NOTES FOR 29 OCT (TUESDAY)

1. Recap

- (1) Proved the JCF theorem and proved a consequence about diagonalisability. Did a couple of examples.
- (2) Proved that over fields of characteristic 0, *T* satisfying $T^r = I$ is diagonalisable.

2. INNER PRODUCTS

Here are examples and non-examples.

- (1) On \mathbb{R}^n , the standard inner product (called the "Euclidean metric") sometimes is $\langle v, w \rangle = \sum_i v_i w_i$. Likewise, on \mathbb{C}^n , $\langle v, w \rangle = \sum_i v_i \bar{w}_i$. On \mathbb{R}^n , $\langle v, w \rangle = \sum_i c_i^2 v_i w_i$ is also an inner product if $c_i > 0$, $\forall i$. Note that $\langle v, w \rangle = v^T \bar{w}$ if v, w are treated as column vectors.
- (2) On \mathbb{C}^n , the map $(v, w) = \sum_i v_i w_i$ is NOT an innner product. (It is bilinear, not sesquilinear and does not obey the positivity property.)
- (3) On \mathbb{R}^2 , $\langle v, w \rangle = v_1 w_1 v_2 w_1 v_1 w_2 + 4 v_2 w_2$ is an inner product. Indeed, it is clearly bilinear. Now $\langle v, v \rangle = v_1^2 - 2v_1 v_2 + 4v_2^2 = (v_1 - v_2)^2 + 3v_2^2 \ge 0$ with equality iff $v_2 = 0 = v_1$.
- (4) On $Mat_{n\times n}(\mathbb{C})$, the map $\langle A, B \rangle = tr(AB^{\dagger})$ is an inner product, where $B^{\dagger} = \overline{B^{T}}$. Indeed, it is sesquilinear. $tr(AA^{\dagger}) = \sum_{i} |A_{ij}|^2 \ge 0$ with equality iff A = 0.
- (5) On the space of continuous functions $f : [0,1] \to \mathbb{R}$, the map $\langle f,g \rangle = \int_0^1 fg dx$ is an inner product. (This inner product is called the L^2 inner product on continuous functions.)
- (6) On the space of continuously differentiable functions $f : [0,1] \to \mathbb{R}$, the map $\langle f,g \rangle = \int_0^1 fg dx + \int_0^1 f'g' dx$ is an inner product. (It is called the Sobolev $W^{1,2}$ inner product on C^1 functions.)
- (7) Here is a whole class of examples : Let $T : V \to W$ be a 1 1 linear map and let $g_W(,)$ be an inner product on W. Then clearly $g_V(x, y) = g_W(Tx, Ty)$ is an inner product on V. For instance, if A is an invertible $n \times n$ matrix, then $\langle v, w \rangle = (Aw)^{\dagger}Av$ is an inner product. Likewise, $(f, g) = \int_0^1 t^2 f \bar{g} dt$ is an inner product on continuous functions $f : [0, 1] \to \mathbb{C}$.

Here is an important definition : A norm $\|.\|: V \to \mathbb{R}$ is a map such that

- (1) $\|\lambda v\| = |\lambda| \|v\|$.
- (2) $||v + w|| \le ||v|| + ||w||$. (The triangle inequality.)
- (3) $||v|| \ge 0$ with equality iff v = 0. (If this property is not met, it is called a seminorm.)

Given an inner product \langle , \rangle , here is a norm : $||v|| = \sqrt{\langle v, \rangle v}$. Here is a proof of the triangle inequality : $||v + w|| = \sqrt{||v||^2 + ||w||^2 + \langle v, w \rangle + \langle w, v \rangle}$. At this juncture, we need the very very useful Cauchy-Schwarz inequality $|\langle v, w \rangle| \le ||v|| ||w||$ with equality holding iff v, w are linearly dependent. Given the CS inequality, $||v + w||^2 \le ||v||^2 + ||w||^2 + 2||v||||w|| = (||v|| + ||w||)^2$. So we just need to prove the CS inequality. Here is the proof :

Let $w \neq 0$ without loss of generality. Consider $f(t) = \langle v + tw, v + tw \rangle = ||v||^2 + t^2 ||w||^2 + t(\langle v, w \rangle + \langle w, v \rangle)$. Clearly, $f(t) \ge 0$ with equality iff v = -tw, i.e., v, w are linearly dependent. The function f(t) is minimised when f'(t) = 0, i.e., when $t = -\frac{\langle v, w \rangle + \langle w, v \rangle}{2||w||^2}$. Substituting this value of t in $f(t) \ge 0$, we get

NOTES FOR 29 OCT (TUESDAY)

the CS inequality.

In particular, $|\int_0^1 f\bar{g}|^2 \le \int_0^1 |f|^2 \int_0^1 |g|^2$. Here are examples and non-examples of norms.

- (1) On \mathbb{R}^2 , $f(v) = |v_1|^2$ is not a norm. (It is a seminorm.)
- (2) On \mathbb{R}^2 , $||v|| = |v_1| + |v_2|$ is a norm (called the l^1 norm). It does not arise out of an inner product. Indeed, (1, 1) = 2 = |(1, 0)| + |(0, 1)|. So v, w are not linearly dependent and yet equality holds in the triangle inequality.

When does a norm arise out of an inner product ? For starters, $\langle v + w, v + w \rangle + \langle v - w, v - w \rangle = 2||v||^2 + 2||w||^2$. This identity is called the polarisation identity. It is a necessary condition for a norm to arise out of an inner product. It is also sufficient ! (Hint: Use a linear combination of things like $||v + cw||^2$ where *c* is some complex number.)

Given an inner product (sometimes also called a metric) \langle , \rangle , and a basis e_i , we see that $\langle v, w \rangle = \sum_i v_i \bar{w}_j \langle e_i, e_j \rangle$. Define the matrix $H_{ij} = \langle e_i, e_j \rangle$. Then $\langle v, w \rangle = v^T H \bar{w} = w^\dagger \bar{H} v$. Note that, $H_{ij} = \bar{H}_{ji}$, i.e., $H^\dagger = H$. A matrix satisfying this property is said to be Hermitian. (A matrix satisfying $A^T = A$ is said to be symmetric.) Moreover, $v^\dagger H v \ge 0$ for all v with equality holding iff v = 0. A Hermitian matrix satisfying this condition is called positive-definite. (If the equality condition is dropped, then it is said to be positive-semidefinite.) Conversely, given a positive-definite matrix H and a basis e_i , the map $\langle v, w \rangle = v^T H \bar{w}$ defines an inner product. Here are examples and non-examples of Hermitian positive-definite matrices.

(1) Let *A* be an invertible matrix. Then $H = A^{\dagger}A$ is Hermitian (clearly) and positive-definite. Indeed, $v^{\dagger}A^{\dagger}Av = ||Av||_{standard}^2 \ge 0$ with equality iff $Av = 0 \Leftrightarrow v = 0$. If *A* is not invertible, it is positive-semidefinite.