
NOTES FOR 29 AUG (THURSDAY)

1. Recap

(1) Proved the change of basis formula.
(2) Proved that elementary row operations do not change the column rank of a column echelon

matrix. (I incorrectly concluded that hence this statement holds for all matrices and hence
the row and column ranks are equal. Sorry.) Actually, the proof for a general matrix is much
simpler : Suppose Ri → aRi + bR j (where a , 0). Let A1, . . . ,Ak form a basis for the column
space. Then, if the new columns A′1,A

′

2, . . . are linearly dependent,
∑
β Aαβcβ = 0 ∀ α , i and∑

β(aAiβ + bA jβ)cβ = 0 and hence
∑
β aAiβcβ = 0 ⇒

∑
β Aiβcβ = 0. Since the original columns

were linearly independent, ci = 0 - a contradiction. Therefore, the dimension of the column
space is ≥ the original one. Since row operations are invertible, equality holds. Note that
whilst bringing a column echelon matrix to a row echelon one, one does not change the
column echelon property. Hence, one can do both operations to bring it to a standard form
indicated in the class.

(3) Showed how to prove that vectors in Fn are linearly independent etc, algorithmically.

2. Linear transformations

Recall the definition of a linear map T : V →W. Here is a proposition (whose proof is easy).

Proposition 2.1. A map T : V →W is linear iff T(cv + w) = cT(v) + T(w) ∀ c ∈ F, v,w ∈ V.

Proof. One direction is trivial. As for the other, T(~0 + ~0) = ~0 + T(~0) and hence T(~0) = ~0. Now
T(c1v + c2w) = c1T(v) + T(c2w + ~0) = c1T(v) + c2T(w). �

Also inductively, T(
∑

i civi) =
∑

i ciT(vi). Here are examples and non-examples.
(1) The zero map and the identity map are linear transformations from V to V.
(2) Let V be the space of abstract polynomials over F. Then T : V → V given by Tp(x) = p′(x) is a

linear map. Likewise, for the space of polynomial functions. (More generally, we can define
abstract polynomials F[x1, . . . , xn] of n variables as abstract polynomials with coefficients in
a commutative ring (a commutative ring is almost like a field except that non-zero elements
are not necessarily invertible. Clearly polynomials in any number of variables over a field are
commutative rings. We can construct polynomial rings with coefficients in any commutative
ring (after all we never used the ability to divide in their construction).) F[x1, x2, . . . , xn−1],
and define the partial derivative linear maps.) Here is a useful little lemma.

Lemma 2.2. An abstract polynomial p(x1, . . . , xn) over a field of characteristic zero is determined by
its polynomial function. Moreover, if the field is R (or C) and the polynomial function vanishes in a
neighbourhood of a, it vanishes everywhere (and hence the corresponding abstract polynomial is also
zero).

Proof. The claim is that p(x1, . . . , xn) =
∑
α D(α)p(a) (x−a)α

α1!α2!... as an abstract polynomial. Indeed,
firstly, translations are isomorphisms from the vector space of abstract polynomials to itself
(exercise). Secondly, let p(x1, . . . , xn) =

∑
α aα(x − a)α, then D(α)p(a) = aαα1!α2! . . .. (Where did
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we use the fact that the field has characteristic zero?)
If the field isR (orC), then the derivatives at a are determined by the function in an arbitrarily
small neighbourhood of a (what does a complex derivative mean? That is a longer story,
but one can write everything in terms of the real and imaginary parts and apply the same
argument). �

(3) The map T( f (x)) =
∫ 1

0 f (x)dx is a linear map between continuous functions on [0, 1] and R.
(4) Let A be a fixed m × n matrix. Then T(X) = AX is a linear map from Fn to Fm. Likewise, so

is T(X) = PXQ where P is an m ×m matrix and Q is an n × n matrix.
(5) The map T(x) = x2 from R to R is not linear.
(6) The map T(x) = ax + b from R to R is not linear (despite the common terminology) if b , 0.

The correct term is “affine”.
We have the following fundamental but easy result.

Proposition 2.3. Let V be a finite-dimensional vector space over a field and B = {e1, . . . , en} be an ordered
basis. Let W be another vector space over the same field and let w1, . . . ,wn be vectors in W. There is a unique
linear transformation T : V →W such that Te j = w j.

Indeed, defining Te j = w j, then we can define T(v) = T(
∑

viei) =
∑

viwi. Clearly T is a linear map.
If U is another such linear map, then U(v) = U(

∑
viei) = viwi = T(v).

Here is a fundamental example that we will deal with in more detail later : Let T : Fn
→ Fm be

a linear transformation. It is determined uniquely by βi = T(ei). Indeed, if v = (v1, v2, . . .) =
∑

j vie j,
then T(v) =

∑
j v jβ j =

∑
i v jβi jei and hence T(~v) = B~v where the m × n matrix B is Bi j = (β j)i.

Note that if T : V → W is linear, then Ran(T) ⊂ W is a subspace (easy to see). Its dimension is
called the rank of T. Likewise, it is easy to see that all v ∈ V such that T(v) = 0 is a subspace of V. It
is called the null space or sometimes, the kernel of T. Its dimension is called the nullity of T. Here
is an important result.

Theorem 2.4. rank(T) + nullity(T) = dim(V) = n.

Proof. Let e1, . . . , er be a basis for the kernel null(T). Extend this set to a basis e1, . . . , er, f1, . . . , fn−r.
Then,

(1) T( fi) span the range : Indeed, T(v) =
∑

i viT(ei) +
∑

j w jT( f j) =
∑

j w jT( f j).
(2) T( fi) are linearly independent : If

∑
i ciT( fi) = 0, then T(

∑
i ci fi) = 0 and hence

∑
i ci fi =

∑
k dkek.

Thus, ci = 0 ∀ i.
Hence T( fi) form a basis for the range and we are done. �

Here is another proof of the row rank being the column rank.

Proof. Consider the linear map T : Fn
→ Fm given by T(v) = Av. The range of T is the column space

of T. Hence, null(T) = n − c where c is the column rank. Bringing A to its row echelon form we see
that we can solve for r variables (where r is the row rank) in terms of the n− r free variables. Hence,
ker(T) = n − r. Thus, r = c. �

Actually, the proof above shows that r = c is equivalent to the nullity-rank theorem.
This is a good point to introduce a few abstract constructions of vector spaces from existing spaces.

Def : Let Vi be an arbitrary collection of (not necessarily finite-dimensional) vector spaces.
(1) The direct product ×iVi : As a set it is simply the (possibly infinite) Cartesian product. The

vector space structure is as follows : ~0 is the element all of whose components are 0. Addition
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and scalar multiplication is done component-wise. Additive inverses are also component
wise. (More formally, the Cartesian product is the set of functions f : I → ∪iVi such that
f (i) ∈ Vi. So for instance, the zero vector is the function ~0(i) = ~0i ∈ Vi.)

(2) The direct sum ⊕iVi ⊂ ×iVi : It is a subspace of the direct product given by elements such
that all but finitely many components are zero. (It is clearly closed under addition and scalar
multiplication.)

While the direct product may look natural, actually the direct sum is better behaved. Indeed, if ei j is a
basis for Vi, then fi j(k) = ei jδki is a basis for⊕iVi but a similar construction does not work for the direct
product in general. (Obviously, because the direct sum is a proper subspace for infinite products.)
Finite direct products and sums are the same (even for infinite-dimensional vector spaces). The
internal direct sum of two subspaces is isomorphic to their direct sum (abstractly).
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