## NOTES FOR 29 OCT (TUESDAY)

## 1. Recap

(1) Proved the JCF theorem and proved a consequence about diagonalisability. Did a couple of examples.
(2) Proved that over fields of characteristic $0, T$ satisfying $T^{r}=I$ is diagonalisable.

## 2. Inner products

Here are examples and non-examples.
(1) On $\mathbb{R}^{n}$, the standard inner product (called the "Euclidean metric") sometimes is $\langle v, w\rangle=$ $\sum_{i} v_{i} w_{i}$. Likewise, on $\mathbb{C}^{n},\langle v, w\rangle=\sum_{i} v_{i} \bar{w}_{i}$. On $\mathbb{R}^{n},\langle v, w\rangle=\sum_{i} c_{i}^{2} v_{i} w_{i}$ is also an inner product if $c_{i}>0, \forall i$. Note that $\langle v, w\rangle=v^{T} \bar{w}$ if $v, w$ are treated as column vectors.
(2) On $\mathbb{C}^{n}$, the map $(v, w)=\sum_{i} v_{i} w_{i}$ is NOT an innner product. (It is bilinear, not sesquilinear and does not obey the positivity property.)
(3) On $\mathbb{R}^{2},\langle v, w\rangle=v_{1} w_{1}-v_{2} w_{1}-v_{1} w_{2}+4 v_{2} w_{2}$ is an inner product. Indeed, it is clearly bilinear. Now $\langle v, v\rangle=v_{1}^{2}-2 v_{1} v_{2}+4 v_{2}^{2}=\left(v_{1}-v_{2}\right)^{2}+3 v_{2}^{2} \geq 0$ with equality iff $v_{2}=0=v_{1}$.
(4) On $\operatorname{Mat}_{n \times n}(\mathbb{C})$, the map $\langle A, B\rangle=\operatorname{tr}\left(A B^{\dagger}\right)$ is an inner product, where $B^{\dagger}=\overline{B^{T}}$. Indeed, it is sesquilinear. $\operatorname{tr}\left(A A^{\dagger}\right)=\sum_{i}\left|A_{i j}\right|^{2} \geq 0$ with equality iff $A=0$.
(5) On the space of continuous functions $f:[0,1] \rightarrow \mathbb{R}$, the map $\langle f, g\rangle=\int_{0}^{1} f g d x$ is an inner product. (This inner product is called the $L^{2}$ inner product on continuous functions.)
(6) On the space of continuously differentiable functions $f:[0,1] \rightarrow \mathbb{R}$, the map $\langle f, g\rangle=$ $\int_{0}^{1} f g d x+\int_{0}^{1} f^{\prime} g^{\prime} d x$ is an inner product. (It is called the Sobolev $W^{1,2}$ inner product on $C^{1}$ functions.)
(7) Here is a whole class of examples : Let $T: V \rightarrow W$ be a $1-1$ linear map and let $g_{W}($, be an inner product on $W$. Then clearly $g_{V}(x, y)=g_{W}(T x, T y)$ is an inner product on $V$. For instance, if $A$ is an invertible $n \times n$ matrix, then $\langle v, w\rangle=(A w)^{\dagger} A v$ is an inner product. Likewise, $(f, g)=\int_{0}^{1} t^{2} f \bar{g} d t$ is an inner product on continuous functions $f:[0,1] \rightarrow \mathbb{C}$.
Here is an important definition : A norm $\|\|:. V \rightarrow \mathbb{R}$ is a map such that
(1) $\|\lambda v\|=|\lambda|\|v\|$.
(2) $\|v+w\| \leq\|v\|+\|w\|$. (The triangle inequality.)
(3) $\|v\| \geq 0$ with equality iff $v=0$. (If this property is not met, it is called a seminorm.)

Given an inner product $\langle$,$\rangle , here is a norm : \|v\|=\sqrt{\langle v,\rangle v}$. Here is a proof of the triangle inequality $:\|v+w\|=\sqrt{\|v\|^{2}+\|w\|^{2}+\langle v, w\rangle+\langle w, v\rangle}$. At this juncture, we need the very very useful CauchySchwarz inequality $|\langle v, w\rangle| \leq\|v\|\| \| w \|$ with equality holding iff $v, w$ are linearly dependent. Given the CS inequality, $\|v+w\|^{2} \leq\|v\|^{2}+\|w\|^{2}+2\|v\|\|w\|=(\|v\|+\|w\|)^{2}$. So we just need to prove the CS inequality. Here is the proof:
Let $w \neq 0$ without loss of generality. Consider $f(t)=\langle v+t w, v+t w\rangle=\|v\|^{2}+t^{2}\|w\|^{2}+t(\langle v, w\rangle+\langle w, v\rangle)$. Clearly, $f(t) \geq 0$ with equality iff $v=-t w$, i.e., $v, w$ are linearly dependent. The function $f(t)$ is minimised when $f^{\prime}(t)=0$, i.e., when $t=-\frac{\langle\langle, w\rangle+\langle w, v\rangle}{2\|w\|_{1}}$. Substituting this value of $t$ in $f(t) \geq 0$, we get
the CS inequality.
In particular, $\left|\int_{0}^{1} f \bar{g}\right|^{2} \leq \int_{0}^{1}|f|^{2} \int_{0}^{1}|g|^{2}$. Here are examples and non-examples of norms.
(1) On $\mathbb{R}^{2}, f(v)=\left|v_{1}\right|^{2}$ is not a norm. (It is a seminorm.)
(2) On $\mathbb{R}^{2},\|v\|=\left|v_{1}\right|+\left|v_{2}\right|$ is a norm (called the $l^{1}$ norm). It does not arise out of an inner product. Indeed, $(1,1)=2=|(1,0)|+|(0,1)|$. So $v, w$ are not linearly dependent and yet equality holds in the triangle inequality.
When does a norm arise out of an inner product ? For starters, $\langle v+w, v+w\rangle+\langle v-w, v-w\rangle=$ $2\|v\|^{2}+2\|w\|^{2}$. This identity is called the polarisation identity. It is a necessary condition for a norm to arise out of an inner product. It is also sufficient! (Hint: Use a linear combination of things like $\|v+c w\|^{2}$ where $c$ is some complex number.)

Given an inner product (sometimes also called a metric) $\left\langle{ }^{\prime}\right\rangle$, and a basis $e_{i}$, we see that $\langle v, w\rangle=$ $\sum_{i} v_{i} \bar{w}_{j}\left\langle e_{i}, e_{j}\right\rangle$. Define the matrix $H_{i j}=\left\langle e_{i}, e_{j}\right\rangle$. Then $\langle v, w\rangle=v^{T} H \bar{w}=w^{\dagger} \bar{H} v$. Note that, $H_{i j}=\bar{H}_{j i}$, i.e., $H^{\dagger}=H$. A matrix satisfying this property is said to be Hermitian. (A matrix satisfying $A^{T}=A$ is said to be symmetric.) Moreover, $v^{\dagger} H v \geq 0$ for all $v$ with equality holding iff $v=0$. A Hermitian matrix satisfying this condition is called positive-definite. (If the equality condition is dropped, then it is said to be positive-semidefinite.) Conversely, given a positive-definite matrix $H$ and a basis $e_{i}$, the $\operatorname{map}\langle v, w\rangle=v^{T} H \bar{w}$ defines an inner product. Here are examples and non-examples of Hermitian positive-definite matrices.
(1) Let $A$ be an invertible matrix. Then $H=A^{\dagger} A$ is Hermitian (clearly) and positive-definite.
 positive-semidefinite.

