
NOTES FOR 22 AUG (THURSDAY)

1. Recap

(1) Defined bases and gave examples.
(2) Proved that the notion of dimension makes sense.
(3) Defined posets, upper bounds, maximal elements, and chains and stated Zorn’s lemma.

2. Bases and dimension

Theorem 2.1. Every vector space has a basis.

Proof. ConsiderB ⊂ P(V) consisting of sets of linearly independent elements under inclusion. Given
a chain C ⊂ B, consider M = ∪A∈CA. M is clearly an upper bound of the chain. We claim that M ⊂ B.
Indeed, if not, then there exists a linearly dependent collection of vectors v1, . . . , vn in M. Since
each vi ∈ Ai for some i, let Ak be a maximum of these finitely many elements in the totally ordered
subset C. Hence v1, . . . , vn ∈ Ak and this is a contradiction. Therefore by Zorn’s lemma, there exists
a maximal linearly independent set I of vectors. If this set does not span V, then there is an element
v ∈ V such that J = {v} ∪ I ⊂ B. Here we use the following lemma.

Lemma 2.2. Let S ⊂ V be a linearly independent subset. Suppose β ∈ V∩Wc
S. Then S′ = S∪ {β} is linearly

independent.

Proof. Indeed, suppose cβ +
∑

i cisi = 0, then if c = 0, we have a contradiction unless ci = 0 ∀ i. If
c , 0, then also we have a contradiction because β is a linear combination of elements in S. �

But this expression contradicts that the fact that I is maximal. Hence I forms a basis of V. �

Now we prove

Proposition 2.3. Let W ⊂ V be a subspace of a possibly infinite-dimensional vector space V. Then every
linearly independent subset S of W is a part of a basis of W. Moreover, if V is finite-dimensional, then such
an S is finite and W is also finite-dimensional.

Proof. Consider the set S ⊂ P(W) of all linearly independent subsets of W containing S and partially
order this set S by inclusion. LetA be a chain. Then B = ∪A∈AA is an upper bound because S ⊂ B
and as above, B is linearly independent. Hence, there is a maximal element in S. As above, this
maximal element is a a basis.
If V is finite-dimensional, since S ⊂ V, S is finite. Hence any basis of W - which is of course a linearly
independent set, is finite. �

We have the following corollaries.
(1) If W ⊂ V is a proper subspace and V is f.d, then so is W and dim(W) < dim(V) : Indeed,

taking a basis B of W, it can be extended to a basis of V and hence dim(W) ≤ dim(V). Since
there exists a vector v ∈ V ∩Wc, dim(W) < dim(V).

(2) In every vector space V, every non-empty linearly independent set of vectors is a part of a
basis.
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(3) Let A be an n× n matrix over a field. Suppose the rows of A form a linearly independent set.
Then A is invertible : Row operations on A create matrices with linearly independent rows.
(An easily verified fact.) Therefore, the row echelon form of A has no zero rows. Thus it is
the identity and A is invertible.

We have the following reasonable sounding theorem.

Theorem 2.4. If W1,W2 are finite-dimensional subspaces of a vector space V, then so is W1 + W2 and
dim(W1) + dim(W2) = dim(W1 ∩W2) + dim(W1 +W2).

Proof. Let p1, . . . , pk be a basis of W1∩W2. Extend this basis to qk+1, . . . , qm of W1 and rk+1, . . . , rn of W2.
Then consider the subspace W spanned by the linearly independent set U = {p1, . . . , pk, qk+1, . . . , qm, rk+1, . . . , rn}.
(Why is U linearly independent ?) Clearly, W1 +W2 is spanned by U. Hence we are done. �

Warning : Another reasonable sounding statement dim(W1) + dim(W2) + dim(W3) = . . . (fill in the
blanks) is false !!!

Def : An ordered basis B of an n-dimensional vector space V is a sequence of vectors e1, . . . , en
that form a basis for V.
Given an ordered basis of a finite-dimensional vector space V, every vector v can be uniquely
identified as an element ofFn, i.e., the map (v1, . . . , vn)→

∑
i viei is a bijection. Moreover, this bijection

preserves the vector space structure. Indeed, this situation motivates the following definitions :
Def : A linear transformation T : V → W between vector spaces V and W over the same field
is a function such that T(av + bw) = aT(v) + bT(w). A linear isomorphism is a bijective linear
transformation. Note that the inverse of a linear isomorphism is also a linear transformation.
Indeed, T(aT−1v+ bT−1w) = aT(T−1v)+ bT(T−1w) = av+ bw and hence aT−1v+ bT−1w = T−1(av+ bw).
Two vector spaces are said to be isomorphic if there is a linear isomorphism between them.
We shall return to linear transformations later. For now, note that Fn is isomorphic to V by the linear
transformation given above.

However, it is best to not fix a basis for a vector space. The components/coordinates in a particular

basis are usually written as column vectors ~vB =


v1
v2
...

vn

. Some people like writing the basis vectors

themselves in a row as eT = [e1 e2 e3 . . . en] so that conveniently, v = eT~vB (as matrix multiplication).
Clearly, if we change a basis, the components will change.

Theorem 2.5. Let V be an n-dim vector space and let B,B′ be two ordered bases. Then there is a unique
invertible n× n matrix P such that ~vB = P~vB′ and ~vB′ = P−1~vB for all v ∈ V. The columns of P are given by
Pi = ~e′iB.
Conversely, given an ordered basisB and an invertible n×n matrix P, there is a unique ordered basisB′ such
that ~vB = P~vB′ and ~vB′ = P−1~vB for all v ∈ V.
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