
NOTES FOR 31 OCT (THURSDAY)

1. Recap

(1) Examples of inner products. Defined norms and gave examples/non-examples.
(2) Discussed when norms arise out of inner products (polarisation identity). Indeed, for real

vector spaces, 〈v,w〉 := ‖v+w‖2−‖v−w‖2
4 is an inner product. It is easy to see that it is positive-

definite and Hermitian. The bilinearity can be proved using the polarisation identity. Indeed,
(a) 〈v,w1 +w2〉 = 〈v,w1〉+〈v,w2〉 : It is easy to prove that 〈v,w1 +w2〉 = 2〈v,w1〉−〈v,w1−w2〉.

Indeed,

4〈v,w1 + w2〉 = ‖v + w1 + w2‖
2
− ‖v − w1 − w2‖

2

= 2(‖v + w1‖
2 + ‖w2‖

2) − ‖v + w1 − w2‖
2
− 2(‖v − w1‖

2 + ‖w2‖
2) + ‖v − w1 + w2‖

2

= 8〈v,w1〉 − 4〈v,w1 − w2〉.(1.1)

Applying it to w2, the same expression equals 2〈v,w2〉 − 〈v,w2 − w1〉. Adding the
expressions, we get the result.

(b) 〈λv,w〉 = λ〈v,w〉 : Firstly, we prove that if ‖vi − v‖ → 0, then ‖vi‖ → ‖v‖. Indeed,
‖v‖ − ‖vi‖ ≤ ‖v − vi‖ and likewise ‖vi‖ − ‖v‖ ≤ ‖vi − v‖ = ‖v − vi‖. Therefore, if r ∈ R
and qi ∈ Q such that qi → r, then ‖v + qiw − (v + rw)‖ = |qi − r|‖w‖ → 0 and hence
‖v + qiw‖2 → ‖v + rw‖2. Hence, it is enough to prove this property for rational λ. Firstly,
it is trivial to see that 〈−v,w〉 = −〈v,w〉. Hence, it is enough to prove it for positive
rationals p

q . Suppose we prove it for natural numbers, then 〈q v
q ,w〉 = q〈v

q ,w〉. Hence,

〈
p
q v,w〉 =

p
q 〈v,w〉. To prove it for naturals, we can easily induct on λ.

(3) Looked at inner products in bases. Defined Hermitian and positive-definite matrices.

2. Inner products

(1) The matrix A =

[
−2

√
−1

−
√
−1 1

]
is not positive-definite. (Why?) More generally, if A =[

a b
b̄ c

]
is positive-definite (where a, c are real), then α = a|v1|

2 + c|v2|
2 + v̄1bv2 + v̄2b̄v1 ≥

0 ∀ v , 0. Thus, a, c > 0. Moreover, α = |
√

av1 + b
√

a
v2|

2 + |v2|
2(− |b|

2

a + c) ≥ 0 iff ac− b2 > 0. That
is, tr(A) > 0,det(A) > 0. Actually these two conditions are sufficient. (Why ?)

A related definition is this : An operator T : V → V is called Hermitian if 〈v,Tw〉 = 〈Tv,w〉. Let ei be
a basis and T be the matrix of T. Then, (Tw)†Hv = w†HTv. Thus, w†T†Hv = w†HTv. So, for instance,
if V = Cn and 〈, 〉 is the standard inner product, then T† = T as a matrix.
We have a beautiful theorem at this point (the uncertainty principle).

Theorem 2.1. Let V be a finite-dimensional complex vector space endowed with an inner product 〈, 〉. Let
A,B : V → V be Hermitian operators and let [A,B] = AB − BA : V → V be their commutator. For any
Hermitian operator T and a vector ψ ∈ V, define the expectation value Eψ(T) = (ψ,Tψ) and the standard
deviation ∆ψT =

√
E((T − E(T)I)2). Then, ∆ψA∆ψB ≥ 1

2 |E([A,B])|.
1
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This theorem is much more subtle in infinite-dimensions (and not true in general !) A particular
infinite-dimensional version (where A corresponds to multiplication by x and B to d

dx ) is called
Heisenberg’s uncertainty principle in quantum mechanics. The proof of Theorem 2.1 is as follows.

Proof. Note that if T is Hermitian, so is T − cI where c is a real number. Also note that, Eψ(T) =

(ψ,Tψ) = (Tψ,ψ) = (ψ,Tψ) = Eψ(T). So the expectation value is always real. Moreover, if T is
Hermitian, so is T2. (So the standard deviation is always real too.) Moreover, if A,B are Hermitian,
then

√
−1[A,B] is also Hermitian. (Why?)

