NOTES FOR 31 OCT (THURSDAY)

1. Recap

(1) Examples of inner products. Defined norms and gave examples/non-examples.
(2) Discussed when norms arise out of inner products (polarisation identity). Indeed, for real vector spaces, $\langle v, w\rangle:=\frac{\|v+w\|^{2}-\|v-w\|^{2}}{4}$ is an inner product. It is easy to see that it is positivedefinite and Hermitian. The bilinearity can be proved using the polarisation identity. Indeed, (a) $\left\langle v, w_{1}+w_{2}\right\rangle=\left\langle v, w_{1}\right\rangle+\left\langle v, w_{2}\right\rangle$: It is easy to prove that $\left\langle v, w_{1}+w_{2}\right\rangle=2\left\langle v, w_{1}\right\rangle-\left\langle v, w_{1}-w_{2}\right\rangle$. Indeed,

$$
\begin{gathered}
4\left\langle v, w_{1}+w_{2}\right\rangle=\left\|v+w_{1}+w_{2}\right\|^{2}-\left\|v-w_{1}-w_{2}\right\|^{2} \\
=2\left(\left\|v+w_{1}\right\|^{2}+\left\|w_{2}\right\|^{2}\right)-\left\|v+w_{1}-w_{2}\right\|^{2}-2\left(\left\|v-w_{1}\right\|^{2}+\left\|w_{2}\right\|^{2}\right)+\left\|v-w_{1}+w_{2}\right\|^{2} \\
=8\left\langle v, w_{1}\right\rangle-4\left\langle v, w_{1}-w_{2}\right\rangle .
\end{gathered}
$$

Applying it to w_{2}, the same expression equals $2\left\langle v, w_{2}\right\rangle-\left\langle v, w_{2}-w_{1}\right\rangle$. Adding the expressions, we get the result.
(b) $\langle\lambda v, w\rangle=\lambda\langle v, w\rangle$: Firstly, we prove that if $\left\|v_{i}-v\right\| \rightarrow 0$, then $\left\|v_{i}\right\| \rightarrow\|v\|$. Indeed, $\|v\|-\left\|v_{i}\right\| \leq\left\|v-v_{i}\right\|$ and likewise $\left\|v_{i}\right\|-\|v\| \leq\left\|v_{i}-v\right\|=\left\|v-v_{i}\right\|$. Therefore, if $r \in \mathbb{R}$ and $q_{i} \in \mathbb{Q}$ such that $q_{i} \rightarrow r$, then $\left\|v+q_{i} w-(v+r w)\right\|=\left|q_{i}-r\right|\|w\| \rightarrow 0$ and hence $\left\|v+q_{i} w\right\|^{2} \rightarrow\|v+r w\|^{2}$. Hence, it is enough to prove this property for rational λ. Firstly, it is trivial to see that $\langle-v, w\rangle=-\langle v, w\rangle$. Hence, it is enough to prove it for positive rationals $\frac{p}{q}$. Suppose we prove it for natural numbers, then $\left\langle q \frac{v}{q}, w\right\rangle=q\left\langle\frac{v}{q}, w\right\rangle$. Hence, $\left\langle\frac{p}{q} v, w\right\rangle=\frac{p}{q}\langle v, w\rangle$. To prove it for naturals, we can easily induct on λ.
(3) Looked at inner products in bases. Defined Hermitian and positive-definite matrices.

2. Inner products

(1) The matrix $A=\left[\begin{array}{cc}-2 & \sqrt{-1} \\ -\sqrt{-1} & 1\end{array}\right]$ is not positive-definite. (Why?) More generally, if $A=$ $\left[\begin{array}{ll}a & b \\ \bar{b} & c\end{array}\right]$ is positive-definite (where a, c are real), then $\alpha=a\left|v_{1}\right|^{2}+c\left|v_{2}\right|^{2}+\bar{v}_{1} b v_{2}+\bar{v}_{2} \bar{b} v_{1} \geq$ $0 \forall v \neq 0$. Thus, $a, c>0$. Moreover, $\alpha=\left|\sqrt{a} v_{1}+\frac{b}{\sqrt{a}} v_{2}\right|^{2}+\left|v_{2}\right|^{2}\left(-\frac{|b|^{2}}{a}+c\right) \geq 0$ iff $a c-b^{2}>0$. That is, $\operatorname{tr}(A)>0, \operatorname{det}(A)>0$. Actually these two conditions are sufficient. (Why ?)
A related definition is this: An operator $T: V \rightarrow V$ is called Hermitian if $\langle v, T w\rangle=\langle T v, w\rangle$. Let e_{i} be a basis and T be the matrix of T. Then, $(T w)^{\dagger} H v=w^{\dagger} H T v$. Thus, $w^{\dagger} T^{\dagger} H v=w^{\dagger} H T v$. So, for instance, if $V=\mathbb{C}^{n}$ and \langle,$\rangle is the standard inner product, then T^{\dagger}=T$ as a matrix.
We have a beautiful theorem at this point (the uncertainty principle).
Theorem 2.1. Let V be a finite-dimensional complex vector space endowed with an inner product \langle,$\rangle . Let$ $A, B: V \rightarrow V$ be Hermitian operators and let $[A, B]=A B-B A: V \rightarrow V$ be their commutator. For any Hermitian operator T and a vector $\psi \in V$, define the expectation value $E_{\psi}(T)=(\psi, T \psi)$ and the standard deviation $\Delta_{\psi} T=\sqrt{E\left((T-E(T) I)^{2}\right)}$. Then, $\Delta_{\psi} A \Delta_{\psi} B \geq \frac{1}{2}|E([A, B])|$.

