## NOTES FOR 22 OCT (TUESDAY)

## 1. Recap

(1) Stated the JCF theorem.
(2) Defined generalised eigenvectors and generalised eigenvalues. Proved a couple of properties.
(3) Reduced the proof of JCF to nilpotent operators.

## 2. The Jordan Canonical Form

Theorem 2.1. Let $T: V \rightarrow V$ be an operator between finite-dimensional vector spaces. Assume that all the eigenvalues of $T$ are in $\mathbb{F}$. Then there exist unique invariant subspaces $V_{i}$ such that $V=\oplus_{i} V_{i}$ and there is a basis of $V$ obtained through bases of $V_{i}$ such that $T$ is of the Jordan Canonical Form in this basis, i.e., $T$ is upper-triangular, with the only possible super-diagonal elements being 1. The $V_{i}$ are direct sums of Jordan
blocks where a Jordan block looks like $\left[\begin{array}{cccc}\lambda & 1 & 0 & \ldots \\ 0 & \lambda & 1 & \ldots \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \ldots & 0 & \lambda\end{array}\right]$. (The Jordan Blocks are unique up to permutation.)
Proof. Assume from now on that $T$ is nilpotent. Once again, let $K=\operatorname{Ker}(T)$ and $R=\operatorname{Ran}(T)$. By induction, there exists a linearly independent set $w_{1}, \ldots, w_{r} \in R$ such that the corresponding Jordan chains span $R$ and have exponents/orders $d_{i}$. Let $v_{k} \in V$ such that $T v_{k}=w_{k}$. We claim that
(1) The Jordan chains of $v_{k}$ are linearly independent: Indeed, if $\sum_{k} c_{k} v_{k}+c_{T k} T v_{k}+\ldots=0$, then $\sum_{k} c_{k} w_{k}+c_{T k} T w_{k}+\ldots=0$. Thus, all the $c_{j}$ are zero except for the ones corresponding to $T^{d_{i}} v_{i}=T^{d_{i}-1} w_{i}$. But a linear combinations of some Jordan chain vectors of $w_{k}$ is 0 implies that the coefficients are 0 .
(2) There are linearly independent vectors $e_{1} \ldots, e_{k} \in K$ such that they along with Jordan chains of $v_{k}$ form a basis of $V$ : Firstly, $K+U=V$ where $U$ is the span of the Jordan chains of $v_{k}$. Indeed, if $v \in V$, then $T v=R=T U=T u$ where $u \in U$. Hence $v-u \in K$. Extend the Jordan chain basis of $U$ to any basis of $V$ by adding $e_{i} \in K$. We are done with proving existence.
For uniqueness, note that we can again restrict ourselves to nilpotent operators. We can use the following "algorithm" (not quite! We don't know how to put it on a computer!) to calculate the Jordan form is :
(1) Compute the eigenvalues. Calculate the minimal polynomial. Its multiplicities $k$ give the maximum sizes of the Jordan blocks.
(2) Compute the dimensions $k_{i}$ of the kernels $K_{r}=N\left((T-\lambda I)^{r}\right)$ for all $r \leq k_{\lambda}$.
(3) $k_{i}-k_{i-1}$ is the number of blocks whose size is at least $i$.

As a corollary,
Corollary 2.2. TFAE.
(1) $T$ is diagonalisable.
(2) Every generalised eigenvector is an eigenvector.
(3) All the Jordan blocks are $1 \times 1$ blocks.
(4) The minimal polynomial has no repeated roots.

Proof. $1 \Rightarrow 2$ : If $\left(T-\lambda_{i}\right)^{n} v=0$, then writing $v=\sum_{k} c_{k} e_{k}$ where $e_{i}$ are eigenvectors, $\sum_{k \mid \lambda_{k} \neq \lambda_{i}} c_{k}\left(\lambda_{k}-\right.$ $\left.\lambda_{i}\right)^{n} e_{k}=0$. Hence, all such $c_{k}=0$. So $v$ is in the eigenspace of $\lambda_{i}$.
$2 \Rightarrow 3$ : If there is a non- $1 \times 1$ block, it is easy to see that its generator is a non-eigenvector but is a generalised one.
$3 \Rightarrow 1$ : Trivial. $1 \Rightarrow 4$ was done earlier. For $4 \Rightarrow 1$, if there is a generalised eigenvector $v$ of $\lambda$ that is not an eigenvector, then $m(T) v \neq 0$ as can be seen by an earlier computation to find the minimal polynomial of a Jordan block.

Here is another consequence : Let $T: V \rightarrow V$ be an operator over a f.d. vector space over a characteristic 0 field satisfying $T^{r}=1$ for some $r$. Assume that $t^{r}-1=0$ has all its roots (with multiplicity) in the field. Then $T$ is diagonalisable.
Indeed, firstly, the eigenvalues are some roots of $t^{r}-1=0$. Secondly, if $(T-\lambda I)^{2} v=0$ and $v \neq 0$, then let $w=(T-\lambda I) v$. Hence, $T w=\lambda w$. So $0=\left(T^{r}-I\right) v=(T-\lambda I)\left(T^{r-1}+\ldots+\lambda^{r-1}\right) v=0$ which means that $0=\left(T^{r-1}+\ldots\right) w=r \lambda^{r-1} w$ and hence $w=0$.
Here are a couple of examples (from Artin). Computing the change of basis is even more painful. (One needs to not only calculate dimensions of $K_{r}$ but also bases such that a few are Jordan chains generated by elements in $K_{k}-K_{k-1}$, etc.)
(1) $A=\left[\begin{array}{ccc}0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & -1 & 0\end{array}\right] \cdot p_{A}(t)=t^{3}$. It turns out that $A^{2} \neq 0$. So, if $v$ is any vector such that $A^{2} v \neq 0$, $v, A v, A^{2} v$ will be a Jordan chain. $A$ is similar to just one Jordan block.
(2) $B=\left[\begin{array}{lll}1 & -1 & 1 \\ 2 & -2 & 2 \\ 1 & -1 & 1\end{array}\right] . p_{B}(t)=t^{3}$. Actually, $B^{2}=0$ is the minimal polynomial. So there is a $2 \times 2$ Jordan block and a $1 \times 1$ block. Let $v$ be a vector such that $B v \neq 0$. Then, $v, B v$ generate the $2 \times 2$ block. An eigenvector $e$ linearly independent of $B v$ generates the other block.

## 3. Inner products

The proof that $e^{i k x}$ are linearly independent was by multiplying with $e^{-i l x}$ and integrating. All the integrals except one became zero. This is reminiscent of taking dot products in $\mathbb{R}^{n}$. So we generalise this concept by means of a definition: Let $\mathbb{F}$ be $\mathbb{R}$ or $\mathbb{C}$ from now onwards till the end of time (unless specified otherwise). Let $V$ be a vector space over $\mathbb{F}$. A map $\langle\rangle:, V \times V \rightarrow \mathbb{F}$ is said to be an inner product if the following hold.
(1) $\left\langle v, w_{1}+w_{2}\right\rangle=\left\langle v, w_{1}\right\rangle+\left\langle v, w_{2}\right\rangle$.
(2) $\langle\lambda v, w\rangle=\lambda\langle v, w\rangle$.
(3) $\langle v, w\rangle=\overline{\langle w, v\rangle}$.
(4) $\langle v, v\rangle \geq 0$ with equality holding iff $v=0$.

Note that the last two properties do not make sense for most other fields. Basically, an inner product is a sesquilinear form that satisfies a positivity property.

