NOTES FOR 17 SEPT (TUESDAY)

1. Recap

(1) Defined linear functionals and gave examples.
(2) Defined the annihilator and saw that row-reduction gives us an algorithm to find the annihilator of the subspace spanned by a set of vectors in \mathbb{F}^{n}.

2. Linear functionals

(1) Let $f_{1}=x_{1}+2 x_{2}+2 x_{3}+x_{4}, f_{2}=2 x_{2}+x_{4}, f_{3}=-2 x_{1}-4 x_{3}+3 x_{4}$ be linear functionals on \mathbb{R}^{4}. Find the subspace they annihilate. (Basically, find the null space of an appropriate matrix with the coefficients of f_{i} as the rows.)
(2) Let $W \subset \mathbb{R}^{5}$ be the span of $\alpha_{1}=(2,-2,3,4,-1), \alpha_{2}=(-1,1,2,5,2), \alpha_{3}=(0,0,-1,-2,3), \alpha_{4}=$ ($1,-1,2,3,0$). Find the annihilator. (Basically, put these as the rows of a matrix and find the null space of that matrix.)

3. Double dual

Is every basis of V^{*} dual to some basis of V ? To answer this, we consider $V^{* *}$.
Theorem 3.1. Let V be a finite-dimensional vector space. For each $a \in V$, define $E_{a}(f)=f(a)$ where $f \in V^{*}$. The map $a \rightarrow E_{a}$ is a linear isomorphism of V onto $V^{* *}$.
Proof. Note that the kernel consists of a such that $E_{a}(f)=0$ for all $f \in V^{*}$, i.e., $f(a)=0 \forall f$. So $\operatorname{ann}(a)=V$ but that is a problem because $\operatorname{dim}(\{a\}) \neq 0$ if $a \neq 0$. Hence the kernel is trivial (it is non-singular). Hence, E_{a} is onto.

As a corollary, every basis of V^{*} is the dual of some basis of V : Indeed, if f_{1}, \ldots, f_{n} is a basis of V^{*}, let f_{i}^{*} be the dual basis in $V^{* *}$. Then there exist $e_{i} \in V$ such that $E_{e_{i}}=f_{i}^{*}$. We claim that $e_{i}^{*}=f_{i}$. Indeed, $f_{i}\left(e_{j}\right)=E_{e_{j}}\left(f_{i}\right)=f_{j}^{*}\left(f_{i}\right)=\delta_{i j}$.
Sometimes, one simply identifies V with $V^{* *}$ without mention (using the isomorphism above).
Proposition 3.2. Let $S \subset V$ be a subset of a finite-dimensional vector space V. Then $\left(S^{0}\right)^{0}$ is the subspace spanned by S.

Proof. $f \in\left(S^{0}\right)^{0}$ iff $f(g)=0 \forall g \in S^{0}$ iff $g(f)=0 \forall g \in S^{0}$. In particular, $W_{S} \subset\left(S^{0}\right)^{0}$. But $\operatorname{dim}\left(W_{S}\right)+\operatorname{dim}\left(S^{0}\right)=n=\operatorname{dim}\left(S^{0}\right)+\operatorname{dim}\left(\left(S^{0}\right)^{0}\right)$. Hence $W_{S}=\left(S^{0}\right)^{0}$.

At this point we can give a deeper meaning to the statement that the row rank equals the column rank. Note that if $T: V \rightarrow W$ is a linear map, then we have a natural linear map (called the transpose/adjoint of $T) T^{*}: W^{*} \rightarrow V^{*}$ given by $T^{*}(f)(v)=f(T v)$. Indeed, $\left(c T_{1}+T_{2}\right)^{*}(f)(v)=$ $f\left(c T_{1}(v)+T_{2}(v)\right)=c T_{1}^{*}(f)(v)+T_{2}^{*}(f)(v)$.
Theorem 3.3. Let $T: V \rightarrow W$ be a linear map between vector spaces. Then $\operatorname{ker}\left(T^{*}\right)$ is the annihilator of Range(T). If V and W are finite-dimensional, then
(1) $\operatorname{rank}\left(T^{*}\right)=\operatorname{rank}(T)$
(2) Range of T^{*} is the annihilator of the kernel of T.

Proof. $f \in \operatorname{ker}\left(T^{*}\right)$ iff $T^{*}(f)=0$, i.e., $f(T v)=0 \forall v \in V$ iff $f(\operatorname{Range}(T))=0$ iff f is in the annihilator of $\operatorname{Range}(T)$. Now assume that V and W are finite-dimensional with dimensions n and m respectively. Let $r=\operatorname{rank}(T)$. Then $\operatorname{dimker}\left(T^{*}\right)+r=m$ (by a theorem done earlier). By nullity-rank, $\operatorname{Rank}\left(T^{*}\right)=$ $r=\operatorname{Rank}(T)$. Now if $g=T^{*} f$, and $v \in \operatorname{Ker}(T)$, then $g(v)=f(T(v))=f(0)=0$. Hence Range $\left(T^{*}\right) \subset$ $\operatorname{Ann}(\operatorname{ker}(T))$. But the dimension of the annihilator is $n-\operatorname{dim}(\operatorname{ker}(T))=\operatorname{Rank}(T)=\operatorname{Rank}\left(T^{*}\right)$. Hence $\operatorname{Range}\left(T^{*}\right)=\operatorname{Ann}(\operatorname{Ker}(T))$.

In other words, $T v=w$ iff w is annihilated by $\operatorname{ker}\left(T^{*}\right)$. This sort of an observation in infinitedimensions leads to solutions of certain PDE. We have another result.

Proposition 3.4. Let V, W be finite-dimensional v. spaces with ordered bases $\mathcal{B}, \mathcal{B}^{\prime}$. Let $T: V \rightarrow W$ be a linear map and A be the matrix relative to $\mathcal{B}, \mathcal{B}^{\prime}$. Let B be the matrix of T^{*} relative to corresponding dual bases. Then $B=A^{T}$.
Proof. $B_{i j}=T^{*} e_{j, \mathcal{B}^{*}}^{*}{ }_{i, \mathcal{B} *}^{*}=T^{*}\left(e_{j, \mathcal{B}^{*} *}^{*}\right)\left(e_{i, \mathcal{B}}\right)=e_{j, \mathcal{B}^{*}}^{*}\left(T\left(e_{i, \mathcal{B}}\right)\right)=A_{k i} e_{j, \mathcal{B}^{*}}^{*} e_{k, \mathcal{B}^{\prime}}=A_{j i}$.
Using these results, we can conclude that the row rank equals the column rank. Indeed, a matrix A defines a linear map $T: \mathbb{F}^{n} \rightarrow \mathbb{F}^{m}$ given by $T v=A v$. The column rank of A is $\operatorname{Rank}(T)$. The row rank of A is $\operatorname{Rank}\left(A^{T}\right)=\operatorname{Rank}\left(T^{*}\right)=\operatorname{Rank}(T)$.

