NOTES FOR 14 NOV (THURSDAY)

1. Recap

(1) Defined self-adjoint operators and gave examples.
(2) Proved that any two norms on f.d. spaces are equivalent, defined the operator norm, and showed that $I-A$ is invertible if $\|A\|_{o p}<1$, and that e^{A} makes sense. Defined unitary operators and proved that they correspond to unitary matrices in an orthonormal basis.

2. Unitary operators; Spectral theorem for self-adjoint operators

In whatever follows, as usual we assume that the spaces are finite-dimensional. (Spectral theory, that is, the theory of eigenvalues and eigenvectors is much more subtle in infinite-dimensions.)
Theorem 2.1. The eigenvalues of a self-adjoint operator are real. Moreover, eigenvectors corresponding to distinct eigenvalues are orthogonal.
Proof. If $A v=\lambda v$, then $(v, A v)=\bar{\lambda}(v, v)$ and $(A v, v)=\lambda(v, v)$. Since $A=A^{*}, \lambda=\bar{\lambda}$.
If $A w=\mu w$, then $\lambda(v, w)=(A v, w)=(v, A w)=\bar{\mu}(v, w)=\mu(v, w)$. Hence, $(v, w)=0$.
As a corollary, if a self-adjoint operator has distinct eigenvalues, it has an orthonormal basis of eigenvectors, i.e., for a Hermitian matrix A there exists a unitary matrix U such that $U A U^{+}=D$. (Such a matrix is said to be "unitarily equivalent" to a diagonal matrix.) In fact, much more can be said.

Theorem 2.2. Let $T: V \rightarrow V$ be a self-adjoint operator between finite-dimensional inner product spaces. Then, there exist invariant subspaces E_{i} and orthogonal projections $\Pi_{i}: V \rightarrow E_{i}$ such that $I=\sum_{i} \Pi_{i}$ and $T: E_{i} \rightarrow E_{i}$ is of the form $T v=\lambda_{i} v$ where $\lambda_{i} \in \mathbb{R}$. In particular, T is diagonalisable using an orthonormal basis.

Proof. Induct on $n=\operatorname{dim}(V)$. For $\operatorname{dim}(V)=1$ it is trivial. Assume it has been proven for $1, \ldots, n-1$. Now there exists a unit eigenvector e of T with real eigenvalue λ. Let Π_{e} be the orthogonal projection to the space $\langle e\rangle$ spanned by e. Then $I=\Pi_{e}+\left(I-\Pi_{e}\right)$. We claim that $\left.W=<e\right\rangle^{\perp}$ is an invariant subspace. Indeed, if $(v, e)=0$, then $(T v, e)=(v, T e)=(v, \lambda e)=\lambda(v, e)=0$. Moreover, the restriction $T: W \rightarrow W$ is self-adjoint (why?) Hence, by the induction hypothesis, $\sum_{i} \Pi_{i}=I$ on W. Thus, $v=\Pi_{e} v+\left(I-\Pi_{e}\right) v=\Pi_{e} v+\sum_{i} \Pi_{i}\left(I-\Pi_{e}\right) v$. Note that $\Pi_{i}\left(I-\Pi_{e}\right) v=\Pi_{i} v-\Pi_{i} \Pi_{e} v=\Pi_{i} v-\Pi_{i}(v, e) e=\Pi_{i} v$. If $\lambda=\lambda_{i}$ for some i, define a new projection operator as $\Pi_{i}+\Pi_{e}$. We are done.

As a consequence, if A is a Hermitian matrix, then there exists an orthonormal basis w_{i} such that $A=\sum_{i} \lambda_{i}\left|w_{i}\right\rangle\left\langle w_{i}\right|$.
Here are a couple of consequences.
(1) We have a variational characterisation of the largest eigenvalue of a Hermitian matrix : Let A be a self-adjoint operator over a finite-dimensional inner product space and let λ be its largest eigenvalue. Then $\lambda=\sup _{\|v\|=1}(A v, v)$. Moreover, $\|A\|=\sup |\lambda|$ over all eigenvalues of A.
Indeed, let e_{i} be an eigenvector basis. Then, $(A v, v)=\sum_{i} \lambda_{i}\left|v_{i}\right|^{2} \leq \lambda\|v\|^{2}=\lambda$ with equality holding iff v is an eigenvector corresponding to λ.
(2) As a HW exercise, you will show that simultaneous diagonalisation with orthonormal eigenvectors is possible for families of commuting self-adjoint operators. Now we have the following result (functional calculus).

