
NOTES FOR 17 OCT (THURSDAY)

1. Recap

(1) Proved that eigenvectors corresponding to distinct eigenvalues are linearly independent.
(2) Proved that gM ≤ aM with equality holding for all eigenvalues iff A is diagonalisable.
(3) Proved that every complex matrix can be made upper triangular and hence, diagonalisable

complex matrices are dense and the Cayley-Hamilton theorem holds.

2. More on diagonalisation or the lack of thereof

Before proceeding further, let us do an example of diagonalisation to clear confusion. The main
point is that if P consists of the eigenvectors of A as its columns, then A = PDP−1 or alternatively,

P−1AP = D. Let A =

[
3 2
1 4

]
. Its eigenvalues and eigenvectors are (5, (1, 1)) and (2, (2,−1)). So let

P =

[
1 2
1 −1

]
. Then P−1 = − 1

3

[
−1 −2
−1 1

]
. Now P−1AP can be easily computed to be the diagonal

matrix D =

[
5 0
0 2

]
.

An interesting question is “When can two (or more) matrices be simultaneously diagonalised ?”
Note that if PA1P−1 = D1 and PA2P−1 = D2, then [A1,A2] = A1A2 − A2A1 = P−1[D1,D2]P = 0. (The
symbol [A,B] = AB − BA is called the commutator of A and B. It measures how far they are from
commuting. It is the central theme of “Lie algebras”.) In fact, this necessary condition applies to
any number of such matrices. This condition is also sufficient :

Theorem 2.1. If Ai : V → V (where V is finite-dimensional as usual) are diagonalisable over F, and if
[Ai,A j] = 0 ∀ i , j, then there exists a basis such that all the Ai are simultaneously diagonal in this basis.

Proof. Without loss of generality, assume that at least one of the Ai (call it Ai0) is not a multiple of
identity. We induct on n = dim(V). For n = 1 it is trivial. Assume it is true for 1, 2 . . . ,n− 1. Let e1 be
an eigenvector of Ai0 for some i0. Then Ai0A je1 = A jAi0e1 = λ0A je1 for all j. So either A je1 = 0 (which
means e1 is an eigenvector of A j) or A je1 is an eigenvector of Ai0 with eigenvalues λ0,l.

Let V0,l ⊂ V be the eigenspace of λ0,l (for Ai0). It is an invariant subspace of A j for all j. In
other words, every eigenspace of Ai0 is an invariant subspace for all A j. Since Ai0 is diagonalisable,
V ≡ ⊕kV0,l (why ?) If we prove that all the A j : ⊕k,1V0,l → ⊕k,lV0,l are diagonalisable, by the
induction hypothesis, there exists a basis of ⊕k,lV0,l such that the basis vectors are eigenvectors for
all A j. Likewise, by the induction hypothesis, the same can be done (by assumption that Ai0 is not
a multiple of the identity) for V0,1. Hence we get a basis of V consisting of eigenvectors for all A j.

The only thing remaining is to show the following lemma. Now we have the following lemma.

Lemma 2.2. If T : V → V is diagonalisable and V0 ⊂ V (of dimension > 0) is an invariant subspace of V,
then T : V0 → V0 is also diagonalisable.

The proof of this lemma will be deferred to a later class where we will have proved that a linear
map is diagonalisable iff the minimal polynomial has no repeated roots. �

1



2 NOTES FOR 17 OCT (THURSDAY)

In the proof of the above result, we had to put in a little effort to prove something seemingly
obvious about diagonalisability (when restricted to an invariant subspace). So we need some better
ways to check whether something is diagonalisable or not.

To this end, let T : V → V be a linear map (V is finite-dimensional) such that all its eigenvalues
lie in F. Let S be the set of all abstract polynomials p : F → F such that p(T) = 0 (when thought of
as a polynomial function). This set is non-empty by the Cayley-Hamilton theorem. Actually, it is
much easier to see it is non-empty : Indeed, since L(V,V) has dimension n2, the set 1,T,T2, . . . ,Tn2

is
linearly dependent and hence S is non-empty. Here is an important theorem.

Theorem 2.3. Let k be the smallest degree of non-zero polynomials in S. There exists a unique monic (that
is, the highest order coefficient is 1) polynomial m(x)of degree k in S. (This polynomial is called the minimal
polynomial of T.) The minimal polynomial satisfies the following properties.

(1) Every element of S is divisible by the minimal polynomial.
(2) Every eigenvalue of T is a root of m(x).
(3) If T is diagonalisable then m(x) has no repeated roots.

Proof. If there are two monic minimal degree polynomials m1,m2, then m1(x) = m2(x)q(x)+r(x) where
deg(r(x)) < deg(m2(x)) = deg(m1(x)). (This fact is the Euclidean algorithm for polynomials over a
field. It can be proven by induction.) Therefore, m1(T) = 0 = m2(T)q(T) + r(T) = 0 + r(T) and hence
r(x) ∈ S contradicting the minimality of the degrees of m1,m2. This means that r(x) = 0. Comparing
the highest order coefficients, m1(x) = m2(x).
Now

(1) The same Euclidean algorithm shows that p is divisible by m.
(2) The Cayley-Hamilton theorem implies that the roots of m form a subset of the roots of the

characteristic polynomial pT. If any eigenvalue λ does not occur in m(x), then m(T)e =
m(λ)e , 0 where e is an eigenvector corresponding to λ. This is a contradiction.

(3) In the basis of eigenvectors, T is diagonal and hence the polynomial (T−λ1)(T−λ2) . . . (T−λi) =
0 is the minimal polynomial. Hence diagonalisability implies non-repeated roots of m(x).

�

Here are a few examples :

(1) If A ∈ Mat5×5(C) such that A100 = 0, then A5 = 0. Indeed, the minimal polynomial divides
x100 and hence has only one root, namely, 0. So the characteristic polynomial is x5. By
Cayley-Hamilton, A5 = 0.

(2) Let A =


λ 1 0 0 . . . 0
0 λ 1 0 . . . 0
...

...
. . .

...
0 0 . . . λ

, i.e., A is upper-triangular with λ on the diagonal and 1s on

the off-diagonal. Clearly the only root of the minimal polynomial is λ. So m(x) = (x−λ)k. Let
pr(x) = (x − λ)r = pr

1. Now p1(A)(ei) = ei−1 if i ≥ 2 and p1(A)(e1) = 0. Therefore, pr(A)(ei) = ei−r
if i ≥ r + 1 and 0 otherwise. Thus, r = n is the smallest number such that pr(A) = 0. Thus
m(x) = (x − λ)n. So A is not diagonalisable.

(3) Let A ∈ Mat2×2(C) satisfy A2 = A. Then A(A − 1) = 0 and hence m(x) is either x, x − 1 or

x(x − 1). Thus A = 0, I or is similar to
[

1 0
0 0

]
.
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(4) A =


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

. pA(t) = t2(t2
− 4). The minimal polynomial has to be tk(t2

− 4) for

k ≥ 1. Upon calculation, A(A2
− 4) = 0. Actually, it is easy to see that the rank of A is 2. So

dim(ker(A)) = 2. Hence A is diagonalisable over Q.
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