
NOTES FOR 29 OCT (TUESDAY)

1. Recap

(1) Proved the JCF theorem and proved a consequence about diagonalisability. Did a couple of
examples.

(2) Proved that over fields of characteristic 0, T satisfying Tr = I is diagonalisable.

2. Inner products

Here are examples and non-examples.
(1) On Rn, the standard inner product (called the “Euclidean metric”) sometimes is 〈v,w〉 =∑

i viwi. Likewise, on Cn, 〈v,w〉 =
∑

i viw̄i. On Rn, 〈v,w〉 =
∑

i c2
i viwi is also an inner product

if ci > 0, ∀ i. Note that 〈v,w〉 = vTw̄ if v,w are treated as column vectors.
(2) On Cn, the map (v,w) =

∑
i viwi is NOT an innner product. (It is bilinear, not sesquilinear

and does not obey the positivity property.)
(3) On R2, 〈v,w〉 = v1w1 − v2w1 − v1w2 + 4v2w2 is an inner product. Indeed, it is clearly bilinear.

Now 〈v, v〉 = v2
1 − 2v1v2 + 4v2

2 = (v1 − v2)2 + 3v2
2 ≥ 0 with equality iff v2 = 0 = v1.

(4) On Matn×n(C), the map 〈A,B〉 = tr(AB†) is an inner product, where B† = BT. Indeed, it is
sesquilinear. tr(AA†) =

∑
i |Ai j|

2
≥ 0 with equality iff A = 0.

(5) On the space of continuous functions f : [0, 1] → R, the map 〈 f , g〉 =
∫ 1

0 f gdx is an inner
product. (This inner product is called the L2 inner product on continuous functions.)

(6) On the space of continuously differentiable functions f : [0, 1] → R, the map 〈 f , g〉 =∫ 1
0 f gdx +

∫ 1
0 f ′g′dx is an inner product. (It is called the Sobolev W1,2 inner product on C1

functions.)
(7) Here is a whole class of examples : Let T : V → W be a 1 − 1 linear map and let gW(, )

be an inner product on W. Then clearly gV(x, y) = gW(Tx,Ty) is an inner product on V.
For instance, if A is an invertible n × n matrix, then 〈v,w〉 = (Aw)†Av is an inner product.

Likewise, ( f , g) =
∫ 1

0 t2 f ḡdt is an inner product on continuous functions f : [0, 1]→ C.
Here is an important definition : A norm ‖.‖ : V → R is a map such that

(1) ‖λv‖ = |λ|‖v‖.
(2) ‖v + w‖ ≤ ‖v‖ + ‖w‖. (The triangle inequality.)
(3) ‖v‖ ≥ 0 with equality iff v = 0. (If this property is not met, it is called a seminorm.)

Given an inner product 〈, 〉, here is a norm : ‖v‖ =
√
〈v, 〉v. Here is a proof of the triangle inequality

: ‖v + w‖ =
√
‖v‖2 + ‖w‖2 + 〈v,w〉 + 〈w, v〉. At this juncture, we need the very very useful Cauchy-

Schwarz inequality |〈v,w〉| ≤ ‖v‖‖w‖ with equality holding iff v,w are linearly dependent. Given
the CS inequality, ‖v + w‖2 ≤ ‖v‖2 + ‖w‖2 + 2‖v‖‖w‖ = (‖v‖ + ‖w‖)2. So we just need to prove the CS
inequality. Here is the proof :
Let w , 0 without loss of generality. Consider f (t) = 〈v+ tw, v+ tw〉 = ‖v‖2 + t2

‖w‖2 + t(〈v,w〉+ 〈w, v〉).
Clearly, f (t) ≥ 0 with equality iff v = −tw, i.e., v,w are linearly dependent. The function f (t) is
minimised when f ′(t) = 0, i.e., when t = − 〈v,w〉+〈w,v〉2‖w‖2 . Substituting this value of t in f (t) ≥ 0, we get
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the CS inequality.

In particular, |
∫ 1

0 f ḡ|2 ≤
∫ 1

0 | f |
2
∫ 1

0 |g|
2. Here are examples and non-examples of norms.

(1) On R2, f (v) = |v1|
2 is not a norm. (It is a seminorm.)

(2) OnR2, ‖v‖ = |v1|+ |v2| is a norm (called the l1 norm). It does not arise out of an inner product.
Indeed, (1, 1) = 2 = |(1, 0)| + |(0, 1)|. So v,w are not linearly dependent and yet equality holds
in the triangle inequality.

When does a norm arise out of an inner product ? For starters, 〈v + w, v + w〉 + 〈v − w, v − w〉 =
2‖v‖2 + 2‖w‖2. This identity is called the polarisation identity. It is a necessary condition for a norm
to arise out of an inner product. It is also sufficient ! (Hint: Use a linear combination of things like
‖v + cw‖2 where c is some complex number.)

Given an inner product (sometimes also called a metric) 〈, 〉, and a basis ei, we see that 〈v,w〉 =∑
i viw̄ j〈ei, e j〉. Define the matrix Hi j = 〈ei, e j〉. Then 〈v,w〉 = vTHw̄ = w†H̄v. Note that, Hi j = H̄ ji, i.e.,

H† = H. A matrix satisfying this property is said to be Hermitian. (A matrix satisfying AT = A is said
to be symmetric.) Moreover, v†Hv ≥ 0 for all v with equality holding iff v = 0. A Hermitian matrix
satisfying this condition is called positive-definite. (If the equality condition is dropped, then it is
said to be positive-semidefinite.) Conversely, given a positive-definite matrix H and a basis ei, the
map 〈v,w〉 = vTHw̄ defines an inner product. Here are examples and non-examples of Hermitian
positive-definite matrices.

(1) Let A be an invertible matrix. Then H = A†A is Hermitian (clearly) and positive-definite.
Indeed, v†A†Av = ‖Av‖2standard ≥ 0 with equality iff Av = 0⇔ v = 0. If A is not invertible, it is
positive-semidefinite.
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