NOTES FOR 19 NOV (TUESDAY)

1. Recap

(1) Proved the spectral theorem for self-adjoint operators.
(2) As consequences, discussed the Rayleigh quotient, operator norms, and the singular value decomposition.

2. Normal operators; Spectral theorem for normal operators

Can an orthonormal basis of eigenvectors be found for more general operators ? Indeed. Here is a necessary condition : A normal operator $T: V \rightarrow V$ between finite-dimensional inner product spaces is an operator such that $T T^{*}=T^{*} T$ (likewise, a normal matrix). If an operator has an orthonormal basis of eigenvectors, it is normal : Indeed, if we choose any orthonormal basis and write everything using matrices, $U T U^{\dagger}=D$ and hence, $U T^{\dagger} U^{\dagger}=D^{\dagger}$ and $U T T^{\dagger} U^{\dagger}=D D^{\dagger}=U T^{\dagger} T U^{\dagger}$. Thus, $T T^{\dagger}=T^{+} T$.

Here is an important spectral theorem.
Theorem 2.1. An operator $T: V \rightarrow V$ between finite-dimensional inner product spaces has an orthonormal basis of eigenvectors iff T is normal.

To prove the harder direction, we first notice the following.
Lemma 2.2. Let $T: V \rightarrow V$ be a normal operator between finite-dimensional inner product spaces. Then eigenvectors corresponding to distinct eigenvalues are orthogonal.
Proof. Since T is normal, $\|(T-c I) v\|=\left\|\left(T^{*}-\bar{c}\right) v\right\|$ and hence $T v=c v$ iff $T^{*} v=\bar{c} v$. Therefore, if $T e_{i}=\lambda_{i} e_{i}$, then $\left(T e_{i}, e_{j}\right)=\lambda_{i}\left(e_{i}, e_{j}\right)$. Hence, $\lambda_{j}\left(e_{i}, e_{j}\right)=\left(e_{i}, T^{*} e_{j}\right)=\lambda_{i}\left(e_{i}, e_{j}\right)$. Thus, $\left(e_{i}, e_{j}\right)=0$.

Actually, we prove something more general : If e is an eigenvector of T, and W is the orthogonal complement of the space generated by e, then W is an invariant subspace for T and T^{*}. Indeed, if $(w, e)=0$, then $(T w, e)=\left(w, T^{*} e\right)=\lambda(w, e)=0$ (and likewise for $\left.T^{*}\right)$. Using this observation, we can prove the spectral theorem exactly as before. Indeed, if e is an eigenvector of the normal of T, then since the restriction $T: W \rightarrow W$ is also normal (why ?) inductively W has an orthonormal basis of eigenvectors. That basis along with e forms a basis of V.

There is another proof of this result (which is important in its own right). Firstly,
Lemma 2.3. Let A be the matrix of $T: V \rightarrow V$ in an orthonormal basis such that A is upper triangular. Then T is normal iff A is diagonal.
Proof. If A is diagonal, we are trivially done. If T is normal, then $T e_{1}=A_{11} e_{1}$. Hence, $T^{*} e_{1}=\bar{A}_{11} e_{1}$. But, $\left(T^{*} e_{1}\right)=\sum_{j} \bar{A}_{1 j} e_{j}$. Hence, $A_{1 j}=0$ for all $j>1$. Thus, $T e_{2}=A_{22} e_{2}$ and so on (actually, more elegantly, we are done by induction).

Now we have the Schur decomposition lemma.
Lemma 2.4. Let $T: V \rightarrow V$ be any operator over a finite-dimensional inner product space. Then there is an orthonormal basis of V in which T is upper-triangular.

Proof. We induct on the dimension on V. For $n=1$ it is trivial. Assume truth for $1,2 \ldots, n-1$. Choose a unit eigenvector e of T. Let W be the orthogonal complement of the space generated by e. Now consider $\Pi_{W} \circ T: W \rightarrow W$. By the induction hypothesis, there is an orthonormal basis of W such that $\Pi_{W} \circ T$ is upper-triangular. Adjoining e to that basis, we conclude the result.

As a corollary, we see that if T is normal, then in the above orthonormal basis, T is diagonal.

3. Bilinear forms

Let V be a finite-dimensional real vector space and $T: V \times V \rightarrow \mathbb{R}$ be a symmetric bilinear form (in this case, called a real quadratic form). We have an important theorem (Sylvester's law of inertia) : If V is a real vector space, then there exists an ordered basis e_{i} such that $T\left(e_{i}, e_{j}\right)=\delta_{i j} p_{i}$ where $p_{i}=0$ or 1 or -1 . The number of $1,0,-1$ is determined uniquely by T. (The signature of a real quadratic form is defined as $n_{+}-n_{-}$. The rank of a quadratic form is $n_{+}+n_{-}$)
Proof. Firstly, if e_{i} is any basis, let $B_{i j}=T\left(e_{j}, e_{i}\right)=T\left(e_{i}, e_{j}\right)=B_{j i}$. Then $T(v, w)=w_{i} B_{i j} v_{j}=w^{T} B v$, where B is a symmetric matrix. It has real eigenvalues. Note that if we change the basis to $e_{o l d, i}=P_{j i} e_{\text {new }, j}$, then $T(v, w)=w_{\text {old }}^{T} P^{T} B P v_{\text {old }}$. Change the basis using an orthogonal matrix O such that $O^{T} B O=D$. Now we can further rescale the basis vectors so that the positive eigenvalues become 1 and the negative ones -1 . Let V_{+}be the span of the eigenvectors with positive eigenvalues (dimension n_{+}), and V_{-}(dimension n_{-}) that of negative eigenvalues. Thus, T is negative-definite on V_{-}and positive-definite on V_{+}.

As for uniqueness, let V_{0} be the subspace of V such that if $v \in V_{0}$, then $T(v, w)=0$ for all $w \in V$ (and thus $V=V_{0} \oplus V_{+} \oplus V_{-}$) which means that $w^{T} B v=0$ for all w. Thus, $B v=0$. Hence, V_{0} is the kernel of B (and so p_{0} is uniquely determined). Let W be any subspace on which T is positive-definite. We claim that W, V_{0}, V_{-}are independent. Indeed, if $c_{1} w+c_{2} v_{0}+c_{3} v_{-}=0$, then $0=c_{1} T(w, w)+c_{3} T\left(v_{-}, w\right)$. Likewise, $c_{3} T\left(v_{-}, v_{-}\right)+c_{1} T\left(w, v_{-}\right)=0$. Thus, $0 \leq c_{1}^{2} T(w, w)=c_{3}^{2} T\left(v_{-}, v_{-}\right) \leq 0$. Hence W, V_{0}, V_{-}are independent. Hence, $\operatorname{dim}(W) \leq n_{+}$. So, if we "diagonalise" the quadratic form in two different ways, comparing n_{+}for both, we see that they are equal. Likewise for $n-$.

The classification of conic sections can be done using this theorem. Indeed, if $z^{2}=x_{1}^{2}+x_{2}^{2}+\ldots$ and $c z+a_{1} x_{1}+a_{2} x_{2}+\ldots=0$, then we can write it as $v^{T} B v=k$ where k is some constant. Using Sylvester's law of inertia, we see that one can further change the variables linearly to conclude that $\sum_{i} p_{i} v_{i}^{2}=k$ where p_{i} are 0,1 , or -1 . Hence, in principle, we can know all possible conic sections (note however that the form of B is somewhat restricted).

