NOTES FOR 19 NOV (TUESDAY)

1. Recar

(1) Proved the spectral theorem for self-adjoint operators.
(2) As consequences, discussed the Rayleigh quotient, operator norms, and the singular value
decomposition.

2. NorMAL OPERATORS; SPECTRAL THEOREM FOR NORMAL OPERATORS

Can an orthonormal basis of eigenvectors be found for more general operators ? Indeed. Here
is a necessary condition : A normal operator T : V — V between finite-dimensional inner product
spaces is an operator such that TT* = T°T (likewise, a normal matrix). If an operator has an
orthonormal basis of eigenvectors, it is normal : Indeed, if we choose any orthonormal basis and
write everything using matrices, UTU' = D and hence, UTTU' = D*and UTT'U' = DD = UTTTU".
Thus, TTT = T'T.

Here is an important spectral theorem.

Theorem 2.1. An operator T : V — V between finite-dimensional inner product spaces has an orthonormal
basis of eigenvectors iff T is normal.

To prove the harder direction, we first notice the following.

Lemma 2.2. Let T : V — V be a normal operator between finite-dimensional inner product spaces. Then
eigenvectors corresponding to distinct eigenvalues are orthogonal.

Proof. Since T is normal, ||(T — cl)v|| = [[(T* — ¢I)v|| and hence Tv = cv iff T*v = ¢v. Therefore, if
Te; = Ae;, then (Tt’,‘, 8]') = /\i(ei, €]'). Hence, /\j(ei, 6’]’) = (e,‘, T*ej) = /\i(ei, 6]'). Thus, (e,‘, 8]') =0. O

Actually, we prove something more general : If e is an eigenvector of T, and W is the orthogonal
complement of the space generated by ¢, then W is an invariant subspace for T and T". Indeed, if
(w,e) =0, then (Tw,e) = (w, T"e¢) = A(w, e) = 0 (and likewise for T*). Using this observation, we can
prove the spectral theorem exactly as before. Indeed, if e is an eigenvector of the normal of T, then
since the restriction T : W — W is also normal (why ?) inductively W has an orthonormal basis of
eigenvectors. That basis along with e forms a basis of V.

There is another proof of this result (which is important in its own right). Firstly,

Lemma 2.3. Let A be the matrix of T : V — V in an orthonormal basis such that A is upper triangular.
Then T is normal iff A is diagonal.

Proof. If A is diagonal, we are trivially done. If T is normal, then Te; = Aj1e;. Hence, T e; = Aqzes.
But, (T"e1) = ) jAljej. Hence, A;j = 0 for all j > 1. Thus, Te; = Axer and so on (actually, more
elegantly, we are done by induction). m]

Now we have the Schur decomposition lemma.

Lemma 2.4. Let T : V — V be any operator over a finite-dimensional inner product space. Then there is an

orthonormal basis of V in which T is upper-triangular.
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Proof. We induct on the dimension on V. For n = 1 it is trivial. Assume truth for 1,2...,n - 1.
Choose a unit eigenvector e of T. Let W be the orthogonal complement of the space generated by e.
Now consider [Ty o T : W — W. By the induction hypothesis, there is an orthonormal basis of W
such that I'Tyy o T is upper-triangular. Adjoining e to that basis, we conclude the result. m]

As a corollary, we see that if T is normal, then in the above orthonormal basis, T is diagonal.

3. BILINEAR FORMS

Let V be a finite-dimensional real vector space and T : V X V — R be a symmetric bilinear form
(in this case, called a real quadratic form). We have an important theorem (Sylvester’s law of inertia)
: If V is a real vector space, then there exists an ordered basis e; such that T(e;, ej) = 0ijpi wherep; =0
or 1 or —1. The number of 1,0, -1 is determined uniquely by T. (The signature of a real quadratic
form is defined as n, — n_. The rank of a quadratic form is n, +n_.)

Proof. Firstly, if ¢; is any basis, let B;; = T(ej, ¢;) = T(e;, ¢j) = Bji. Then T(v, w) = w;B;jv; = w!Bv, where
B is a symmetric matrix. It has real eigenvalues. Note that if we change the basis to ey = Pjinew,j,
then T(v, w) = wgl dPTBonld.Change the basis using an orthogonal matrix O such that OTBO = D.
Now we can further rescale the basis vectors so that the positive eigenvalues become 1 and the
negative ones —1. Let V, be the span of the eigenvectors with positive eigenvalues (dimension
ny), and V_ (dimension n_) that of negative eigenvalues. Thus, T is negative-definite on V_ and
positive-definite on V.

As for uniqueness, let Vj be the subspace of V such thatif v € Vy, then T(v, w) = Oforallw € V (and
thus V = Vy ® V, @ V_) which means that w'Bv = 0 for all w. Thus, Bv = 0. Hence, V) is the kernel
of B (and so py is uniquely determined). Let W be any subspace on which T is positive-definite. We
claim that W, Vy, V_ are independent. Indeed, if cyw + c2v9 + c3v- = 0, then 0 = ¢ T(w, w) + c3T(v-, w).
Likewise, c3T(v—,v-) + c1T(w,v-) = 0. Thus, 0 < C%T(w, w) = ch(v_,v_) < 0. Hence W, V,, V_ are
independent. Hence, dim(W) < n,. So, if we “diagonalise” the quadratic form in two different ways,
comparing n, for both, we see that they are equal. Likewise for n—. m]

The classification of conic sections can be done using this theorem. Indeed, if z2 = x7 + x5 +... and
cz+a1x1 +axxy + ... = 0, then we can write it as v Bv = k where k is some constant. Using Sylvester’s
law of inertia, we see that one can further change the variables linearly to conclude that Y, piv? = k
where p; are 0,1, or —1. Hence, in principle, we can know all possible conic sections (note however
that the form of B is somewhat restricted).
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