Theorem 2.3. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function. There exists a unique function $\tilde{f}: \operatorname{Herm}_{n \times n}(\mathbb{C}) \rightarrow$ $\operatorname{Herm}_{n \times n}(\mathbb{C})$ such that $\tilde{f}(A) v=f(\lambda) v$ for every eigenvector v of A.

Indeed, since $v=\sum_{i}\left(v, e_{i}\right) e_{i}, \tilde{f}(A) v=\sum_{i}\left(v, e_{i}\right) f\left(\lambda_{i}\right) e_{i}$, i.e., $\tilde{f}(A)=U^{+} f(D) U$. (Actually, the theorem is stronger : It says that if f is continuous, then so is \tilde{f}.) As a consequence,

Proposition 2.4. Let A be any matrix. Then $C=A^{\dagger} A$ has a unique Hermitian non-negative definite square root B, i.e., $B^{2}=A^{\dagger} A$.

Proof. Firstly, a Hermitian matrix is non-negative definite iff its eigenvalues are non-negative. Indeed, if $A v=\lambda v$, then $(v, A v)=\lambda(v, v) \geq 0$. Moreover, if its eigenvalues are non-negative, we get the result by diagonalisation.
Secondly, C is clearly Hermitian and non-negative definite and hence \sqrt{C} exists as $B=$ $U^{\dagger} \sqrt{D} U$. In fact, choosing the positive square root of D, clearly, B is Hermitian and nonnegative definite. Indeed, $v^{\dagger} B v=(U v)^{\dagger} \sqrt{D} U v \geq 0$. Noticing that the eigenvalues of B^{2} are simply the eigenvalues of B squared (by simultaneously diagonalising them), we are done with uniqueness too.
(3) The operator norm of a Hermitian matrix is $\max _{\lambda}|\lambda|$ where the maximum is over all eigenvalues of A. Indeed, $\|A v\|=\left\|\sum_{i} \lambda_{i} v_{i} e_{i}\right\|$ where e_{i} is an orthonormal basis of eigenvectors. So, $\|A v\| \leq|\lambda|_{\max }\|v\|$ with equality holding iff v is an eigenvector.
(4) In fact, one can compute the norm of even non-rectangular matrices $A \in \mathrm{Mat}_{m \times n}$ using eigenvalues in a clever manner. Indeed, since $A^{\dagger} A$ and $A A^{\dagger}$ are Hermitian (and non-negative definite), they are diagonalisable (with eigenvalues being non-negative numbers). Let $A^{\dagger} A=$ $U D_{1} U^{\dagger}$ (the columns of U are called the "left-singular" vectors of A) and $A A^{+}=V D_{2} V^{+}$ (likewise, right-singular vectors).
Claim : The non-zero entries of D_{1} and D_{2} are the same.
Proof : If $A^{\dagger} A v=\lambda v$, then $A A^{\dagger} A v=\lambda A v$. Hence, if $\lambda \neq 0$ since $A v \neq 0, A v$ is an eigenvector of $A A^{\dagger}$ with eigenvalue λ. Moreover, if $v_{1}, v_{2}, \ldots, v_{k}$ are linearly independent eigenvectors of $A^{\dagger} A$ with eigenvalue λ, then $A v_{i}$ are also linearly independent. Indeed, if $\sum_{i} c_{i} A v_{i}=0$, then $\sum_{i} c_{i} A^{\dagger} A v_{i}=\sum_{i} c_{i} \lambda v_{i}=0$ and hence $c_{i}=0 \forall i$. Likewise, the same argument shows that if v is an eigenvector of $A A^{\dagger}$, then $A^{\dagger} v$ is one of $A^{\dagger} A$. Thus, the dimensions of their non-zero eigenspaces are equal.
Now, $\|A v\|^{2}=(A v, A v)=\left(A^{\dagger} A v, v\right)$ and hence the operator norm of $A v$ is the square root of the largest eigenvalue of $A^{\dagger} A$. In the HW you will show that there are unitary matrices U, V such that $V^{+} A U$ is "diagonal" and consists of zeroes as well as the square roots of the non-zero eigenvalues of $A^{\dagger} A$. These numbers are called the singular values of A. (This decomposition is called the singular value decomposition (SVD).)

