
NOTES FOR 20 AUG (TUESDAY)

1. Recap

(1) Gave examples and non-examples of vector spaces. (Defined abstract polynomials and
polynomial functions in the process.)

(2) Defined subspaces, and subspaces spanned by sets. Gave examples and non-examples.

2. Bases and dimension

Def : Let V be a vector space over F. A subset S ⊂ V is said to be linearly independent if no
non-trivial linear combination from S is 0. (Otherwise it is said to be linearly dependent.) Note that
if 0 is in a set, then 1.0 = 0 and hence linear dependence holds.

Def : A (Hamel) basis is a linearly independent set whose span is V. V is said to be finite-
dimensional if it has a finite basis. Examples and non-examples :

(1) (1, 2, 0) and (0, 2, 1) are linearly independent over Z3.
(2) Fn is finite-dimensional because ei is a finite basis.
(3) Mm×n(F) is finite-dimensional because (Ei j)ab = δiaδ jb forms a basis of size mn.
(4) The space of all polynomials is infinite-dimensional. Indeed, if there is a finite basis, let m be

the maximum degree. Polynomials of degree > m are not linear combinations.
(5) Caution :

∑
∞

i=0 xi = 1
1−x is not a finite linear combination. In the definition of a basis, only

finite linear combinations are considered. For countable linear combinations, there is another
concept called a Schauder basis which is not as general as the usual Hamel basis.

(6) R over Q is not finite-dimensional. Indeed, if it is, x =
∑n

i=1 aixi where x, xi ∈ R and ai ∈ Q.
This means that R is countable - a contradiction. (So in fact, R over Q is not even countably
infinite-dimensional.)

(7) Let P be an invertible n × n matrix over a field F. Then the columns Pi of P are linearly
independent. Indeed, if not, then

∑
i ciPi = 0 which means that Pc = 0 (remember that if

C = AB, then the rows of C are linear combinations of those of B whereas the columns of C
are linear combinations of the columns of A) and hence c = 0. In fact, the columns form a
basis for Fn. Indeed, if y ∈ Fn, there exists a c so that Pc = y which means that y is a linear
combination of the columns of P.

(8) Let A be an m × n matrix. The set of solutions of AX = 0 form a subspace of Fn. Row
reduce A to its row echelon form R. Let the pivots occur at positions k1, k2, . . . , kr where r
is the row rank. Then xki = −

∑
j>ki

Ri jx j. In particular, xkr = −
∑

j>kr
Rrjx j. Likewise, all the

pivoted variables are determined and the rest are undetermined. We claim that the vectors
ẽ j obtained by setting one of the free variables to 1 and the rest to zero form a basis for the
solution space. Indeed, they are linearly independent and every vector in the solution space
is a linear combination.

We prove now the notion of dimension is well-defined.

Theorem 2.1. Let V be a vector space which is spanned by a finite set β1, . . . , βm. Then any linearly
independent set of vectors in V is finite and contains no more than m elements.
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Proof. Let S ⊂ V be linearly independent containing s1, . . . , sm+1. Then si =
∑

j C jiβ j where C is an
m × (m + 1) matrix. In this situation (using the row echelon form) we see that there is a non-trivial
solution to CX = 0. Hence

∑
i xisi =

∑
i, j β j(Cx) j = 0. Thus we are done. �

As a corollary, if V is a finite-dimensional vector space, every basis has the same number of
elements that we shall call the dimension of V. For instance, Fn has dimension n. The space of m×n
matrices has dimension mn. The 0 vector space has dimension 0 (by convention).
To state Zorn’s lemma, we need the notion of a partially ordered set (poset)
S,≤ : It is a set S with a partially defined relation ≤. It satisfies the property that a ≤ b and b ≤ a iff
a = b. Moreover, a ≤ a, a ≤ b, b ≤ c implies that a ≤ c. So it is reflexive, antisymmetric, and transitive.
However, not every two elements may be comparable (that is why the term “partial”). A partially
ordered set where any two elements are comparable is called a totally ordered set or a chain.

Here are examples and non-examples,
(1) = is a partial order on any set.
(2) ≤ on R is a total order.
(3) A ⊂ B is a partial order (but not a total order) on P(X). Likewise, subspaces of vector spaces

under inclusion. Also, the subsets of linearly independent elements of a vector space under
inclusion.

(4) The set of events in special relativity where X ≤ Y if Y is in the future light cone of X.
(5) , is not a partial order.

Here is are a few more definitions : A maximal element in a poset is an element a such that there
exists no other element b satisfying a ≤ b. A maximum element is an element such that every element
is ≤ to it. (It is clear by induction that in a totally ordered set, every finite subset has a maximum
element in it.) An upper bound of a subset A of a poset P is an element x ∈ P such that x ≥ a ∀ a ∈ A.
Zorn’s lemma : A poset in which every chain (that is, a totally ordered subset) has an upper bound
has a maximal element.
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