
NOTES FOR 27 AUG (TUESDAY)

1. Recap

(1) Proved that every vector space has a basis. In fact, that every linearly independent subset
can be extended to a basis.

(2) dim(W1 + W2) = dim(W1) + dim(W2) − dim(W1 ∩W2) but the analogous statement for three
subspaces is false ! (take three lines in R2 for instance).

(3) Defined ordered bases, linear maps, and components.

2. Bases and dimension

Theorem 2.1. Let V be an n-dim vector space and let B,B′ be two ordered bases. Then there is a unique
invertible n× n matrix P such that ~vB = P~vB′ and ~vB′ = P−1~vB for all v ∈ V. The columns of P are given by
Pi = ~e′iB.
Conversely, given an ordered basisB and an invertible n×n matrix P, there is a unique ordered basisB′ such
that ~vB = P~vB′ and ~vB′ = P−1~vB for all v ∈ V.

Proof. The first direction : Indeed, there are unique scalars Pi j such that e′j =
∑

i Pi jei. If v =∑
j v′je

′

j =
∑

i viei, then
∑

j v′j
∑

i Pi jei =
∑

i viei. Hence, by uniqueness of the coordinates/components,∑
j Pi jv′j = vi, i.e., ~vB = P~vB′ . P is invertible by interchanging the roles of e′ and e. Now such a P is

unique because Pi is P acting on the ith standard basis vector of Fn which equals ~e′iB.
The converse : If there is such an ordered basis, then clearly, e′j =

∑
i Pi jei. So uniqueness holds. Now

we only have to prove that e′j do form a basis. Indeed, if
∑

j c je′j = 0, then
∑

j c j
∑

i Pi jei = 0 or Pc = 0
and hence c = 0. So they are n linearly independent vectors and hence form a basis. �

Here are examples.
(1) The standard coordinate basis in Fn.

(2) Let P =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
. It is clearly invertible and hence can be used to define another

basis. Note that it corresponds to rotating the standard basis by θ. The old components are
related to the new ones by P.

(3) The Hermite polynomials h1 = 1, h2 = x, h3 = x2
− 1 also form a basis in the space of

polynomials of degree ≤ 2. Hence, P1 = P([1, 0, 0]H ) = [1, 0, 0]T, P2 = P([0, 1, 0]H ) = [0, 1, 0]T,
P3 = P([0, 0, 1]H ) = [−1, 0, 1]T.

3. Back to matrices

Let A be an m × n matrix over a field. The subspace of Fn spanned by the rows of A is called the
row space of A. (Likewise the column space is a subspace of Fm.) If B = PA, then the rows of B are
linear combinations of the rows of A and hence the row space of B is a subspace of the row space of
A. If P is invertible, then P−1B = A and hence the row spaces of A and B coincide. In particular, the
row space of A coincides with that of its row echelon form.
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Proposition 3.1. Let R be a non-zero row echelon matrix. Then the non-zero rows of R form a basis for the
row space of R.

Proof. By definition of row echelon matrices, the non-zero rows clearly span the row space. They
are linearly independent. Indeed, if

∑
i ci rowi = 0, then looking at the pivots, ci = 0 for all i. �

As a consequence, the row rank is simply the dimension of the row space of a matrix. Now we
prove an important result.

Proposition 3.2. Elementary row operations on a column echelon m× n matrix A do not change its column
rank. (Sorry, the statement in the class was incorrect.)

Proof. Let A1, . . . ,Ak be the basis of non-zero columns for the column space of A. Firstly, note that
the elementary row operations keep the zero columns as they are. So the column space is still
spanned by the transformed versions of A1, . . . ,Ak. If we prove that they continue to remain linearly
independent, we are done.

(1) Ri → cRi where c , 0 : If i is not a pivotal row, then clearly the column rank does not change.
Indeed, the pivots remain the same and hence the new set of non-zero columns are still
linearly independent. If i is a pivotal row, then again the new pivot may not be 1 but is still
non-zero and hence the column rank remains the same.

(2) Ri → Ri + cR j : If c = 0 nothing happens. So assume c , 0. If i is not a pivotal row,
then the rows containing the pivots remain unchanged and hence the columns are still
linearly independent. If i is a pivotal row, then if j is a pivotal row, then Ai’s pivot remains
unchanged. It is easy to see that the column rank remains the same (by doing the column
operation C j → C j −

1
c Ci). If j is not a pivotal row, then if

∑
i uaA′a = 0, looking at the old

pivots in A′a for a , i we see that ua = 0 ∀ a. Hence the column rank remains the same.
(3) Ri ↔ R j : Exercise.

�

Before we move on, here is an example that illustrates how one goes about studying linear
independence and the other concepts in Fn : Let V = R4. Consider the vectors v1 = (1, 2, 2, 1), v2 =
(0, 2, 0, 1), v3 = (−2, 0,−4, 3) and let W be the subspace spanned by them.

(1) Prove that v1, v2, v3 form a basis for W.
Ans: Consider the matrix A with rows as the vi. Reducing A to its row echelon form, we see
that the row rank is 3 and hence vi form a basis for the row space.

(2) Let β = (b1, b2, b3, b4) ∈W. What are the components of β relative to the basis v1, v2, v3 ?
Ans: β is in the row space. So βT is in the column space of AT. Hence, βT = ATc where c is a
column vector of coefficients. We can solve this problem by Gaussian elimination (bringing
AT to its row echelon form) to get cT = (b1 −

1
3 b2 + 2

3 b4,−b1 + 5
6 b2 −

2
3 b4,−

1
6 b2 + 1

3 b4).
(3) Let v′1 = (1, 0, 2, 0), v′2 = (0, 2, 0, 1), v′3 = (0, 0, 0, 3). Prove that these vectors also form a basis of

W.
Ans: Again the Row echelon form comes to our rescue.

(4) Find the matrix P such that ~vB = P~vB′ .
Ans: The columns of P are Pi = [~e′i ]B.


	1. Recap
	2. Bases and dimension
	3. Back to matrices

