

NOTES FOR 27 AUG (TUESDAY)

1. RECAP

- (1) Proved that every vector space has a basis. In fact, that every linearly independent subset can be extended to a basis.
- (2) $\dim(W_1 + W_2) = \dim(W_1) + \dim(W_2) - \dim(W_1 \cap W_2)$ but the analogous statement for three subspaces is false ! (take three lines in \mathbb{R}^2 for instance).
- (3) Defined ordered bases, linear maps, and components.

2. BASES AND DIMENSION

Theorem 2.1. Let V be an n -dim vector space and let $\mathcal{B}, \mathcal{B}'$ be two ordered bases. Then there is a unique invertible $n \times n$ matrix P such that $\vec{v}_{\mathcal{B}} = P\vec{v}_{\mathcal{B}'}$ and $\vec{v}_{\mathcal{B}'} = P^{-1}\vec{v}_{\mathcal{B}}$ for all $v \in V$. The columns of P are given by $P_i = \vec{e}'_{i\mathcal{B}}$.

Conversely, given an ordered basis \mathcal{B} and an invertible $n \times n$ matrix P , there is a unique ordered basis \mathcal{B}' such that $\vec{v}_{\mathcal{B}} = P\vec{v}_{\mathcal{B}'}$ and $\vec{v}_{\mathcal{B}'} = P^{-1}\vec{v}_{\mathcal{B}}$ for all $v \in V$.

Proof. The first direction : Indeed, there are unique scalars P_{ij} such that $e'_j = \sum_i P_{ij}e_i$. If $v = \sum_j v'_j e'_j = \sum_i v_i e_i$, then $\sum_j v'_j \sum_i P_{ij}e_i = \sum_i v_i e_i$. Hence, by uniqueness of the coordinates/components, $\sum_j P_{ij}v'_j = v_i$, i.e., $\vec{v}_{\mathcal{B}} = P\vec{v}_{\mathcal{B}'}$. P is invertible by interchanging the roles of e' and e . Now such a P is unique because P_i is P acting on the i^{th} standard basis vector of \mathbb{F}^n which equals $\vec{e}'_{i\mathcal{B}}$.
The converse : If there is such an ordered basis, then clearly, $e'_j = \sum_i P_{ij}e_i$. So uniqueness holds. Now we only have to prove that e'_j do form a basis. Indeed, if $\sum_j c_j e'_j = 0$, then $\sum_j c_j \sum_i P_{ij}e_i = 0$ or $Pc = 0$ and hence $c = 0$. So they are n linearly independent vectors and hence form a basis. \square

Here are examples.

- (1) The standard coordinate basis in \mathbb{F}^n .
- (2) Let $P = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$. It is clearly invertible and hence can be used to define another basis. Note that it corresponds to rotating the standard basis by θ . The old components are related to the new ones by P .
- (3) The Hermite polynomials $h_1 = 1, h_2 = x, h_3 = x^2 - 1$ also form a basis in the space of polynomials of degree ≤ 2 . Hence, $P_1 = P([1, 0, 0]_{\mathcal{H}}) = [1, 0, 0]^T, P_2 = P([0, 1, 0]_{\mathcal{H}}) = [0, 1, 0]^T, P_3 = P([0, 0, 1]_{\mathcal{H}}) = [-1, 0, 1]^T$.

3. BACK TO MATRICES

Let A be an $m \times n$ matrix over a field. The subspace of \mathbb{F}^n spanned by the rows of A is called the row space of A . (Likewise the column space is a subspace of \mathbb{F}^m .) If $B = PA$, then the rows of B are linear combinations of the rows of A and hence the row space of B is a subspace of the row space of A . If P is invertible, then $P^{-1}B = A$ and hence the row spaces of A and B coincide. In particular, the row space of A coincides with that of its row echelon form.

Proposition 3.1. *Let R be a non-zero row echelon matrix. Then the non-zero rows of R form a basis for the row space of R .*

Proof. By definition of row echelon matrices, the non-zero rows clearly span the row space. They are linearly independent. Indeed, if $\sum_i c_i \text{row}_i = 0$, then looking at the pivots, $c_i = 0$ for all i . \square

As a consequence, the row rank is simply the dimension of the row space of a matrix. Now we prove an important result.

Proposition 3.2. *Elementary row operations on a column echelon $m \times n$ matrix A do not change its column rank. (Sorry, the statement in the class was incorrect.)*

Proof. Let A_1, \dots, A_k be the basis of non-zero columns for the column space of A . Firstly, note that the elementary row operations keep the zero columns as they are. So the column space is still spanned by the transformed versions of A_1, \dots, A_k . If we prove that they continue to remain linearly independent, we are done.

- (1) $R_i \rightarrow cR_i$ where $c \neq 0$: If i is not a pivotal row, then clearly the column rank does not change. Indeed, the pivots remain the same and hence the new set of non-zero columns are still linearly independent. If i is a pivotal row, then again the new pivot may not be 1 but is still non-zero and hence the column rank remains the same.
- (2) $R_i \rightarrow R_i + cR_j$: If $c = 0$ nothing happens. So assume $c \neq 0$. If i is not a pivotal row, then the rows containing the pivots remain unchanged and hence the columns are still linearly independent. If i is a pivotal row, then if j is a pivotal row, then A_i 's pivot remains unchanged. It is easy to see that the column rank remains the same (by doing the column operation $C_j \rightarrow C_j - \frac{1}{c}C_i$). If j is not a pivotal row, then if $\sum_a u_a A'_a = 0$, looking at the old pivots in A'_a for $a \neq i$ we see that $u_a = 0 \forall a$. Hence the column rank remains the same.
- (3) $R_i \leftrightarrow R_j$: Exercise.

\square

Before we move on, here is an example that illustrates how one goes about studying linear independence and the other concepts in \mathbb{F}^n : Let $V = \mathbb{R}^4$. Consider the vectors $v_1 = (1, 2, 2, 1)$, $v_2 = (0, 2, 0, 1)$, $v_3 = (-2, 0, -4, 3)$ and let W be the subspace spanned by them.

- (1) Prove that v_1, v_2, v_3 form a basis for W .
Ans: Consider the matrix A with rows as the v_i . Reducing A to its row echelon form, we see that the row rank is 3 and hence v_i form a basis for the row space.
- (2) Let $\beta = (b_1, b_2, b_3, b_4) \in W$. What are the components of β relative to the basis v_1, v_2, v_3 ?
Ans: β is in the row space. So β^T is in the column space of A^T . Hence, $\beta^T = A^T c$ where c is a column vector of coefficients. We can solve this problem by Gaussian elimination (bringing A^T to its row echelon form) to get $c^T = (b_1 - \frac{1}{3}b_2 + \frac{2}{3}b_4, -b_1 + \frac{5}{6}b_2 - \frac{2}{3}b_4, -\frac{1}{6}b_2 + \frac{1}{3}b_4)$.
- (3) Let $v'_1 = (1, 0, 2, 0)$, $v'_2 = (0, 2, 0, 1)$, $v'_3 = (0, 0, 0, 3)$. Prove that these vectors also form a basis of W .
Ans: Again the Row echelon form comes to our rescue.
- (4) Find the matrix P such that $\vec{v}_{\mathcal{B}} = P \vec{v}_{\mathcal{B}'}$.
Ans: The columns of P are $P_i = [\vec{e}_i]_{\mathcal{B}}$.