
NOTES FOR 13 AUG (TUESDAY)

1. Recap

(1) Defined invertible matrices and proved that the product of an arbitrary number of invertible
matrices is invertible. (As a consequence, a product of elementary row matrices is invertible.)
Also, proved that if A is invertible, its left and right inverses are unique and equal.

(2) One can that A is left invertible iff it is row equivalent to the identity iff A is a product of
elementary row matrices. Using this one can prove that A is invertible iff AX = 0 has the
trivial solution iff AX = Y has a unique solution for every Y.

(3) As a consequence, A = A1 . . .Ak is invertible iff each of the Ai is so.
(4) Defined vector spaces and proved some properties of them.

2. Vector spaces

Def : A vector β is said to be a linear combination of v1, . . . , vn with coefficients αi if β =
∑

i αivi.
Here are some examples and non-examples.

(1) If F is a field, then Fn is a vector space over F by component-wise addition and scalar
multiplication of each coordinate by field elements. For instanceRn is the usual vector space
consisting of “vectors” where vector addition has the usual interpretation.

(2) Note that the same set can be a vector space over different fields. For instance, Cn is a vector
space over R. Likewise, R is a vector space over Q.

(3) The set of m × n matrices with elements from the field form a vector space under (A + B)i j =
Ai j + Bi j and (cA)i j = cAi j. The additive inverse is −Ai j and the zero element is 0i j = 0.

(4) Let S be any set and V be the set of functions f : S → F. Define ( f + g)(s) = f (s) + g(s) and
(c f )(s) = c f (s). V is a vector space over F.

(5) Define the set of degree-d polynomials with coefficients inFas the subset (a0, a1, . . . , ad, 0, 0 . . .) ∈
F∞ where ad , 0. Addition is component wise. We define x = (0, 1, 0, . . .) and multiplication
of polynomials as (a.b)i =

∑
j+k]i a jbk. So a(x) =

∑
i aixi. The set of degree-d polynomials is

NOT a vector space. However, the set of degree at most-d polynomials is a vector space.
(6) A polynomial of degree-d defines a function f : F→ F as f (s) =

∑
i aisi. The set of polynomial

functions of degree at most d also forms a vector space. Interestingly enough, polynomials
are not necessarily determined by polynomial functions for finite fields. For instance, x + x2

is 0 as a function over Z2. More generally, x + x2 + x3 + . . . + xn = 0 over a field of size n.
(7) The set of all continuous f : R→ R is a vector space. Likewise for differentiable functions.
(8) The set of positive functions on R is not a vector space.
(9) The set of colours in the RGB format is not a vector space.

(10) Zn is not a vector space.
(11) The set of twice differentiable functions y solving y′′ + P(x)y′ + Q(x)y = 0 is a vector space

whereas y′′ + P(x)y′ + Q(x)y = R(x) is not a vector space.

A subspace S ⊂ V of a vector space is a set such that is a vector space in its own right under the
induced operations from V. In particular, it is closed under addition, additive inverses and scalar
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multiplication. (These conditions are also sufficient.) Actually, it is easy to see that it is enough to
be closed under cv + w where v,w ∈ S. Here are examples and non-examples.

(1) 0 is a subspace of any vector space.
(2) In Fn, x1 + x2 + . . . + xn = 0 is a subspace whereas

∑
i xi = 1 is not.

(3) The set of twice differentiable functions y : R → R solving y′′ + P(x)y′ + Q(x)y = 0 is a
subspace of all twice differentiable functions. Likewise, the set of polynomial functions is a
subspace of the set of all functions.

(4) Symmetric matrices form a subspace of Mn×n(F).
(5) Hermitian matrices form a real subspace of Mn×n(C) (Not a complex subspace though).
(6) The solutions of AX = 0 form a subspace. Indeed, A(cv + w) = cAv + Aw = 0.
(7) The intersection of any collection of subspaces of V is a subspace. Indeed, if v,w are in all

the subspaces, so is cv + w. It is not empty because it contains 0.
(8) Let S ⊂ V. The subspace WS spanned by (or generated by) S is defined as the intersection of

all subspaces of V containing S.
Prop : The subspace WS spanned by a non-empty subset S is the set of all linear combinations of
vectors in S.

Proof. Denote the set of all linear combinations of vectors in S by LS. Obviously S ⊂ LS ⊂ WS. We
just need to show the converse by showing that LS is a subspace (and hence WS ⊂ LS). Indeed,
c
∑

i αivi +
∑

j β jw j is a linear combination of vectors in S.
Def : If S1, . . . ,Sk ⊂ V, then the set of all sums

∑
i vi where vi ∈ Si is called the sum of the subsets

Si. Clearly, if the Si are subspaces, the sum is a subspace. In fact, it is the subspace spanned by ∪iSi.
One can come up with more examples of subspaces through intersections and spanning (especially
of Fn and Mm×n). �


	1. Recap
	2. Vector spaces

