NOTES FOR 12 SEPT (THURSDAY)

1. Recap

(1) Proved that between f.d. spaces of the same dimension, T is non-singular iff it is onto.
(2) Expressed linear maps as matrices using bases and looked at the change of basis formula. Defined similarity of matrices.

2. Linear functionals

A linear functional on V is a linear map $F: V \rightarrow \mathbb{F}$. Here are some fundamental examples.
(1) If $V=\mathbb{F}^{n}$, then $F_{a}(\vec{v})=\sum_{i} a_{i} v_{i}$ where $\vec{a} \in V$ is a linear functional (as can be seen easily). Note that in the case where $\mathbb{F}=\mathbb{R}$, the functional is simply the dot product. Here is a fun fact : If $F_{a}(\vec{v})=0 \forall \vec{a}$, then $\vec{v}=\overrightarrow{0}$. Indeed, choose $a=e_{i}$. Note that the notion of a dot product (which we will discuss later) does not make sense for vector spaces over all fields. Nonetheless, this linear functional is a useful substitute. Another interesting point : $\operatorname{dim}\left(\operatorname{Ker}\left(F_{a}\right)\right)=n-1$ whenever $a \neq 0$. (The kernel is called a hyperspace/hyperplane.) Indeed, the range is all of \mathbb{F} (why ?) and nullity-rank tells us what we want. (Actually ,this statement does not need the nullity-rank theorem.)
(2) The Trace map $\operatorname{tr}: \operatorname{Mat}_{n \times n}(\mathbb{F}) \rightarrow \mathbb{F}$ given by $\operatorname{tr}(A)=\sum_{i} A_{i i}$ is a linear functional. Note the following interesting fact : $\operatorname{tr}(A B)=\sum_{i, j} A_{i j} B_{j i}=\sum_{i, j} B_{j i} A_{i j}=\operatorname{tr}(B A)$. (As a further consequence, there are no two matrices X, P such that $[X, P]=I$.)
(3) Let V be the space of all functions $f: S \rightarrow \mathbb{F}$ where S is any set. Then $E_{t}: V \rightarrow \mathbb{F}$ given by $E_{t}(f)=f(t)$ is a linear functional (called the evaluation map).
(4) Let $V[a, b]$ be the space of all continuous functions $f:[a, b] \rightarrow \mathbb{R}$. Then $F(f)=\int_{a}^{b} f(x) d x$ is a linear functional.
The collection of all linear functionals $L(V, \mathbb{F})$ on V is denoted as V^{*}. It is a vector space called the dual space of \mathbb{F} of dimension $\operatorname{dim}(V)$ (if V is finite-dimensional). Explicitly, the functionals $w_{i}\left(e_{j}\right)=\delta_{i j}$ form a basis (known as the basis dual to e_{i}). For every vector $v \in V, v=\sum_{i} w_{i}(v) e_{i}$. Moreover, if $w \in V^{*}, w=\sum_{i} w\left(v e_{i}\right) w_{i}$. Here is an interesting example : Let V be the space of real polynomial functions of degree ≤ 2. Let t_{1}, t_{2}, t_{3} be distinct real numbers. Consider the evaluation functions $e v_{t_{i}}$. They are are linearly independent. Indeed, applying the functional equation $\sum_{i} c_{i} e v_{t_{i}}=0$ to the vectors $1, t, t^{2}$ we get

$$
\left[\begin{array}{ccc}
1 & 1 & 1 \tag{2.1}\\
t_{1} & t_{2} & t_{3} \\
t_{1}^{2} & t_{2}^{2} & t_{3}^{2}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

By Gaussian elimination it is easy to see that $c_{i}=0 \forall i$. Hence $e v_{t_{i}}$ form a basis. Is there are a basis p_{i} of V such that $e v_{t_{i}}$ is its dual basis ? That is, $e v_{t_{i}}\left(p_{j}(t)\right)=p_{j}\left(t_{i}\right)=\delta_{i j}$? Note that $p_{1}(t)$ has two roots t_{2}, t_{3} and hence we can try $p_{1}(t)=A\left(x-t_{2}\right)\left(x-t_{3}\right)$ where $A=\frac{1}{\left(t_{1}-t_{2}\right)\left(t_{1}-t_{3}\right)}$ works. Likewise for the other p_{i}. Interestingly enough, $p(t)=\sum_{i} p\left(t_{i}\right) p_{i}(t)$. Therefore, there exists exactly one quadratic which satisfies $p\left(t_{i}\right)=c_{i}$ given by the above formula.

Since linear functionals seem to be useful substitutes for "dot products" (whatever they may be)
here is a definition: If V is a vector space and $S \subset V$ is a subset, the annihilator of S is the set $S^{0} \subset V^{*}$ consisting of f such that $f(v)=0 \forall v \in S$. Note that S^{0} is always a subspace (regardless of the status of S). The smaller S is, the larger S^{0} is.
Theorem 2.1. Let V be a finite-dimensional vector space and $W \subset V$ be a subspace. Then $\operatorname{dim}(W)+\operatorname{dim}\left(W^{0}\right)=$ $\operatorname{dim}(V)$.
Proof. Let e_{1}, \ldots, e_{w} be a basis of W extended to e_{1}, \ldots, e_{n} - a basis of V. Then consider $e_{w+1^{*}}^{*}, \ldots, e_{n}^{*}$. Clearly the subspace $S \subset V^{*}$ spanned by them annihilates W. Moreover, since for every $f \in V^{*}$, $f=\sum_{i} f\left(e_{i}\right) e_{i}^{*}$, we see that if $f(W)=0$, then f is in S. Hence, $S=W^{0}$.

The proof of this theorem shows that if W is a k-dimensional subspace of V, then W is the intersection of $n-k$ hyperplanes. Indeed, the hyperplanes given by $e_{w+i}^{*}(v)=0$ intersect precisely in W. Another corollary is: If $W_{1}, W_{2} \subset V$ are subspaces of a finite-dimensional vector space V, then $W_{1}=W_{2}$ iff their annihilators are equal. Indeed, if $W_{1}=W_{2}$, clearly their annihilators are equal. Conversely, suppose there exists a vector $v \in W_{1} \cap W_{2}^{c}$. Then, extend v to a basis of W_{2} and V. The linear functional v^{*} kills W_{2}. However, $v^{*}(v)=1$. A contradiction (because the annihilators are assumed to be the same).
We can now look at linear equations from the perspective of linear functionals. Indeed, if $\sum_{j} A_{i j} x_{j}=0$, let f_{i} be the functional defined as $f_{i}(x)=\sum_{j} A_{i j} x_{j}$. Then the solution space of the linear equations is simply the subspace annihilated by all the f_{i}. Moreover, $f_{i}=\sum_{j} A_{i j} e_{j}^{*}$. So the row space is a subspace of V^{*} spanned by f_{i}. Looking at it from a dual point of view, given vectors $\alpha_{i}=\left(A_{i 1}, \ldots, A_{i n}\right)$, the condition that a linear functional $f(x)=\sum_{i} c_{i} x_{i}$ is annihilates α_{i} is indeed $\sum_{i} A_{i j} c_{j}=0$. Thus, row-reduction gives us an algorithm to find the annihilator of the subspace spanned by a set of vectors in \mathbb{F}^{n}.

