NOTES FOR 14 NOV (THURSDAY)

1. Recap

- (1) Defined self-adjoint operators and gave examples.
- (2) Proved that any two norms on f.d. spaces are equivalent, defined the operator norm, and showed that I-A is invertible if $||A||_{op} < 1$, and that e^A makes sense. Defined unitary operators and proved that they correspond to unitary matrices in an orthonormal basis.

2. Unitary operators; Spectral theorem for self-adjoint operators

In whatever follows, as usual we assume that the spaces are finite-dimensional. (Spectral theory, that is, the theory of eigenvalues and eigenvectors is much more subtle in infinite-dimensions.)

Theorem 2.1. The eigenvalues of a self-adjoint operator are real. Moreover, eigenvectors corresponding to distinct eigenvalues are orthogonal.

Proof. If $Av = \lambda v$, then $(v, Av) = \overline{\lambda}(v, v)$ and $(Av, v) = \lambda(v, v)$. Since $A = A^*$, $\lambda = \overline{\lambda}$. If $Aw = \mu w$, then $\lambda(v, w) = (Av, w) = (v, Aw) = \overline{\mu}(v, w) = \mu(v, w)$. Hence, (v, w) = 0.

As a corollary, if a self-adjoint operator has distinct eigenvalues, it has an orthonormal basis of eigenvectors, i.e., for a Hermitian matrix A there exists a unitary matrix U such that $UAU^{\dagger} = D$. (Such a matrix is said to be "unitarily equivalent" to a diagonal matrix.) In fact, much more can be said.

Theorem 2.2. Let $T : V \to V$ be a self-adjoint operator between finite-dimensional inner product spaces. Then, there exist invariant subspaces E_i and orthogonal projections $\Pi_i : V \to E_i$ such that $I = \sum_i \Pi_i$ and $T : E_i \to E_i$ is of the form $Tv = \lambda_i v$ where $\lambda_i \in \mathbb{R}$. In particular, T is diagonalisable using an orthonormal basis.

Proof. Induct on n = dim(V). For dim(V) = 1 it is trivial. Assume it has been proven for $1, \ldots, n-1$. Now there exists a unit eigenvector e of T with real eigenvalue λ . Let Π_e be the orthogonal projection to the space $\langle e \rangle$ spanned by e. Then $I = \Pi_e + (I - \Pi_e)$. We claim that $W = \langle e \rangle^{\perp}$ is an invariant subspace. Indeed, if (v, e) = 0, then $(Tv, e) = (v, Te) = (v, \lambda e) = \lambda(v, e) = 0$. Moreover, the restriction $T : W \to W$ is self-adjoint (why?) Hence, by the induction hypothesis, $\sum_i \Pi_i = I$ on W. Thus, $v = \Pi_e v + (I - \Pi_e)v = \Pi_e v + \sum_i \Pi_i(I - \Pi_e)v$. Note that $\Pi_i(I - \Pi_e)v = \Pi_i v - \Pi_i \Pi_e v = \Pi_i v - \Pi_i(v, e)e = \Pi_i v$. If $\lambda = \lambda_i$ for some i, define a new projection operator as $\Pi_i + \Pi_e$. We are done.

As a consequence, if *A* is a Hermitian matrix, then there exists an orthonormal basis w_i such that $A = \sum_i \lambda_i |w_i\rangle \langle w_i|$.

Here are a couple of consequences.

(1) We have a variational characterisation of the largest eigenvalue of a Hermitian matrix : Let A be a self-adjoint operator over a finite-dimensional inner product space and let λ be its largest eigenvalue. Then λ = sup_{||v||=1}(Av, v). Moreover, ||A|| = sup |λ| over all eigenvalues of A.

Indeed, let e_i be an eigenvector basis. Then, $(Av, v) = \sum_i \lambda_i |v_i|^2 \le \lambda ||v||^2 = \lambda$ with equality holding iff v is an eigenvector corresponding to λ .

(2) As a HW exercise, you will show that simultaneous diagonalisation with orthonormal eigenvectors is possible for families of commuting self-adjoint operators. Now we have the following result (functional calculus).

