NOTES FOR 22 OCT (TUESDAY)

1. Recap

(1) Almost proved that a family of commuting diagonalisable matrices is diagonalisable, except for a lemma that if $T: V \rightarrow V$ is diagonalisable, and V_{0} is an invariant subspace, then $T: V_{0} \rightarrow V_{0}$ is also diagonalisable. Here is a simple proof of this lemma : Let v_{1}, \ldots, v_{k} be a basis of V_{0} and let e_{1}, \ldots, e_{n} be an eigenvector basis of V. Then $v_{i}=\sum_{j} c_{i j} e_{j}$. Thus, $T^{k} v_{i} \in V_{0}$ and $T^{k} v_{i}=\sum_{j} c_{i j} \lambda_{j}^{k} e_{j}$. Using the Vandermonde determinant we see that a linear combination of eigenvectors in each eigenspace such that $c_{i j} \neq 0$ is in V_{0}. In other words, $V_{0}=\oplus_{k} V_{0} \cap V_{\lambda_{k}}$ where V_{λ} is the eigenspace corresponding to λ. Hence $T: V_{0} \rightarrow V_{0}$ is diagonalisable.
(2) Defined the minimal polynomial and proved its properties.

2. Erratum

In one of the previous lectures (long ago) I claimed to have proven that for a characteristic 0 field, polynomial functions and abstract polynomials are one and the same thing. I used the notion of the derivative to prove this statement. Unfortunately, unless the field is \mathbb{R} or \mathbb{C}, the definition of the derivative itself uses the fact we are trying to prove. So that proof only works for \mathbb{R} and \mathbb{C}. Instead, here is a different proof (that works for all infinite fields). Indeed, let $f(x)=a_{0}+a_{1} x+\ldots+a_{n} x^{n}$ be a polynomial function that is identically zero. We will prove that $a_{i}=0 \forall i$, thus proving that polynomial functions uniquely determine the abstract polynomial from whence they came. Indeed, substitute $n+1$ distinct x_{i} into $f(x)$ (which we are allowed to do because the field is infinite). Solve for the a_{i} using the Vandermonde determinant. We are done.

3. The Jordan Canonical Form

When a matrix is not diagonalisable, we saw that it is similar to an upper-triangular matrix. However, this form is not unique (it is dependent on many choices). We ideally want a standard or "canonical" form that is more or less unique. The answer is in the form of the Jordan Canonical Form.

Theorem 3.1. Let $T: V \rightarrow V$ be an operator between finite-dimensional vector spaces. Assume that all the eigenvalues of T are in \mathbb{F}. Then there exist unique invariant subspaces V_{i} such that $V=\oplus_{i} V_{i}$ and there is a basis of V obtained through bases of V_{i} such that T is of the Jordan Canonical Form in this basis, i.e., T is upper-triangular, with the only possible super-diagonal elements being 1. The V_{i} are direct sums of Jordan blocks where a Jordan block looks like $\left[\begin{array}{cccc}\lambda & 1 & 0 & \ldots \\ 0 & \lambda & 1 & \ldots \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \ldots & 0 & \lambda\end{array}\right]$. (The Jordan Blocks are unique up to permutation.)

Before we prove the theorem, we define a useful notion : Let $T: V \rightarrow V$ be an operator. $v \in V$ is said to be a generalised eigenvector of T with generalised eigenvalue λ if there exists a positive integer k such that $(T-\lambda I)^{k} v=0$. The smallest such k is called the order/rank of λ. Note that a generalised eigenvalue is a root of the characteristic polynomial. Moreover, generalised eigenvectors
with different generalised eigenvalues are linearly independent : In fact, more generally, if $W_{i}=$ $\operatorname{ker}\left(\left(T-\lambda_{i}\right)^{w_{i}}\right)$ and likewise for j, where $w_{i}, w_{j} \geq 1$, then clearly W_{i}, W_{j} are invariant subspaces. Hence, $\left(T-\lambda_{i}\right)^{w_{i}}: W_{i} \rightarrow W_{i}$ is 0 . Hence, the only eigenvalues of $T: W_{i} \rightarrow W_{i}$ is λ_{i} and likewise, $T: W_{j} \rightarrow W_{j}$ is λ_{j}. Now $W_{i} \cap W_{j}$ is also an invariant subspace. By comparing the eigenvalues, we see that it is trivial.
Also, given a generalised eigenvector v of generalised eigenvalue λ and order k, consider $v,(T-$ $\lambda) v, \ldots,(T-\lambda)^{k-1} v$. These are all generalised eigenvectors of λ that are linearly independent. Indeed, let us induct on $k . k=1$ is trivial. Assuming the induction hypothesis, let $\sum_{i} c_{i}(T-\lambda)^{i} v=0$. Applying $(T-\lambda)^{k}$ to both sides we see that $c_{0}=0$. Using $v_{1}=(T-\lambda) v$ and induction we are done. The set of vectors $v,(T-\lambda) v, \ldots$ is called a Jordan chain generated by v. Note that the subspace spanned by these vectors is an invariant subspace and in this basis, T is a Jordan block in this subspace with diagonal elements being λ. Now we prove the theorem above. Note that the theorem above actually asserts that there exist linearly independent vectors in V_{i} whose Jordan chains span V_{i}. The following proof is from Artin's book.

Proof. Choose an eigenvalue λ of T. Now $T-\lambda I$ will be in the JCF iff T is so in that basis. So we can assume wLog that 0 is an eigenvalue of T.

Define $K_{i}=\operatorname{ker}\left(T^{i}\right)$ and $R_{i}=\operatorname{Ran}\left(T^{i}\right)$. Then $K_{1} \subset K_{2} \ldots$ and $\ldots \subset R_{2} \subset R_{1}$. Thus, there is an m (by finite-dimensionality) such that $K=K_{m}=K_{m+1} \ldots$ and $R=R_{m}=\ldots$. Clearly K, R are invariant subspaces. We claim that $K \cap R=\{0\}$ and hence by nullity-rank, $V=K \oplus U$. Indeed, if $z \in K \cap R$, then $T^{m} z=0$ and $z=T^{m} v$. Thus, $T^{2 m_{v}}=0$ which means that $v \in K$ and hence $T^{m} v=z=0$. Therefore, by induction hypothesis, we can bring $T: R \rightarrow R$ to the JCF by a basis. However, we still have to prove the same for $T: K \rightarrow K$ because R can be zero. Def : A nilpotent operator is one such that $T^{r}=0$ for some r. We have reduced our theorem's proof to nilpotent operators. So assume from now on that T is nilpotent.
To be cont'd....

