
NOTES FOR 14 NOV (THURSDAY)

1. Recap

(1) Defined self-adjoint operators and gave examples.
(2) Proved that any two norms on f.d. spaces are equivalent, defined the operator norm, and

showed that I−A is invertible if ‖A‖op < 1, and that eA makes sense. Defined unitary operators
and proved that they correspond to unitary matrices in an orthonormal basis.

2. Unitary operators; Spectral theorem for self-adjoint operators

In whatever follows, as usual we assume that the spaces are finite-dimensional. (Spectral theory,
that is, the theory of eigenvalues and eigenvectors is much more subtle in infinite-dimensions.)

Theorem 2.1. The eigenvalues of a self-adjoint operator are real. Moreover, eigenvectors corresponding to
distinct eigenvalues are orthogonal.

Proof. If Av = λv, then (v,Av) = λ̄(v, v) and (Av, v) = λ(v, v). Since A = A∗, λ = λ̄.
If Aw = µw, then λ(v,w) = (Av,w) = (v,Aw) = µ̄(v,w) = µ(v,w). Hence, (v,w) = 0. �

As a corollary, if a self-adjoint operator has distinct eigenvalues, it has an orthonormal basis of
eigenvectors, i.e., for a Hermitian matrix A there exists a unitary matrix U such that UAU† = D.
(Such a matrix is said to be “unitarily equivalent” to a diagonal matrix.) In fact, much more can be
said.

Theorem 2.2. Let T : V → V be a self-adjoint operator between finite-dimensional inner product spaces.
Then, there exist invariant subspaces Ei and orthogonal projections Πi : V → Ei such that I =

∑
i Πi and

T : Ei → Ei is of the form Tv = λiv where λi ∈ R. In particular, T is diagonalisable using an orthonormal
basis.

Proof. Induct on n = dim(V). For dim(V) = 1 it is trivial. Assume it has been proven for 1, . . . ,n − 1.
Now there exists a unit eigenvector e of T with real eigenvalue λ. Let Πe be the orthogonal projection
to the space < e > spanned by e. Then I = Πe + (I − Πe). We claim that W =< e >⊥ is an invariant
subspace. Indeed, if (v, e) = 0, then (Tv, e) = (v,Te) = (v, λe) = λ(v, e) = 0. Moreover, the restriction
T : W → W is self-adjoint (why?) Hence, by the induction hypothesis,

∑
i Πi = I on W. Thus,

v = Πev+ (I−Πe)v = Πev+
∑

i Πi(I−Πe)v. Note that Πi(I−Πe)v = Πiv−ΠiΠev = Πiv−Πi(v, e)e = Πiv.
If λ = λi for some i, define a new projection operator as Πi + Πe. We are done. �

As a consequence, if A is a Hermitian matrix, then there exists an orthonormal basis wi such that
A =
∑

i λi|wi〉〈wi|.
Here are a couple of consequences.

(1) We have a variational characterisation of the largest eigenvalue of a Hermitian matrix : Let
A be a self-adjoint operator over a finite-dimensional inner product space and let λ be its
largest eigenvalue. Then λ = sup

‖v‖=1(Av, v). Moreover, ‖A‖ = sup |λ| over all eigenvalues of
A.
Indeed, let ei be an eigenvector basis. Then, (Av, v) =

∑
i λi|vi|

2
≤ λ‖v‖2 = λ with equality

holding iff v is an eigenvector corresponding to λ.
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(2) As a HW exercise, you will show that simultaneous diagonalisation with orthonormal eigen-
vectors is possible for families of commuting self-adjoint operators. Now we have the
following result (functional calculus).

Theorem 2.3. Let f : R → R be a function. There exists a unique function f̃ : Hermn×n(C) →
Hermn×n(C) such that f̃ (A)v = f (λ)v for every eigenvector v of A.

Indeed, since v =
∑

i(v, ei)ei, f̃ (A)v =
∑

i(v, ei) f (λi)ei, i.e., f̃ (A) = U† f (D)U. (Actually, the
theorem is stronger : It says that if f is continuous, then so is f̃ .) As a consequence,

Proposition 2.4. Let A be any matrix. Then C = A†A has a unique Hermitian non-negative definite
square root B, i.e., B2 = A†A.

Proof. Firstly, a Hermitian matrix is non-negative definite iff its eigenvalues are non-negative.
Indeed, if Av = λv, then (v,Av) = λ(v, v) ≥ 0. Moreover, if its eigenvalues are non-negative,
we get the result by diagonalisation.
Secondly, C is clearly Hermitian and non-negative definite and hence

√
C exists as B =

U†
√

DU. In fact, choosing the positive square root of D, clearly, B is Hermitian and non-
negative definite. Indeed, v†Bv = (Uv)†

√
DUv ≥ 0. Noticing that the eigenvalues of B2 are

simply the eigenvalues of B squared (by simultaneously diagonalising them), we are done
with uniqueness too. �

(3) The operator norm of a Hermitian matrix is maxλ |λ| where the maximum is over all eigen-
values of A. Indeed, ‖Av‖ = ‖

∑
i λiviei‖ where ei is an orthonormal basis of eigenvectors. So,

‖Av‖ ≤ |λ|max‖v‖with equality holding iff v is an eigenvector.
(4) In fact, one can compute the norm of even non-rectangular matrices A ∈ Matm×n using

eigenvalues in a clever manner. Indeed, since A†A and AA† are Hermitian (and non-negative
definite), they are diagonalisable (with eigenvalues being non-negative numbers). Let A†A =
UD1U† (the columns of U are called the “left-singular” vectors of A) and AA† = VD2V†

(likewise, right-singular vectors).
Claim : The non-zero entries of D1 and D2 are the same.
Proof : If A†Av = λv, then AA†Av = λAv. Hence, if λ , 0 since Av , 0, Av is an eigenvector
of AA† with eigenvalue λ. Moreover, if v1, v2, . . . , vk are linearly independent eigenvectors of
A†A with eigenvalue λ, then Avi are also linearly independent. Indeed, if

∑
i ciAvi = 0, then∑

i ciA†Avi =
∑

i ciλvi = 0 and hence ci = 0 ∀ i. Likewise, the same argument shows that if
v is an eigenvector of AA†, then A†v is one of A†A. Thus, the dimensions of their non-zero
eigenspaces are equal.
Now, ‖Av‖2 = (Av,Av) = (A†Av, v) and hence the operator norm of Av is the square root
of the largest eigenvalue of A†A. In the HW you will show that there are unitary matrices
U,V such that V†AU is “diagonal” and consists of zeroes as well as the square roots of the
non-zero eigenvalues of A†A. These numbers are called the singular values of A. (This
decomposition is called the singular value decomposition (SVD).)
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