
NOTES FOR 21 NOV (THURSDAY)

1. Recap

(1) Proved the spectral theorem for normal operators.
(2) Proved Sylvester’s law of inertia for real quadratic forms.

2. Bilinear forms

Actually, we have a similar result for general vector spaces.

Theorem 2.1. Let V be a finite-dimensional vector space over a field of characteristic , 2 and let T be a
symmetric bilinear form. Then there is an ordered basis of V in which T is represented by a diagonal matrix.
If the field is C, the matrix can be chosen to consist only of 0s and 1s.

Proof. Assume that T , 0 (if not, it is trivial) and let n = dim(V). We induct on n. (For n = 1 it
is trivial). Let e be a vector such that T(e, e) , 0 (if F = C, then redefine e to be e√

T(e,e)
so that

its “T”-norm is 1). Define W to be the subspace of vectors such that T(e,w) = 0. We claim that
V =< e > ⊕W. Indeed, their intersection is trivial. Now, v =

T(v,e)
T(e,e) e+ (v− T(v,e)

T(e,e) e) which is in < e > +W.
By induction (because T restricted to W is still a symmetric bilinear form), assume that there is a
basis e j of W such that T is already in the chosen form in that basis. Now T(e, e j) = 0. Hence T is
diagonal in the basis e, e j. (In the complex case, the diagonal elements are 0 or 1.)
(Where did we use the assumption that char(F) , 2 ?) �

More generally, if T is a bilinear form (not necessarily symmetric), its rank is defined as the rank of
its matrix (in any basis) and likewise its nullity. This concept can be phrased in a basis-free manner.
(The following simple concept (and versions of it) are important in algebraic topology (Poincaré
duality) and differential geometry (symplectic form).)

Theorem 2.2. Let T be a bilinear form on a finite-dimensional vector space V. Let LT,RT : V → V∗

be the maps defined as LTv(w) = T(v,w) and RTv(w) = T(w, v). Then, LT,RT are linear maps and
rank(LT) = rank(RT) = rank(T). Moreover, TFAE.

(1) rank(T) = dim(V).
(2) For each non-zero v ∈ V there exists a w ∈ V such that f (v,w) , 0 and vice-versa. (This is called the

property of non-degeneracy.)

Proof. Obviously LT,RT are linear. The kernel of LT consists of v such that T(v,w) = 0 ∀ w ∈ V, i.e.,
wTBv = 0 and hence, Bv = 0 which is simply the nullity of T. By nullity-rank, Rank(LT) = Rank(B) =
Rank(T) = Rank(BT) = Rank(RT).
If T has full rank, then kernel of LT is trivial. Hence, for every non-zero v ∈ V, there is a w such
that T(v,w) = LTv(w) , 0. Likewise for RT. If non-degeneracy holds, then clearly the kernel of LT is
trivial and T has full rank. �

Recall that Hermitian matrix (or alternatively, a Hermitian sesquilinear form) A is said to be
positive-definite if v†Av > 0 for all v , 0. Here is a theorem that gives a criterion to check for
positivity.

1



2 NOTES FOR 21 NOV (THURSDAY)

Theorem 2.3. A Hermitian n × n matrix A is positive-definite iff its principal minors, ∆k(A) = det(Ai j)
where 1 ≤ i ≤ k are all positive.

Proof. If the principal minors are positive : Assume inductively that the statement is true for
1, 2 . . . ,n − 1 (for n=1 it is trivial). Since positive-definiteness is equivalent to the eigenvalues being
positive, diagonalise (using a unitary matrix that keeps the last basis vector ofCn intact) the principal
n − 1 × n − 1 part of the matrix to see that the eigenvalues be λ1, . . . , λn−1 (Note that these are NOT
necessarily eigenvalues of the bigger matrix) are all positive by the induction assumption. That is
UAU† = Ã. Note that A is positive-definite iff Ã is so. (Why ?) Also, det(A) = det(Ã). (Why ?)

The determinant of the bigger matrix can be easily computed to be equal to λ1λ2 . . . λn−1(Ann −∑
i
|Ani|

2

λi
) which is positive by assumption. Let v be a vector written in the new basis (the eigenvectors

of the principal n−1×n−1 matrix and en). Then v†Av = |vn|
2Ann +

∑
k Ankvkv̄n +

∑
k Ānkv̄kvn +

∑
i λi|vi|

2

which is positive for all non-zero vn if the discriminant is negative. The discriminat is proportional
to |
∑

k Ankvk|
2
− Ann

∑
i λi|vi|

2 < 0 by Cauchy-Schwarz on the first term and Ann −
∑

i
|Ani|

2

λi
> 0.