Theorem 2.3. Let $f : \mathbb{R} \to \mathbb{R}$ be a function. There exists a unique function $\tilde{f} : Herm_{n \times n}(\mathbb{C}) \to Herm_{n \times n}(\mathbb{C})$ such that $\tilde{f}(A)v = f(\lambda)v$ for every eigenvector v of A.

Indeed, since $v = \sum_i (v, e_i)e_i$, $\tilde{f}(A)v = \sum_i (v, e_i)f(\lambda_i)e_i$, i.e., $\tilde{f}(A) = U^{\dagger}f(D)U$. (Actually, the theorem is stronger : It says that if f is continuous, then so is \tilde{f} .) As a consequence,

Proposition 2.4. Let A be any matrix. Then $C = A^{\dagger}A$ has a unique Hermitian non-negative definite square root B, i.e., $B^2 = A^{\dagger}A$.

Proof. Firstly, a Hermitian matrix is non-negative definite iff its eigenvalues are non-negative. Indeed, if $Av = \lambda v$, then $(v, Av) = \lambda(v, v) \ge 0$. Moreover, if its eigenvalues are non-negative, we get the result by diagonalisation.

Secondly, *C* is clearly Hermitian and non-negative definite and hence \sqrt{C} exists as $B = U^{\dagger}\sqrt{D}U$. In fact, choosing the positive square root of *D*, clearly, *B* is Hermitian and non-negative definite. Indeed, $v^{\dagger}Bv = (Uv)^{\dagger}\sqrt{D}Uv \ge 0$. Noticing that the eigenvalues of B^2 are simply the eigenvalues of *B* squared (by simultaneously diagonalising them), we are done with uniqueness too.

- (3) The operator norm of a Hermitian matrix is max_λ |λ| where the maximum is over all eigenvalues of *A*. Indeed, ||Av|| = ||∑_i λ_iv_ie_i|| where e_i is an orthonormal basis of eigenvectors. So, ||Av|| ≤ |λ|_{max}||v|| with equality holding iff v is an eigenvector.
- (4) In fact, one can compute the norm of even non-rectangular matrices $A \in Mat_{m \times n}$ using eigenvalues in a clever manner. Indeed, since $A^{\dagger}A$ and AA^{\dagger} are Hermitian (and non-negative definite), they are diagonalisable (with eigenvalues being non-negative numbers). Let $A^{\dagger}A = UD_1U^{\dagger}$ (the columns of U are called the "left-singular" vectors of A) and $AA^{\dagger} = VD_2V^{\dagger}$ (likewise, right-singular vectors).

Claim : The non-zero entries of D_1 and D_2 are the same.

Proof : If $A^{\dagger}Av = \lambda v$, then $AA^{\dagger}Av = \lambda Av$. Hence, if $\lambda \neq 0$ since $Av \neq 0$, Av is an eigenvector of AA^{\dagger} with eigenvalue λ . Moreover, if v_1, v_2, \ldots, v_k are linearly independent eigenvectors of $A^{\dagger}A$ with eigenvalue λ , then Av_i are also linearly independent. Indeed, if $\sum_i c_i Av_i = 0$, then $\sum_i c_i A^{\dagger}Av_i = \sum_i c_i \lambda v_i = 0$ and hence $c_i = 0 \forall i$. Likewise, the same argument shows that if v is an eigenvector of AA^{\dagger} , then $A^{\dagger}v$ is one of $A^{\dagger}A$. Thus, the dimensions of their non-zero eigenspaces are equal.

Now, $||Av||^2 = (Av, Av) = (A^{\dagger}Av, v)$ and hence the operator norm of Av is the square root of the largest eigenvalue of $A^{\dagger}A$. In the HW you will show that there are unitary matrices U, V such that $V^{\dagger}AU$ is "diagonal" and consists of zeroes as well as the square roots of the non-zero eigenvalues of $A^{\dagger}A$. These numbers are called the singular values of A. (This decomposition is called the singular value decomposition (SVD).)

2