
NOTES FOR 12 SEPT (THURSDAY)

1. Recap

(1) Proved that between f.d. spaces of the same dimension, T is non-singular iff it is onto.
(2) Expressed linear maps as matrices using bases and looked at the change of basis formula.

Defined similarity of matrices.

2. Linear functionals

A linear functional on V is a linear map F : V → F. Here are some fundamental examples.
(1) If V = Fn, then Fa(~v) =

∑
i aivi where ~a ∈ V is a linear functional (as can be seen easily). Note

that in the case where F = R, the functional is simply the dot product. Here is a fun fact : If
Fa(~v) = 0 ∀ ~a, then ~v = ~0. Indeed, choose a = ei. Note that the notion of a dot product (which
we will discuss later) does not make sense for vector spaces over all fields. Nonetheless,
this linear functional is a useful substitute. Another interesting point : dim(Ker(Fa)) = n − 1
whenever a , 0. (The kernel is called a hyperspace/hyperplane.) Indeed, the range is all of
F (why ?) and nullity-rank tells us what we want. (Actually ,this statement does not need
the nullity-rank theorem.)

(2) The Trace map tr : Matn×n(F) → F given by tr(A) =
∑

i Aii is a linear functional. Note
the following interesting fact : tr(AB) =

∑
i, j Ai jB ji =

∑
i, j B jiAi j = tr(BA). (As a further

consequence, there are no two matrices X,P such that [X,P] = I.)
(3) Let V be the space of all functions f : S → F where S is any set. Then Et : V → F given by

Et( f ) = f (t) is a linear functional (called the evaluation map).

(4) Let V[a, b] be the space of all continuous functions f : [a, b] → R. Then F( f ) =
∫ b

a f (x)dx is a
linear functional.

The collection of all linear functionals L(V,F) on V is denoted as V∗. It is a vector space called the dual
space of F of dimension dim(V) (if V is finite-dimensional). Explicitly, the functionals wi(e j) = δi j
form a basis (known as the basis dual to ei). For every vector v ∈ V, v =

∑
i wi(v)ei. Moreover, if

w ∈ V∗, w =
∑

i w(vei)wi. Here is an interesting example : Let V be the space of real polynomial
functions of degree ≤ 2. Let t1, t2, t3 be distinct real numbers. Consider the evaluation functions
evti . They are are linearly independent. Indeed, applying the functional equation

∑
i cievti = 0 to the

vectors 1, t, t2 we get 
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(2.1)

By Gaussian elimination it is easy to see that ci = 0 ∀ i. Hence evti form a basis. Is there are a basis
pi of V such that evti is its dual basis ? That is, evti(p j(t)) = p j(ti) = δi j ? Note that p1(t) has two
roots t2, t3 and hence we can try p1(t) = A(x − t2)(x − t3) where A = 1

(t1−t2)(t1−t3) works. Likewise for
the other pi. Interestingly enough, p(t) =

∑
i p(ti)pi(t). Therefore, there exists exactly one quadratic

which satisfies p(ti) = ci given by the above formula.
Since linear functionals seem to be useful substitutes for “dot products” (whatever they may be)
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2 NOTES FOR 12 SEPT (THURSDAY)

here is a definition : If V is a vector space and S ⊂ V is a subset, the annihilator of S is the set S0
⊂ V∗

consisting of f such that f (v) = 0 ∀ v ∈ S. Note that S0 is always a subspace (regardless of the status
of S). The smaller S is, the larger S0 is.

Theorem 2.1. Let V be a finite-dimensional vector space and W ⊂ V be a subspace. Then dim(W)+dim(W0) =
dim(V).

Proof. Let e1, . . . , ew be a basis of W extended to e1, . . . , en - a basis of V. Then consider e∗w+1, . . . , e
∗
n.

Clearly the subspace S ⊂ V∗ spanned by them annihilates W. Moreover, since for every f ∈ V∗,
f =
∑

i f (ei)e∗i , we see that if f (W) = 0, then f is in S. Hence, S = W0. �

The proof of this theorem shows that if W is a k-dimensional subspace of V, then W is the
intersection of n − k hyperplanes. Indeed, the hyperplanes given by e∗w+i(v) = 0 intersect precisely
in W. Another corollary is : If W1,W2 ⊂ V are subspaces of a finite-dimensional vector space V,
then W1 = W2 iff their annihilators are equal. Indeed, if W1 = W2, clearly their annihilators are
equal. Conversely, suppose there exists a vector v ∈ W1 ∩Wc

2. Then, extend v to a basis of W2 and
V. The linear functional v∗ kills W2. However, v∗(v) = 1. A contradiction (because the annihilators
are assumed to be the same).
We can now look at linear equations from the perspective of linear functionals. Indeed, if

∑
j Ai jx j = 0,

let fi be the functional defined as fi(x) =
∑

j Ai jx j. Then the solution space of the linear equations is
simply the subspace annihilated by all the fi. Moreover, fi =

∑
j Ai je∗j. So the row space is a subspace

of V∗ spanned by fi. Looking at it from a dual point of view, given vectors αi = (Ai1, . . . ,Ain),
the condition that a linear functional f (x) =

∑
i cixi is annihilates αi is indeed

∑
i Ai jc j = 0. Thus,

row-reduction gives us an algorithm to find the annihilator of the subspace spanned by a set of
vectors in Fn.
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