NOTES FOR 29 OCT (TUESDAY)

1. Recar

(1) Proved the JCF theorem and proved a consequence about diagonalisability. Did a couple of
examples.
(2) Proved that over fields of characteristic 0, T satisfying T" = I is diagonalisable.

2. INNER PRODUCTS

Here are examples and non-examples.

(1) On R", the standard inner product (called the “Euclidean metric”) sometimes is (v, w) =
Y.iviw;. Likewise, on C", (v, w) = } ;v;w;. On R", (v, w) = }; cfviw,- is also an inner product
ifc; >0, ¥V i. Note that (v, w) = vT@ if v, w are treated as column vectors.

(2) On C", the map (v, w) = ) ; v;w; is NOT an innner product. (It is bilinear, not sesquilinear
and does not obey the positivity property.)

(3) On R?, (v, w) = vw; — V2w — V1Ws + 4vows is an inner product. Indeed, it is clearly bilinear.
Now (v,v) = 07 — 2010 + 40} = (01 — v2)* + 305 > 0 with equality iff v, = 0 = v1.

(4) On Mat,;x,(C), the map (A,B) = tr(AB") is an inner product, where Bt = BT. Indeed, it is
sesquilinear. tr(AA") = ¥;1A;j* > 0 with equality iff A = 0.

(5) On the space of continuous functions f : [0,1] — R, the map (f,g) = fol fgdx is an inner
product. (This inner product is called the L? inner product on continuous functions.)

(6) On the space of continuously differentiable functions f : [0,1] — R, the map (f,g) =
fol fedx + fol f’¢’dx is an inner product. (It is called the Sobolev W'? inner product on C!
functions.)

(7) Here is a whole class of examples : Let T : V. — W be a 1 — 1 linear map and let gw(,)
be an inner product on W. Then clearly gv(x,y) = gw(Tx, Ty) is an inner product on V.
For instance, if A is an invertible n X n matrix, then (v, w) = (Aw)'Av is an inner product.
Likewise, (f, g) = fol t2 fgdt is an inner product on continuous functions f : [0,1] — C.

Here is an important definition : A norm ||.|| : V — R is a map such that

(D) Aol = Aol

(2) llv +wll < ||vll + |[wl]|. (The triangle inequality.)

(3) llvll > 0 with equality iff v = 0. (If this property is not met, it is called a seminorm.)

Given an inner product ¢, ), here is a norm : |[v|| = V(v, )v. Here is a proof of the triangle inequality

o+ w|| = \/Ilvll2 + [[wll? + (v, w) + (w,v). At this juncture, we need the very very useful Cauchy-
Schwarz inequality [(v, w)| < |[v|l|lw]| with equality holding iff v, w are linearly dependent. Given
the CS inequality, [v + wl|? < |[oll> + [lwl|? + 2l[ollllwl]l = (o]l + |[w]])?>. So we just need to prove the CS
inequality. Here is the proof :

Letw # 0 without loss of generality. Consider f(t) = (v+tw, v+ tw) = ||0||> + t2||w||* + t({v, w) + (w, v}).
Clearly, f(t) > 0 with equality iff v = —tw, i.e., v,w are linearly dependent. The function f(¢) is

__ {w,w)+{w,v)
2|fw]l?
1

minimised when f’(t) = 0, i.e,, when t = . Substituting this value of t in f(t) > 0, we get
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the CS inequality.
In particular, | fol f3l? < fol V& fol IgI>. Here are examples and non-examples of norms.

(1) OnR?, f(v) = |v1/* is not a norm. (It is a seminorm.)

(2) OnR?, ||v|| = |v1]+ [v2] is a norm (called the I' norm). It does not arise out of an inner product.
Indeed, (1,1) =2 =(1,0)| + |(0, 1)|. So v, w are not linearly dependent and yet equality holds
in the triangle inequality.

When does a norm arise out of an inner product ? For starters, (v + w,v + w) + (v — w,v — W) =
2|[v][? + 2|[w]|[>. This identity is called the polarisation identity. It is a necessary condition for a norm
to arise out of an inner product. It is also sufficient ! (Hint: Use a linear combination of things like
llv + cwl||?> where ¢ is some complex number.)

Given an inner product (sometimes also called a metric) (, ), and a basis ¢;, we see that (v, w) =
Y.; viw;{e;, ej). Define the matrix H;j = (e;,¢j). Then (v, w) = v"H@w = w'Ho. Note that, H;j = Hj; i.e.,
H' = H. A matrix satisfying this property is said to be Hermitian. (A matrix satisfying AT = A is said
to be symmetric.) Moreover, v'Hv > 0 for all v with equality holding iff v = 0. A Hermitian matrix
satisfying this condition is called positive-definite. (If the equality condition is dropped, then it is
said to be positive-semidefinite.) Conversely, given a positive-definite matrix H and a basis ¢;, the
map (v, w) = v' Hw defines an inner product. Here are examples and non-examples of Hermitian
positive-definite matrices.

(1) Let A be an invertible matrix. Then H = A'A is Hermitian (clearly) and positive-definite.
Indeed, vt ATAv = ||Av|? > 0 with equality iff Av = 0 & v = 0. If A is not invertible, it is

o ) o standard
positive-semidefinite.
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