
NOTES FOR 15 OCT (TUESDAY)

1. Recap

(1) Defined eigenvalues, eigenvectors, characteristic polynomial, geometric and algebraic mul-
tiplicities, and diagonalisability.

(2) Observed that infinite-dimensions are subtle, eigenvalues need not always exist even in
finite-dimensions, but always do over complex numbers.

(3) Proved Cayley-Hamilton for diagonalisable matrices.
(4) Not every matrix is diagonalisable. However, it appears that real symmetric matrices might

be diagonalisable. (Explaining our change of variables in our ODE.) Non-symmetric ones
can also be diagonalisable.

(5) Can every matrix/linear map be brought to an upper triangular form at least ? (For ODE
purposes, that suffices.)

2. Eigenvalues and Eigenvectors

We give a partial answer to which matrices are diagonalisable.

Proposition 2.1. Let A ∈Matn×n(F) have k distinct eigenvalues in F. Then the corresponding eigenvectors
in Fn are linearly independent.

Proof. Suppose
∑

i ciei = 0. At this point there are two ways to proceed.
(1) Induction on k : Now

∑
i ciλiei = 0 and hence

∑
i ci(λi−λ1)ei = 0. Hence, a linear combination

of ei (where i , 1) is 0. By the induction hypothesis, this means that ci = 0 ∀2 ≤ i ≤ k. Hence,
c1 = 0.

(2) Determinants : Clearly
∑

i ciλl
iei = 0 for all l. Solving for ci using the Vandermonde determi-

nant we see that ci = 0.
�

As a corollary, if A has n distinct eigenvalues in F, it is diagonalisable over F. As a consequence,
“most” complex matrices are diagonalisable. We give another answer to the question now.

Proposition 2.2. Let T : V → V have n = dim(V) eigenvalues in F. Then, gM ≤ aM for every eigenvalue
of A and equality holds for all eigenvalues simultaneously iff T is diagonalisable.

Proof. Suppose not, i.e., there is an eigenvalue λ such that gM > aM, i.e., there exists a basis of V
containing e1, e2, . . . , egM linearly independent eigenvectors corresponding to λ. Then the matrix of

T in this basis is of the form


λ 0 . . . ∗ ∗
0 λ . . . ∗ ∗
...

... . . .
...
...

0 0 . . . ∗ ∗

. The characteristic polynomial of this matrix (by

induction) has λ as a root repeated at least gM many times - a contradiction. If aM = gM for all
eigenvalues, then since

∑
aMi = n, we have a basis of eigenvectors and T is diagonalisable. If T is

diagonalisable, clearly aM = gM for all eigenvalues. �
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This answer is not very satisfying because it is not easy to check. Now we prove an important
result about any matrix/linear map.

Theorem 2.3. Let T : V → V have n = dim(V) eigenvalues (counted with multiplicity) λ1 , . . . , λi in
F. Then there exists a basis of V such that e1, . . . , ek are all eigenvectors, and ek+1, . . . , en are not eigenvectors
but the matrix A is upper triangular with the diagonal elements for ek+1, . . . being λ1, λ2, . . . in that order

inductively, i.e., A =



λ1 0 0 . . . 0 ∗ ∗ . . . ∗

0 λ1 0 . . . 0 ∗ ∗ . . . ∗

0 0
. . .

...
...

...
... . . .

...
0 0 0 λ2 . . . ∗ ∗ . . . ∗

0 0 0 0
. . .

...
...

... . . .
0 0 0 0 0 λ1 ∗ . . . ∗

0 0 0 0 0 0
. . . . . . ∗

...
...

...
...

...
...

...
. . .

...


.

Proof. We use induction on n. For n = 1, it is trivial. Assume truth for 1, 2 . . . ,n − 1. Take all the
eigenvectors e1, . . . , ek and extend them to a basis of V to get a matrix B for T. Now consider the
lower (n− k)× (n− k) matrix. Firstly, as shown earlier, the eigenvalues of this smaller matrix form a
subset of the eigenvalues of T. Secondly, changing the basis ẽk+1, . . . , ẽn and using induction we can
get the smaller matrix in the desired form. Since this change of basis does not affect e1, . . . , ek, that
part of the matrix remains unaffected. We are done. �

Essentially, in the proof of the above result, we took V/Eigenspaces and applied induction to it.
The above result can be used to make precise the notion that most complex matrices are diagonal-
isable. Firstly, endow Matn×n(C) the metric space topology arising from Cn2

. Now we prove that
diagonalisable matrices form a dense subset of all matrices : Indeed, given a matrix A, we see by the
theorem that A = PÃP−1 where Ã is in the upper triangular form as above. The idea is to add a small
perturbation to A so that its eigenvalues become distinct and hence A becomes diagonalisable. It is
easy to see that there is a sequence of diagonal matrices Di such that Di → 0 in the topology above
and Ã + Di has distinct entries on its diagonal (and hence distinct eigenvalues because for an upper
triangular matrix, the eigenvalues are the diagonal entries). If we prove that matrix multiplication
(from left and right) is continuous, then A + PDiP−1

→ A. Hence diagonalisable matrices are dense.
I leave it as an exercise to prove that matrix multiplication is continuous (indeed, every entry of the
new matrix is a polynomial). So we have the following beautiful consequence :

Theorem 2.4. (Cayley-Hamilton) Every complex matrix A satisfies pA(A) = 0

Proof. pA(A) is a matrix whose entries are polynomials in the entries of A. Hence pA(A) is continuous
on the space of matrices with the topology described above. Since pA(A) = 0 for diagonalisable
matrices, and diagonalisable matrices form a dense subset, pA(A) = 0 for all complex matrices. �

In the HW you will be asked to show that the above theorem holds for matrices over arbitrary
fields (and in fact over commutative rings).
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