NOTES FOR 22 AUG (THURSDAY)

1. Recap

(1) Defined bases and gave examples.

- (2) Proved that the notion of dimension makes sense.
- (3) Defined posets, upper bounds, maximal elements, and chains and stated Zorn's lemma.

2. Bases and dimension

Theorem 2.1. *Every vector space has a basis.*

Proof. Consider $\mathcal{B} \subset \mathcal{P}(V)$ consisting of sets of linearly independent elements under inclusion. Given a chain $C \subset \mathcal{B}$, consider $M = \bigcup_{A \in C} A$. *M* is clearly an upper bound of the chain. We claim that $M \subset \mathcal{B}$. Indeed, if not, then there exists a linearly dependent collection of vectors v_1, \ldots, v_n in *M*. Since each $v_i \in A_i$ for some *i*, let A_k be a maximum of these finitely many elements in the totally ordered subset *C*. Hence $v_1, \ldots, v_n \in A_k$ and this is a contradiction. Therefore by Zorn's lemma, there exists a maximal linearly independent set *I* of vectors. If this set does not span *V*, then there is an element $v \in V$ such that $J = \{v\} \cup I \subset \mathcal{B}$. Here we use the following lemma.

Lemma 2.2. Let $S \subset V$ be a linearly independent subset. Suppose $\beta \in V \cap W_S^c$. Then $S' = S \cup \{\beta\}$ is linearly independent.

Proof. Indeed, suppose $c\beta + \sum_i c_i s_i = 0$, then if c = 0, we have a contradiction unless $c_i = 0 \forall i$. If $c \neq 0$, then also we have a contradiction because β is a linear combination of elements in *S*.

But this expression contradicts that the fact that *I* is maximal. Hence *I* forms a basis of *V*. \Box

Now we prove

Proposition 2.3. Let $W \subset V$ be a subspace of a possibly infinite-dimensional vector space V. Then every linearly independent subset S of W is a part of a basis of W. Moreover, if V is finite-dimensional, then such an S is finite and W is also finite-dimensional.

Proof. Consider the set $S \subset P(W)$ of all linearly independent subsets of W containing S and partially order this set S by inclusion. Let \mathcal{A} be a chain. Then $B = \bigcup_{A \in \mathcal{A}} A$ is an upper bound because $S \subset B$ and as above, B is linearly independent. Hence, there is a maximal element in S. As above, this maximal element is a basis.

If *V* is finite-dimensional, since $S \subset V$, *S* is finite. Hence any basis of *W* - which is of course a linearly independent set, is finite.

We have the following corollaries.

- (1) If $W \subset V$ is a proper subspace and V is f.d, then so is W and dim(W) < dim(V): Indeed, taking a basis B of W, it can be extended to a basis of V and hence $dim(W) \le dim(V)$. Since there exists a vector $v \in V \cap W^c$, dim(W) < dim(V).
- (2) In every vector space *V*, every non-empty linearly independent set of vectors is a part of a basis.

(3) Let A be an n×n matrix over a field. Suppose the rows of A form a linearly independent set. Then A is invertible : Row operations on A create matrices with linearly independent rows. (An easily verified fact.) Therefore, the row echelon form of A has no zero rows. Thus it is the identity and A is invertible.

We have the following reasonable sounding theorem.

Theorem 2.4. If W_1 , W_2 are finite-dimensional subspaces of a vector space V, then so is $W_1 + W_2$ and $dim(W_1) + dim(W_2) = dim(W_1 \cap W_2) + dim(W_1 + W_2)$.

Proof. Let p_1, \ldots, p_k be a basis of $W_1 \cap W_2$. Extend this basis to q_{k+1}, \ldots, q_m of W_1 and r_{k+1}, \ldots, r_n of W_2 . Then consider the subspace W spanned by the linearly independent set $U = \{p_1, \ldots, p_k, q_{k+1}, \ldots, q_m, r_{k+1}, \ldots, r_n\}$. (Why is U linearly independent ?) Clearly, $W_1 + W_2$ is spanned by U. Hence we are done.

Warning : Another reasonable sounding statement $dim(W_1) + dim(W_2) + dim(W_3) = ...$ (fill in the blanks) is false !!!

Def : An ordered basis \mathcal{B} of an *n*-dimensional vector space *V* is a sequence of vectors e_1, \ldots, e_n that form a basis for *V*.

Given an ordered basis of a finite-dimensional vector space *V*, every vector *v* can be uniquely identified as an element of \mathbb{F}^n , i.e., the map $(v_1, \ldots, v_n) \rightarrow \sum_i v_i e_i$ is a bijection. Moreover, this bijection preserves the vector space structure. Indeed, this situation motivates the following definitions :

Def : A linear transformation $T : V \to W$ between vector spaces V and W over the same field is a function such that T(av + bw) = aT(v) + bT(w). A linear isomorphism is a bijective linear transformation. Note that the inverse of a linear isomorphism is also a linear transformation. Indeed, $T(aT^{-1}v + bT^{-1}w) = aT(T^{-1}v) + bT(T^{-1}w) = av + bw$ and hence $aT^{-1}v + bT^{-1}w = T^{-1}(av + bw)$. Two vector spaces are said to be isomorphic if there is a linear isomorphism between them.

We shall return to linear transformations later. For now, note that \mathbb{F}^n is isomorphic to *V* by the linear transformation given above.

However, it is best to not fix a basis for a vector space. The components/coordinates in a particular

basis are usually written as column vectors $\vec{v}_{\mathcal{B}} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$. Some people like writing the basis vectors

themselves in a row as $e^T = [e_1 \ e_2 \ e_3 \ \dots \ e_n]$ so that conveniently, $v = e^T \vec{v}_B$ (as matrix multiplication). Clearly, if we change a basis, the components will change.

Theorem 2.5. Let *V* be an *n*-dim vector space and let $\mathcal{B}, \mathcal{B}'$ be two ordered bases. Then there is a unique invertible $n \times n$ matrix *P* such that $\vec{v}_{\mathcal{B}} = P\vec{v}_{\mathcal{B}'}$ and $\vec{v}_{\mathcal{B}'} = P^{-1}\vec{v}_{\mathcal{B}}$ for all $v \in V$. The columns of *P* are given by $P_i = e_{i\mathcal{B}}'$.

Conversely, given an ordered basis \mathcal{B} and an invertible $n \times n$ matrix P, there is a unique ordered basis \mathcal{B}' such that $\vec{v}_{\mathcal{B}} = P\vec{v}_{\mathcal{B}'}$ and $\vec{v}_{\mathcal{B}'} = P^{-1}\vec{v}_{\mathcal{B}}$ for all $v \in V$.

2