NOTES FOR 19 NOV (TUESDAY)

1. Recap

- (1) Proved the spectral theorem for self-adjoint operators.
- (2) As consequences, discussed the Rayleigh quotient, operator norms, and the singular value decomposition.
 - 2. Normal operators; Spectral theorem for Normal Operators

Can an orthonormal basis of eigenvectors be found for more general operators ? Indeed. Here is a necessary condition : A normal operator $T : V \rightarrow V$ between finite-dimensional inner product spaces is an operator such that $TT^* = T^*T$ (likewise, a normal matrix). If an operator has an orthonormal basis of eigenvectors, it is normal : Indeed, if we choose any orthonormal basis and write everything using matrices, $UTU^{\dagger} = D$ and hence, $UT^{\dagger}U^{\dagger} = D^{\dagger}$ and $UTT^{\dagger}U^{\dagger} = DD^{\dagger} = UT^{\dagger}TU^{\dagger}$. Thus, $TT^{\dagger} = T^{\dagger}T$.

Here is an important spectral theorem.

Theorem 2.1. An operator $T : V \to V$ between finite-dimensional inner product spaces has an orthonormal basis of eigenvectors iff T is normal.

To prove the harder direction, we first notice the following.

Lemma 2.2. Let $T : V \to V$ be a normal operator between finite-dimensional inner product spaces. Then eigenvectors corresponding to distinct eigenvalues are orthogonal.

Proof. Since *T* is normal, $||(T - cI)v|| = ||(T^* - \bar{c}I)v||$ and hence Tv = cv iff $T^*v = \bar{c}v$. Therefore, if $Te_i = \lambda_i e_i$, then $(Te_i, e_j) = \lambda_i (e_i, e_j)$. Hence, $\lambda_j (e_i, e_j) = (e_i, T^*e_j) = \lambda_i (e_i, e_j)$. Thus, $(e_i, e_j) = 0$.

Actually, we prove something more general : If *e* is an eigenvector of *T*, and *W* is the orthogonal complement of the space generated by *e*, then *W* is an invariant subspace for *T* and *T*^{*}. Indeed, if (w, e) = 0, then $(Tw, e) = (w, T^*e) = \lambda(w, e) = 0$ (and likewise for *T*^{*}). Using this observation, we can prove the spectral theorem exactly as before. Indeed, if *e* is an eigenvector of the normal of *T*, then since the restriction $T : W \to W$ is also normal (why ?) inductively *W* has an orthonormal basis of eigenvectors. That basis along with *e* forms a basis of *V*.

There is another proof of this result (which is important in its own right). Firstly,

Lemma 2.3. Let A be the matrix of $T : V \rightarrow V$ in an orthonormal basis such that A is upper triangular. Then T is normal iff A is diagonal.

Proof. If *A* is diagonal, we are trivially done. If *T* is normal, then $Te_1 = A_{11}e_1$. Hence, $T^*e_1 = \overline{A}_{11}e_1$. But, $(T^*e_1) = \sum_j \overline{A}_{1j}e_j$. Hence, $A_{1j} = 0$ for all j > 1. Thus, $Te_2 = A_{22}e_2$ and so on (actually, more elegantly, we are done by induction).

Now we have the Schur decomposition lemma.

Lemma 2.4. Let $T : V \to V$ be any operator over a finite-dimensional inner product space. Then there is an orthonormal basis of V in which T is upper-triangular.

NOTES FOR 19 NOV (TUESDAY)

Proof. We induct on the dimension on *V*. For n = 1 it is trivial. Assume truth for 1, 2..., n - 1. Choose a unit eigenvector *e* of *T*. Let *W* be the orthogonal complement of the space generated by *e*. Now consider $\Pi_W \circ T : W \to W$. By the induction hypothesis, there is an orthonormal basis of *W* such that $\Pi_W \circ T$ is upper-triangular. Adjoining *e* to that basis, we conclude the result.

As a corollary, we see that if *T* is normal, then in the above orthonormal basis, *T* is diagonal.

3. BILINEAR FORMS

Let *V* be a finite-dimensional real vector space and $T : V \times V \rightarrow \mathbb{R}$ be a symmetric bilinear form (in this case, called a real quadratic form). We have an important theorem (Sylvester's law of inertia) : If *V* is a real vector space, then there exists an ordered basis e_i such that $T(e_i, e_j) = \delta_{ij}p_i$ where $p_i = 0$ or 1 or -1. The number of 1, 0, -1 is determined uniquely by *T*. (The signature of a real quadratic form is defined as $n_+ - n_-$. The rank of a quadratic form is $n_+ + n_-$.)

Proof. Firstly, if e_i is any basis, let $B_{ij} = T(e_j, e_i) = T(e_i, e_j) = B_{ji}$. Then $T(v, w) = w_i B_{ij} v_j = w^T B v$, where *B* is a symmetric matrix. It has real eigenvalues. Note that if we change the basis to $e_{old,i} = P_{ji}e_{new,j}$, then $T(v, w) = w_{old}^T P^T B P v_{old}$. Change the basis using an orthogonal matrix *O* such that $O^T B O = D$. Now we can further rescale the basis vectors so that the positive eigenvalues become 1 and the negative ones -1. Let V_+ be the span of the eigenvectors with positive eigenvalues (dimension n_+), and V_- (dimension n_-) that of negative eigenvalues. Thus, *T* is negative-definite on V_- and positive-definite on V_+ .

As for uniqueness, let V_0 be the subspace of V such that if $v \in V_0$, then T(v, w) = 0 for all $w \in V$ (and thus $V = V_0 \oplus V_+ \oplus V_-$) which means that $w^T B v = 0$ for all w. Thus, Bv = 0. Hence, V_0 is the kernel of B (and so p_0 is uniquely determined). Let W be any subspace on which T is positive-definite. We claim that W, V_0, V_- are independent. Indeed, if $c_1w + c_2v_0 + c_3v_- = 0$, then $0 = c_1T(w, w) + c_3T(v_-, w)$. Likewise, $c_3T(v_-, v_-) + c_1T(w, v_-) = 0$. Thus, $0 \le c_1^2T(w, w) = c_3^2T(v_-, v_-) \le 0$. Hence W, V_0, V_- are independent. Hence, $dim(W) \le n_+$. So, if we "diagonalise" the quadratic form in two different ways, comparing n_+ for both, we see that they are equal. Likewise for n_- .

The classification of conic sections can be done using this theorem. Indeed, if $z^2 = x_1^2 + x_2^2 + ...$ and $cz + a_1x_1 + a_2x_2 + ... = 0$, then we can write it as $v^TBv = k$ where k is some constant. Using Sylvester's law of inertia, we see that one can further change the variables linearly to conclude that $\sum_i p_i v_i^2 = k$ where p_i are 0, 1, or -1. Hence, in principle, we can know all possible conic sections (note however that the form of B is somewhat restricted).