NOTES FOR 20 AUG (TUESDAY)

1. Recap

- (1) Gave examples and non-examples of vector spaces. (Defined abstract polynomials and polynomial functions in the process.)
- (2) Defined subspaces, and subspaces spanned by sets. Gave examples and non-examples.

2. Bases and dimension

Def : Let *V* be a vector space over \mathbb{F} . A subset $S \subset V$ is said to be linearly independent if no non-trivial linear combination from *S* is 0. (Otherwise it is said to be linearly dependent.) Note that if 0 is in a set, then 1.0 = 0 and hence linear dependence holds.

Def : A (Hamel) basis is a linearly independent set whose span is *V*. *V* is said to be finitedimensional if it has a finite basis. Examples and non-examples :

- (1) (1, 2, 0) and (0, 2, 1) are linearly independent over \mathbb{Z}_3 .
- (2) \mathbb{F}^n is finite-dimensional because e_i is a finite basis.
- (3) $M_{m \times n}(\mathbb{F})$ is finite-dimensional because $(E_{ij})_{ab} = \delta_{ia}\delta_{jb}$ forms a basis of size *mn*.
- (4) The space of all polynomials is infinite-dimensional. Indeed, if there is a finite basis, let m be the maximum degree. Polynomials of degree > m are not linear combinations.
- (5) Caution : $\sum_{i=0}^{\infty} x^i = \frac{1}{1-x}$ is not a finite linear combination. In the definition of a basis, only finite linear combinations are considered. For countable linear combinations, there is another concept called a Schauder basis which is not as general as the usual Hamel basis.
- (6) \mathbb{R} over \mathbb{Q} is not finite-dimensional. Indeed, if it is, $x = \sum_{i=1}^{n} a_i x_i$ where $x, x_i \in \mathbb{R}$ and $a_i \in \mathbb{Q}$. This means that \mathbb{R} is countable - a contradiction. (So in fact, \mathbb{R} over \mathbb{Q} is not even countably infinite-dimensional.)
- (7) Let *P* be an invertible $n \times n$ matrix over a field \mathbb{F} . Then the columns P_i of *P* are linearly independent. Indeed, if not, then $\sum_i c_i P_i = 0$ which means that Pc = 0 (remember that if C = AB, then the rows of *C* are linear combinations of those of *B* whereas the columns of *C* are linear combinations of the columns of *A*) and hence c = 0. In fact, the columns form a basis for \mathbb{F}^n . Indeed, if $y \in \mathbb{F}^n$, there exists a *c* so that Pc = y which means that *y* is a linear combination of the columns of *P*.
- (8) Let *A* be an $m \times n$ matrix. The set of solutions of AX = 0 form a subspace of \mathbb{F}^n . Row reduce *A* to its row echelon form *R*. Let the pivots occur at positions k_1, k_2, \ldots, k_r where *r* is the row rank. Then $x_{k_i} = -\sum_{j>k_i} R_{ij}x_j$. In particular, $x_{k_r} = -\sum_{j>k_r} R_{rj}x_j$. Likewise, all the pivoted variables are determined and the rest are undetermined. We claim that the vectors \tilde{e}_j obtained by setting one of the free variables to 1 and the rest to zero form a basis for the solution space. Indeed, they are linearly independent and every vector in the solution space is a linear combination.

We prove now the notion of dimension is well-defined.

Theorem 2.1. Let V be a vector space which is spanned by a finite set β_1, \ldots, β_m . Then any linearly independent set of vectors in V is finite and contains no more than m elements.

Proof. Let $S \subset V$ be linearly independent containing s_1, \ldots, s_{m+1} . Then $s_i = \sum_j C_{ji}\beta_j$ where *C* is an $m \times (m + 1)$ matrix. In this situation (using the row echelon form) we see that there is a non-trivial solution to CX = 0. Hence $\sum_i x_i s_i = \sum_{i,j} \beta_j (Cx)_j = 0$. Thus we are done.

As a corollary, if *V* is a finite-dimensional vector space, every basis has the same number of elements that we shall call the dimension of *V*. For instance, \mathbb{F}^n has dimension *n*. The space of $m \times n$ matrices has dimension *mn*. The 0 vector space has dimension 0 (by convention).

To state Zorn's lemma, we need the notion of a partially ordered set (poset)

 $S, \leq :$ It is a set S with a partially defined relation \leq . It satisfies the property that $a \leq b$ and $b \leq a$ iff a = b. Moreover, $a \leq a, a \leq b, b \leq c$ implies that $a \leq c$. So it is reflexive, antisymmetric, and transitive. However, not every two elements may be comparable (that is why the term "partial"). A partially ordered set where any two elements are comparable is called a totally ordered set or a chain.

Here are examples and non-examples,

- (1) = is a partial order on any set.
- (2) \leq on \mathbb{R} is a total order.
- (3) $A \subset B$ is a partial order (but not a total order) on $\mathcal{P}(X)$. Likewise, subspaces of vector spaces under inclusion. Also, the subsets of linearly independent elements of a vector space under inclusion.
- (4) The set of events in special relativity where $X \le Y$ if Y is in the future light cone of X.
- (5) \neq is not a partial order.

Here is are a few more definitions : A maximal element in a poset is an element *a* such that there exists no other element *b* satisfying $a \le b$. A maximum element is an element such that every element is \le to it. (It is clear by induction that in a totally ordered set, every finite subset has a maximum element in it.) An upper bound of a subset *A* of a poset *P* is an element $x \in P$ such that $x \ge a \forall a \in A$. Zorn's lemma : A poset in which every chain (that is, a totally ordered subset) has an upper bound has a maximal element.