NOTES FOR 20 AUG (TUESDAY)

1. Recap

(1) Gave examples and non-examples of vector spaces. (Defined abstract polynomials and polynomial functions in the process.)
(2) Defined subspaces, and subspaces spanned by sets. Gave examples and non-examples.

2. Bases and dimension

Def : Let V be a vector space over \mathbb{F}. A subset $S \subset V$ is said to be linearly independent if no non-trivial linear combination from S is 0 . (Otherwise it is said to be linearly dependent.) Note that if 0 is in a set, then $1.0=0$ and hence linear dependence holds.

Def : A (Hamel) basis is a linearly independent set whose span is $V . V$ is said to be finitedimensional if it has a finite basis. Examples and non-examples :
(1) $(1,2,0)$ and $(0,2,1)$ are linearly independent over \mathbb{Z}_{3}.
(2) \mathbb{F}^{n} is finite-dimensional because e_{i} is a finite basis.
(3) $M_{m \times n}(\mathbb{F})$ is finite-dimensional because $\left(E_{i j}\right)_{a b}=\delta_{i a} \delta_{j b}$ forms a basis of size $m n$.
(4) The space of all polynomials is infinite-dimensional. Indeed, if there is a finite basis, let m be the maximum degree. Polynomials of degree $>m$ are not linear combinations.
(5) Caution : $\sum_{i=0}^{\infty} x^{i}=\frac{1}{1-x}$ is not a finite linear combination. In the definition of a basis, only finite linear combinations are considered. For countable linear combinations, there is another concept called a Schauder basis which is not as general as the usual Hamel basis.
(6) \mathbb{R} over \mathbb{Q} is not finite-dimensional. Indeed, if it is, $x=\sum_{i=1}^{n} a_{i} x_{i}$ where $x, x_{i} \in \mathbb{R}$ and $a_{i} \in \mathbb{Q}$. This means that \mathbb{R} is countable - a contradiction. (So in fact, \mathbb{R} over \mathbb{Q} is not even countably infinite-dimensional.)
(7) Let P be an invertible $n \times n$ matrix over a field \mathbb{F}. Then the columns P_{i} of P are linearly independent. Indeed, if not, then $\sum_{i} c_{i} P_{i}=0$ which means that $P c=0$ (remember that if $C=A B$, then the rows of C are linear combinations of those of B whereas the columns of C are linear combinations of the columns of A) and hence $c=0$. In fact, the columns form a basis for \mathbb{F}^{n}. Indeed, if $y \in \mathbb{F}^{n}$, there exists a c so that $P c=y$ which means that y is a linear combination of the columns of P.
(8) Let A be an $m \times n$ matrix. The set of solutions of $A X=0$ form a subspace of \mathbb{F}^{n}. Row reduce A to its row echelon form R. Let the pivots occur at positions $k_{1}, k_{2}, \ldots, k_{r}$ where r is the row rank. Then $x_{k_{i}}=-\sum_{j>k_{i}} R_{i j} x_{j}$. In particular, $x_{k_{r}}=-\sum_{j>k_{r}} R_{r j} x_{j}$. Likewise, all the pivoted variables are determined and the rest are undetermined. We claim that the vectors \tilde{e}_{j} obtained by setting one of the free variables to 1 and the rest to zero form a basis for the solution space. Indeed, they are linearly independent and every vector in the solution space is a linear combination.
We prove now the notion of dimension is well-defined.
Theorem 2.1. Let V be a vector space which is spanned by a finite set $\beta_{1}, \ldots, \beta_{m}$. Then any linearly independent set of vectors in V is finite and contains no more than m elements.

Proof. Let $S \subset V$ be linearly independent containing s_{1}, \ldots, s_{m+1}. Then $s_{i}=\sum_{j} C_{j i} \beta_{j}$ where C is an $m \times(m+1)$ matrix. In this situation (using the row echelon form) we see that there is a non-trivial solution to $C X=0$. Hence $\sum_{i} x_{i} s_{i}=\sum_{i, j} \beta_{j}(C x)_{j}=0$. Thus we are done.

As a corollary, if V is a finite-dimensional vector space, every basis has the same number of elements that we shall call the dimension of V. For instance, \mathbb{F}^{n} has dimension n. The space of $m \times n$ matrices has dimension $m n$. The 0 vector space has dimension 0 (by convention).
To state Zorn's lemma, we need the notion of a partially ordered set (poset)
S, \leq : It is a set S with a partially defined relation \leq. It satisfies the property that $a \leq b$ and $b \leq a$ iff $a=b$. Moreover, $a \leq a, a \leq b, b \leq c$ implies that $a \leq c$. So it is reflexive, antisymmetric, and transitive. However, not every two elements may be comparable (that is why the term "partial"). A partially ordered set where any two elements are comparable is called a totally ordered set or a chain.

Here are examples and non-examples,
(1) $=$ is a partial order on any set.
(2) \leq on \mathbb{R} is a total order.
(3) $A \subset B$ is a partial order (but not a total order) on $\mathcal{P}(X)$. Likewise, subspaces of vector spaces under inclusion. Also, the subsets of linearly independent elements of a vector space under inclusion.
(4) The set of events in special relativity where $X \leq Y$ if Y is in the future light cone of X.
(5) \neq is not a partial order.

Here is are a few more definitions : A maximal element in a poset is an element a such that there exists no other element b satisfying $a \leq b$. A maximum element is an element such that every element is \leq to it. (It is clear by induction that in a totally ordered set, every finite subset has a maximum element in it.) An upper bound of a subset A of a poset P is an element $x \in P$ such that $x \geq a \forall a \in A$. Zorn's lemma : A poset in which every chain (that is, a totally ordered subset) has an upper bound has a maximal element.

