-dimensional vector spaces) is diagonalisable.

So which matrices are diagonalisable ? It seems that AM = GM for all eigenvalues is
necessary and sufficient. (Even if that is true, it is too much to check.)

(2) Nonetheless, it is possible that every matrix satisfies its own characteristic polynomial. If A
is diagonalisable, then indeed, p(A) = P(D − λ1)(D − λ2) . . .P−1 = 0. So we have proven the
Cayley-Hamilton theorem for diagonalisable matrices.

(3) It appears that real symmetric matrices might be diagonalisable. (Explaining our change of
variables in our ODE.)

(4) Non-symmetric matrices can also be diagonalisable.
(5) Can every matrix/linear map be brought to an upper triangular form at least ?
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