
NOTES FOR 19 SEPT (THURSDAY)

1. Recap

(1) Defined the double dual and proved it is isomorphic to V for finite-dimensional spaces.
(2) Defined the transpose and proved a theorem regarding it (which implied the row rank=column

rank theorem).

2. Tensor products

The stress in a material in material is the force per unit area. But this quantity depends on the
direction, i.e., Stress is a linear map that takes the normal to a plane to a force vector. Physicists call
this quantity the stress tensor. For them, more or less anything that has indices and transforms the
“correct” way when you change your basis is called a tensor. We want to give this concept a formal
footing.

Firstly, let V,W,Z be vector spaces over a field F. Bilinear maps are maps T : V×W → Z satisfying
T(av1 + bv2,w) = aT(v1,w) + bT(v2,w) and T(v, aw1 + bw2) = aT(v,w1) + bT(v,w2) - basically linear in
each variable. Likewise, if Vi are vector spaces, then T : V1×V2× . . .→ Z is called a multilinear map
if it is linear in each variable. If Z = F, a multilinear map is called a multilinear form sometimes.
Here are examples :

(1) Tr : Matn×n(F) ×Matn×n(F)→ F given by Tr(A,B) = Tr(AB) is a bilinear form. Interestingly
enough, Tr(B,A) = Tr(BA) = Tr(AB) = Tr(A,B). Such a bilinear map is called a symmetric
bilinear map. More generally, T : V × V × V × . . .V → F is called a symmetric multilinear
form if T(vσ1, vσ2, . . .) = T(v1, v2 . . .) where σ is any permutation.

(2) Let char(F) , 2. The map A : F2
×F2

→ F given by A((v,w), (a, b)) = vb−wa is a bilinear form.
Moreover, A((a, b), (v,w) = −A((v,w), (a, b)). Such a bilinear form is called an alternating
bilinear form (or sometimes simply, and confusingly, a form). More generally, T : V × V ×
V× . . .V → F is called an alternating multilinear form if T(vσ1, vσ2, . . .) = (−1)sgn(σ)T(v1, v2 . . .)
where σ is any permutation.

(3) The map T : Fn
× Fn

→ F given by T(v,w) =
∑

i viwi is a symmetric bilinear form.
(4) T : Cn

× Cn
→ C given by T(v,w) =

∑
i viw̄i is NOT a bilinear form because it is not linear

in the second variable. However, it is “conjugate-linear” - sometimes called sesquilinear
(sesqui means one-and-a-half). We shall deal with such beasts later on.

Now that we have many examples, what can we say about the set of bilinear forms Bilin(V ×W,F) ?
In an obvious way, it is a vector space (this is true even for multilinear maps in general). What is the
dimension of this space ? For example, the space of bilinear forms B(F × F,F) consists of B(v,w) =
vB(1,w) = vwB(1, 1) is 1-dimensional. More generally, B(v,w) = B(

∑
i viei,

∑
j wi f j) =

∑
i, j viw jB(ei, f j).

Note that Bi j : V ×W → Z given by Bi j(v,w) = viw j are linearly independent (why ?) Hence the
space of bilinear maps has dimension mn.

Can bilinear (or multilinear) maps be interpreted through the lens of honest linear maps ? The
answer to this question leads to the construction of Tensor products. Here is a theorem.

Theorem 2.1. Let V,W be vector spaces over F. There exists a vector space V ⊗W (called the tensor product
of V and W) and a bilinear map π : V ×W → V ⊗W satisfying the following property (called a universal
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property) : Given any vector space Z over F, and a bilinear map L : V ×W → Z, there exists a unique linear
map L̃ : V ⊗W → Z such that L = L̃ ◦ π.

Before we prove this theorem, note that the universal property uniquely characterises tensor
products upto isomorphism. Indeed, if (U1, π1), (U2 = V ⊗W, π2) are two vector spaces satisfying
the universal property, then since π1 : V ×W → U1 is a bilinear map, there exists a unique linear
map π̃1 : U2 → U1 such that π1 = π̃1 ◦ π2. Likewise, there exists a unique linear map π̃2 : U1 → U2
such that π2 = π̃2 ◦ π1. Thus, π̃1 = π̃1 ◦ π̃2 ◦ π̃1 = id ◦ π̃1. But taking Z = U2 and L = id ◦ π2, we see
that by uniqueness of the induced linear map, π̃1 ◦ π̃2 = id. Interchanging the roles of U1,U2 we see
that π̃1 = π̃−1

2 .
The universal property is actually quite powerful (and in principle it is enough to do anything you
want with tensor products. But an explicit construction is also useful). For instance, V ⊗ W is
naturally isomorphic to W ⊗ V (with the isomorphism preserving the universal property) : Indeed,
consider the bilinear isomorphism T : V × W → W × V given by T(v,w) = (w, v) and apply the
universal property. Likewise (exercise) one can show that (V⊗W)⊗U ≡ V⊗ (W ⊗U). Elements of a
tensor product are called tensors. In particular, elements of V⊗V⊗ . . .V(r times)⊗V∗⊗V∗ . . . (s times)
are called tensors of type (r, s) (r-contravariant and s-covariant).

The universal property also helps us calculate dim(V ⊗W) if V,W are finite-dimensional. Indeed,
let Z = F. Then there is a linear isomorphism (why is the correspondence linear ?) between
L(V ⊗W,F) = (V ⊗W)∗ and Bilin(V ×W,F). We know that the latter is mn-dimensional and hence
dim(V ⊗W) = dim((V ⊗W)∗) = mn.

Proof. Morally, we want to define π(v,w) = v ⊗ w as a symbol that is bilinear in v,w. To do this,
we simply impose an equivalence relation (of bilinearity) on a huge set consisting of formal linear
combinations of the type

∑
i j ci j(vi,w j). In more detail, define the free vector space F(S) on a set over

a field F as the direct sum ⊕SF. Basically, a vector in F(S) is a formal linear combination
∑

i cisi where
ci ∈ F and si ∈ S. (In particular, elements of S form a basis.) In particular, consider F(V ×W). Let Z
be the subspace spanned by vectors of the form (v,w)+ (v′,w)− (v+v′,w), (v,w)+ (v,w′)− (v,w+w′),
c(v,w)−(cv,w), and c(v,w)−(v, cw) for all c ∈ F, v, v′ ∈ V,w,w′ ∈W. We define V⊗W = F(V×W)/Z as
a quotient space. In other words, we simply set [(v,w)]+[(v′,w)] = [(v+v′,w)], etc. Denote [(v,w)] by
v⊗w and define π : V×W → V⊗W as (v,w)→ v⊗w. Note that π(cv+ c′v′,w) = cπ(v,w)+ c′π(v′,w)
and so on. So π is a bilinear map.
(Warning : Do note that not every vector in V ⊗W is of the form v ⊗ w !! Such vectors are called
“pure/indecomposable tensors”. The minimum number of pure tensors needed to write an element
is called the tensor rank of that element. This concept is useful in theoretical computer science. See
Strassen’s algorithm on wikipedia.)
(To be continued....) �
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