
NOTES FOR 19 NOV (TUESDAY)

1. Recap

(1) Proved the spectral theorem for self-adjoint operators.
(2) As consequences, discussed the Rayleigh quotient, operator norms, and the singular value

decomposition.

2. Normal operators; Spectral theorem for normal operators

Can an orthonormal basis of eigenvectors be found for more general operators ? Indeed. Here
is a necessary condition : A normal operator T : V → V between finite-dimensional inner product
spaces is an operator such that TT∗ = T∗T (likewise, a normal matrix). If an operator has an
orthonormal basis of eigenvectors, it is normal : Indeed, if we choose any orthonormal basis and
write everything using matrices, UTU† = D and hence, UT†U† = D† and UTT†U† = DD† = UT†TU†.
Thus, TT† = T†T.

Here is an important spectral theorem.

Theorem 2.1. An operator T : V → V between finite-dimensional inner product spaces has an orthonormal
basis of eigenvectors iff T is normal.

To prove the harder direction, we first notice the following.

Lemma 2.2. Let T : V → V be a normal operator between finite-dimensional inner product spaces. Then
eigenvectors corresponding to distinct eigenvalues are orthogonal.

Proof. Since T is normal, ‖(T − cI)v‖ = ‖(T∗ − c̄I)v‖ and hence Tv = cv iff T∗v = c̄v. Therefore, if
Tei = λiei, then (Tei, e j) = λi(ei, e j). Hence, λ j(ei, e j) = (ei,T∗e j) = λi(ei, e j). Thus, (ei, e j) = 0. �

Actually, we prove something more general : If e is an eigenvector of T, and W is the orthogonal
complement of the space generated by e, then W is an invariant subspace for T and T∗. Indeed, if
(w, e) = 0, then (Tw, e) = (w,T∗e) = λ(w, e) = 0 (and likewise for T∗). Using this observation, we can
prove the spectral theorem exactly as before. Indeed, if e is an eigenvector of the normal of T, then
since the restriction T : W → W is also normal (why ?) inductively W has an orthonormal basis of
eigenvectors. That basis along with e forms a basis of V.

There is another proof of this result (which is important in its own right). Firstly,

Lemma 2.3. Let A be the matrix of T : V → V in an orthonormal basis such that A is upper triangular.
Then T is normal iff A is diagonal.

Proof. If A is diagonal, we are trivially done. If T is normal, then Te1 = A11e1. Hence, T∗e1 = Ā11e1.
But, (T∗e1) =

∑
j Ā1 je j. Hence, A1 j = 0 for all j > 1. Thus, Te2 = A22e2 and so on (actually, more

elegantly, we are done by induction). �

Now we have the Schur decomposition lemma.

Lemma 2.4. Let T : V → V be any operator over a finite-dimensional inner product space. Then there is an
orthonormal basis of V in which T is upper-triangular.
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Proof. We induct on the dimension on V. For n = 1 it is trivial. Assume truth for 1, 2 . . . ,n − 1.
Choose a unit eigenvector e of T. Let W be the orthogonal complement of the space generated by e.
Now consider ΠW ◦ T : W → W. By the induction hypothesis, there is an orthonormal basis of W
such that ΠW ◦ T is upper-triangular. Adjoining e to that basis, we conclude the result. �

As a corollary, we see that if T is normal, then in the above orthonormal basis, T is diagonal.

3. Bilinear forms

Let V be a finite-dimensional real vector space and T : V × V → R be a symmetric bilinear form
(in this case, called a real quadratic form). We have an important theorem (Sylvester’s law of inertia)
: If V is a real vector space, then there exists an ordered basis ei such that T(ei, e j) = δi jpi where pi = 0
or 1 or −1. The number of 1, 0,−1 is determined uniquely by T. (The signature of a real quadratic
form is defined as n+ − n−. The rank of a quadratic form is n+ + n−.)

Proof. Firstly, if ei is any basis, let Bi j = T(e j, ei) = T(ei, e j) = B ji. Then T(v,w) = wiBi jv j = wTBv, where
B is a symmetric matrix. It has real eigenvalues. Note that if we change the basis to eold,i = P jienew, j,
then T(v,w) = wT

oldPTBPvold.Change the basis using an orthogonal matrix O such that OTBO = D.
Now we can further rescale the basis vectors so that the positive eigenvalues become 1 and the
negative ones −1. Let V+ be the span of the eigenvectors with positive eigenvalues (dimension
n+), and V− (dimension n−) that of negative eigenvalues. Thus, T is negative-definite on V− and
positive-definite on V+.

As for uniqueness, let V0 be the subspace of V such that if v ∈ V0, then T(v,w) = 0 for all w ∈ V (and
thus V = V0 ⊕ V+ ⊕ V−) which means that wTBv = 0 for all w. Thus, Bv = 0. Hence, V0 is the kernel
of B (and so p0 is uniquely determined). Let W be any subspace on which T is positive-definite. We
claim that W,V0,V− are independent. Indeed, if c1w + c2v0 + c3v− = 0, then 0 = c1T(w,w) + c3T(v−,w).
Likewise, c3T(v−, v−) + c1T(w, v−) = 0. Thus, 0 ≤ c2

1T(w,w) = c2
3T(v−, v−) ≤ 0. Hence W,V0,V− are

independent. Hence, dim(W) ≤ n+. So, if we “diagonalise” the quadratic form in two different ways,
comparing n+ for both, we see that they are equal. Likewise for n−. �

The classification of conic sections can be done using this theorem. Indeed, if z2 = x2
1 + x2

2 + . . . and
cz + a1x1 + a2x2 + . . . = 0, then we can write it as vTBv = k where k is some constant. Using Sylvester’s
law of inertia, we see that one can further change the variables linearly to conclude that

∑
i piv2

i = k
where pi are 0, 1, or −1. Hence, in principle, we can know all possible conic sections (note however
that the form of B is somewhat restricted).
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