〈∆A∆B〉2 = 〈ψ, (A − E(A)I)2ψ〉〈ψ, (B − E(B)I)2ψ〉 = 〈ψ(A − E(A)I), (A − E(A)I)ψ〉〈ψ(B − E(B)I), (B − E(B)I)ψ〉

≥ |〈(A − E(A)I)ψ, (B − E(B)I)ψ〉|2 = |〈 f , g〉|2 =

(
〈 f , g〉 + 〈g, f 〉

2

)2

+

(
〈 f , g〉 − 〈g, f 〉

2
√
−1

)2

≥

(
〈 f , g〉 − 〈g, f 〉

2
√
−1

)2
(2.1)

=
1
4
|E([A,B])|2(2.2)

after simplification. �

Here is an important definition : If v,w ∈ V, they are said to be orthogonal if 〈v,w〉 = 0. If S is a
set of vectors, S is said to be orthogonal if any pair of vectors is orthogonal. An orthonormal set S
is an orthogonal set where ‖v‖ = 1 for all v ∈ S.

Lemma 2.2. An orthogonal set of non-zero vectors is linearly independent.

Proof. Suppose v1, . . . , vk are orthogonal and
∑

i civi = 0. Then
∑

i〈civi, v j〉 = 0. Thus, c j‖v j‖
2 = 0 and

hence c j = 0 ∀ j. �

As a corollary of the proof (rather than the statement), if β is a linear combination of some
orthogonal vectors vi, thenβ =

∑
k
〈β,vk〉

‖vk‖
2 vk. Here are examples and non-examples. Also, the maximum

number of orthogonal vectors is the dimension of V.
(1) The standard bases inRn andCn with respect to the standard inner products are orthonormal.
(2) The vector (x, y) is orthogonal to (y,−x). (Rotation by 90 degrees.)
(3) The matrices (Epq)i j = δipδ jq form an orthonormal basis.
(4) The vectors x, x2 are not orthogonal under the L2 inner product. However,

√
2 cos(2πnx),

√
2 sin(2πnx)

are orthonormal.
The following fundamental result shows that the maximum number of orthogonal vectors is actually
equal to the dimension : Let V be a finite-dimensional inner product space, and let w1, . . . ,wn be a
linearly independent set. Then there exists an orthonormal basis v1, . . . , vn of the subspace spanned
by w1, . . . ,wn. (As a corollary, evert finite-dimensional inner product space has an orthonormal
basis.)

The proof is called “Gram-Schmidt orthogonalisation”. Let v1 = w1
‖w1‖

. Assume that we have

defined v1, . . . , vk. Then define ṽk+1 = wk+1−
∑k

i=1〈wk+1, vi〉vi and vk+1 =
ṽk+1
‖ṽk+1‖

. Note that 〈vk+1, v j〉 = 0
for all 1 ≤ j ≤ k. Thus, vi are orthonormal (and hence linearly independent). Also, wk+1 is a linear
combination of the vi. We are done by induction.

The point of orthonormal bases is that in such a basis, Hi j = 〈ei, e j〉 = δi j and hence 〈v,w〉 =

vTw̄ : exactly the Euclidean expression ! What does this mean for Hermitian positive-definite
matrices. For that, how does Hi j change if one changes the basis ? That is, Hnew,i j = 〈enew,i, enew, j〉 =
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〈(P−1)kieold,k, (P̄−1)l jeold,l〉 = P−1
ki P̄−1

l j Hold,kl, implying that PTHnewP̄ = Hold where ~vnew = P~vold. In other
words, given a Hermitian positive-definite matrix H, Gram-Schmidt produces an invertible matrix
P such that H = PTP̄ = Q†Q (where Q = P̄). Moreover, P,Q are actually upper triangular with
positive diagonal entries ! (Why ?) This decomposition is called the Cholesky decomposition. It is
unique ! Indeed, if H = Q†Q = L†L, then Q† = L†LQ−1, i.e., (L†)−1Q† = LQ−1, i.e., Lower = Upper.
Hence, both are diagonal. Hence L = DQ where D is diagonal (with positive diagonal entries). So
Q†Q = Q†D2Q and hence D = I because Q has positive diagonal entries (and is hence invertible).
Note that if there is an efficient way to compute the Cholesky decomposition, then we can solve
linear equations Hx = b quickly. Indeed, solve Q†y = b and then Qx = y quickly (they are triangular
matrices and hence back/forward substitution does the job).
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