NOTES FOR 17 SEPT (TUESDAY)

1. Recap

- (1) Defined linear functionals and gave examples.
- (2) Defined the annihilator and saw that row-reduction gives us an algorithm to find the annihilator of the subspace spanned by a set of vectors in \mathbb{F}^n .

2. LINEAR FUNCTIONALS

- (1) Let $f_1 = x_1 + 2x_2 + 2x_3 + x_4$, $f_2 = 2x_2 + x_4$, $f_3 = -2x_1 4x_3 + 3x_4$ be linear functionals on \mathbb{R}^4 . Find the subspace they annihilate. (Basically, find the null space of an appropriate matrix with the coefficients of f_i as the rows.)
- (2) Let $W \subset \mathbb{R}^5$ be the span of $\alpha_1 = (2, -2, 3, 4, -1), \alpha_2 = (-1, 1, 2, 5, 2), \alpha_3 = (0, 0, -1, -2, 3), \alpha_4 = (1, -1, 2, 3, 0)$. Find the annihilator. (Basically, put these as the rows of a matrix and find the null space of that matrix.)

3. Double dual

Is every basis of V^* dual to some basis of V? To answer this, we consider V^{**} .

Theorem 3.1. Let V be a finite-dimensional vector space. For each $a \in V$, define $E_a(f) = f(a)$ where $f \in V^*$. The map $a \to E_a$ is a linear isomorphism of V onto V^{**} .

Proof. Note that the kernel consists of *a* such that $E_a(f) = 0$ for all $f \in V^*$, i.e., $f(a) = 0 \forall f$. So ann(a) = V but that is a problem because $dim(\{a\}) \neq 0$ if $a \neq 0$. Hence the kernel is trivial (it is non-singular). Hence, E_a is onto.

As a corollary, every basis of V^* is the dual of some basis of V: Indeed, if f_1, \ldots, f_n is a basis of V^* , let f_i^* be the dual basis in V^{**} . Then there exist $e_i \in V$ such that $E_{e_i} = f_i^*$. We claim that $e_i^* = f_i$. Indeed, $f_i(e_j) = E_{e_j}(f_i) = f_j^*(f_i) = \delta_{ij}$.

Sometimes, one simply identifies V with V^{**} without mention (using the isomorphism above).

Proposition 3.2. Let $S \subset V$ be a subset of a finite-dimensional vector space V. Then $(S^0)^0$ is the subspace spanned by S.

Proof. $f \in (S^0)^0$ iff $f(g) = 0 \forall g \in S^0$ iff $g(f) = 0 \forall g \in S^0$. In particular, $W_S \subset (S^0)^0$. But $dim(W_S) + dim(S^0) = n = dim(S^0) + dim((S^0)^0)$. Hence $W_S = (S^0)^0$. □

At this point we can give a deeper meaning to the statement that the row rank equals the column rank. Note that if $T : V \to W$ is a linear map, then we have a natural linear map (called the transpose/adjoint of T) $T^* : W^* \to V^*$ given by $T^*(f)(v) = f(Tv)$. Indeed, $(cT_1 + T_2)^*(f)(v) = f(cT_1(v) + T_2(v)) = cT_1^*(f)(v) + T_2^*(f)(v)$.

Theorem 3.3. Let $T : V \to W$ be a linear map between vector spaces. Then ker(T^*) is the annihilator of *Range*(T). If V and W are finite-dimensional, then

- (1) $rank(T^*) = rank(T)$
- (2) Range of T^* is the annihilator of the kernel of T.

NOTES FOR 17 SEPT (TUESDAY)

Proof. $f \in ker(T^*)$ iff $T^*(f) = 0$, i.e., f(Tv) = 0 ∀ $v \in V$ iff f(Range(T)) = 0 iff f is in the annihilator of *Range*(*T*). Now assume that *V* and *W* are finite-dimensional with dimensions *n* and *m* respectively. Let r = rank(T). Then $dimker(T^*) + r = m$ (by a theorem done earlier). By nullity-rank, $Rank(T^*) = r = Rank(T)$. Now if $g = T^*f$, and $v \in Ker(T)$, then g(v) = f(T(v)) = f(0) = 0. Hence $Range(T^*) \subset Ann(ker(T))$. But the dimension of the annihilator is $n - dim(ker(T)) = Rank(T) = Rank(T^*)$. Hence $Range(T^*) = Ann(Ker(T))$.

In other words, Tv = w iff w is annihilated by $ker(T^*)$. This sort of an observation in infinitedimensions leads to solutions of certain PDE. We have another result.

Proposition 3.4. Let V, W be finite-dimensional v. spaces with ordered bases $\mathcal{B}, \mathcal{B}'$. Let $T : V \to W$ be a linear map and A be the matrix relative to $\mathcal{B}, \mathcal{B}'$. Let B be the matrix of T^* relative to corresponding dual bases. Then $B = A^T$.

$$Proof. \ B_{ij} = T^* e_{j,\mathcal{B}'^*i,\mathcal{B}^*}^{\vec{*}} = T^* (e_{j,\mathcal{B}'^*}^*)(e_{i,\mathcal{B}}) = e_{j,\mathcal{B}^{*\prime}}^* (T(e_{i,\mathcal{B}})) = A_{ki} e_{j,\mathcal{B}^{*\prime}}^* e_{k,\mathcal{B}'} = A_{ji}.$$

Using these results, we can conclude that the row rank equals the column rank. Indeed, a matrix *A* defines a linear map $T : \mathbb{F}^n \to \mathbb{F}^m$ given by Tv = Av. The column rank of *A* is Rank(T). The row rank of *A* is $Rank(A^T) = Rank(T^*) = Rank(T)$.