If A is positive definite, then so is UAU† = Ã (after diagonalising). Hence, so is the principal
n − 1 × n − 1 part of Ã. Hence, the eigenvalues of the principal n − 1 × n − 1 part of Ã, i.e.,
λ1 = Ã11, . . . , λn−1 = Ãn−1n−1, which are the eigenvalues of the principal n− 1× n− 1 part of A are all
positive. Inductively, this fact means that the principal k minors where k , n − 1 of A are positive.
Moreover, since Ã is positive-definite, its eigenvalues are all positive and hence its determinant
(which is the product of its eigenvalues) are positive. Hence, all the principal minors of A are
positive. �

3. Applications

3.1. Least squares. Plotting the prices of houses vs their surface area in a given locality, we expect
the data to lie on a straight line, but often this is not exactly the case. So what is the best-fitting
straight line ? In general, suppose we expect a dependent variable y ∈ R to depend linearly on
some independent variables xi as y =

∑
i aixi + an+1, then firstly, by introducing another independent

constant “variable” xn+1 = 1, y =
∑

i aixi. Each observation can lead to y j =
∑

i aixi j + ε j where ε j is a
random error. We can write this equation as ~y = X~a+~εwhere ~a is the vector of “weights”/coefficients
and the rows of the matrix X consist of data for each observation. A natural thing to do is to choose
the weights so that the squared error S = ‖~y − X~a‖2 is minimum. There are two ways to approach
this problem - calculus and linear algebra. In the second approach, we want to find the best approx-
imation to ~y from the subspace formed by the columns of X. That vector is the orthogonal projection
onto the column space of X, i.e., (y − Xa)TXb = 0 for all b, i.e., yTX = aTXTX or XT y = XTXa (the so-
called normal equations). Note that XTX is positive-semidefinite. If it is actually positive-definite,
it is invertible and a = (XTX)−1XT y. It can fail to be invertible when there is too little data and too
many parameters (overfitting). In such cases, one can add XTX + cI where c > 0 is a small positive
number to make it invertible. (Corresponds to minimising ‖~y − X~a‖2 + cata.) This method is called
Tikhonov regularisation in Machine Learning. The parameter c is chosen to be small enough so that
the solution is not too bad, but large enough so that overfitting does not occur.

Another reason for minimising the least square error comes from statistics : Assuming that ε are
iid Gaussian normal variables with 0 mean and variance σ2, the ln of the probability density for ~ε to
be ~y−X~a is proportional to−‖y−X~a‖2 which is maximised precisely when the normal equations hold.
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3.2. Principal Component Analysis. It is hard to store too much data. Suppose we are given 500
photos of the same person giving different expressions, is there a way to store only a little important
information to approximately reconstruct the 500 photos ? (Clearly these sorts of problems can
have ramifications in automatic tagging on Facebook.) That is this information must capture most
of the variation in the 500 photos. We want a linear map that transforms the data (given as matrix
X with column-wise zero average, each row vector ~xi corresponds to a different photo/different
repetition of an experiment, and each column to a feature (i.e. pixel intensity or colour or in the
case of experiments, to values from different sensors for instance)) to a new set of l-dimensional
vectors~ti (called the PCA scores) using p-dimensional unit weight vectors ~wk such that tk(i) = 〈~xi, ~wk〉

where i = 1, . . . ,n and k = 1, . . . , l, such that the individual new features t1, . . . , tl inherit most of the
variance from X.

The first weight vector ~w1 should maximise the variance inherited to t1, i.e., max‖w‖=1
∑

i(t1)2
(i) =

max‖w‖=1
∑

i〈~xi, ~w〉2 = max‖w‖=1 wTXTXw which is simply the largest eigenvector of XTX. Likewise,
it makes sense for the other weight vectors to be the other eigenvectors of XTX. The PCA scores are
T = XW. Typically, one keeps only a few singular vectors (and hence reconstruction is not perfect).
Clearly, the SVD plays a role here.

Here is an actual example where this procedure is implemented in a different manner (In what
I outlined above, you store 500 images but not all pixels, in this url, they store all pixels but
fewer images that they call eigenimages) : http://people.ciirc.cvut.cz/˜hlavac/TeachPresEn/
11ImageProc/15PCA.pdf.

http://people.ciirc.cvut.cz/~hlavac/TeachPresEn/11ImageProc/15PCA.pdf
http://people.ciirc.cvut.cz/~hlavac/TeachPresEn/11ImageProc/15PCA.pdf
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