This theorem is much more subtle in infinite-dimensions (and not true in general !) A particular infinite-dimensional version (where A corresponds to multiplication by x and B to $\frac{d}{d x}$) is called Heisenberg's uncertainty principle in quantum mechanics. The proof of Theorem 2.1 is as follows.

Proof. Note that if T is Hermitian, so is $T-c I$ where c is a real number. Also note that, $\overline{E_{\psi}(T)}=$ $\overline{(\psi, T \psi)}=(T \psi, \psi)=(\psi, T \psi)=E_{\psi}(T)$. So the expectation value is always real. Moreover, if T is Hermitian, so is T^{2}. (So the standard deviation is always real too.) Moreover, if A, B are Hermitian, then $\sqrt{-1}[A, B]$ is also Hermitian. (Why?)
$\langle\Delta A \Delta B\rangle^{2}=\left\langle\psi,(A-E(A) I)^{2} \psi\right\rangle\left\langle\psi,(B-E(B) I)^{2} \psi\right\rangle=\langle\psi(A-E(A) I),(A-E(A) I) \psi\rangle\langle\psi(B-E(B) I),(B-E(B) I) \psi\rangle$

$$
\begin{align*}
& \begin{aligned}
\geq|\langle(A-E(A) I) \psi,(B-E(B) I) \psi\rangle|^{2}=|\langle f, g\rangle|^{2} & =\left(\frac{\langle f, g\rangle+\langle g, f\rangle}{2}\right)^{2}+\left(\frac{\langle f, g\rangle-\langle g, f\rangle}{2 \sqrt{-1}}\right)^{2} \geq\left(\frac{\langle f, g\rangle-\langle g, f\rangle}{2 \sqrt{-1}}\right)^{2} \\
& =\frac{1}{4}|E([A, B])|^{2}
\end{aligned}
\end{align*}
$$

after simplification.
Here is an important definition : If $v, w \in V$, they are said to be orthogonal if $\langle v, w\rangle=0$. If S is a set of vectors, S is said to be orthogonal if any pair of vectors is orthogonal. An orthonormal set S is an orthogonal set where $\|v\|=1$ for all $v \in S$.

Lemma 2.2. An orthogonal set of non-zero vectors is linearly independent.
Proof. Suppose v_{1}, \ldots, v_{k} are orthogonal and $\sum_{i} c_{i} v_{i}=0$. Then $\sum_{i}\left\langle c_{i} v_{i}, v_{j}\right\rangle=0$. Thus, $c_{j}\left\|v_{j}\right\|^{2}=0$ and hence $c_{j}=0 \forall j$.

As a corollary of the proof (rather than the statement), if β is a linear combination of some orthogonal vectors v_{i}, then $\beta=\sum_{k} \frac{\left\langle\beta, v_{k}\right\rangle}{\left\|v_{k}\right\|^{2}} v_{k}$. Here are examples and non-examples. Also, the maximum number of orthogonal vectors is the dimension of V.
(1) The standard bases in \mathbb{R}^{n} and \mathbb{C}^{n} with respect to the standard inner products are orthonormal.
(2) The vector (x, y) is orthogonal to $(y,-x)$. (Rotation by 90 degrees.)
(3) The matrices $\left(E^{p q}\right)_{i j}=\delta_{i p} \delta_{j q}$ form an orthonormal basis.
(4) The vectors x, x^{2} are not orthogonal under the L^{2} inner product. However, $\sqrt{2} \cos (2 \pi n x), \sqrt{2} \sin (2 \pi n x)$ are orthonormal.
The following fundamental result shows that the maximum number of orthogonal vectors is actually equal to the dimension : Let V be a finite-dimensional inner product space, and let w_{1}, \ldots, w_{n} be a linearly independent set. Then there exists an orthonormal basis v_{1}, \ldots, v_{n} of the subspace spanned by w_{1}, \ldots, w_{n}. (As a corollary, evert finite-dimensional inner product space has an orthonormal basis.)

The proof is called "Gram-Schmidt orthogonalisation". Let $v_{1}=\frac{w_{1}}{\left\|w_{1}\right\|}$. Assume that we have defined v_{1}, \ldots, v_{k}. Then define $\tilde{v}_{k+1}=w_{k+1}-\sum_{i=1}^{k}\left\langle w_{k+1}, v_{i}\right\rangle v_{i}$ and $v_{k+1}=\frac{\tilde{v}_{k+1}}{\left\|\tilde{v}_{k+1}\right\|}$. Note that $\left\langle v_{k+1}, v_{j}\right\rangle=0$ for all $1 \leq j \leq k$. Thus, v_{i} are orthonormal (and hence linearly independent). Also, w_{k+1} is a linear combination of the v_{i}. We are done by induction.

The point of orthonormal bases is that in such a basis, $H_{i j}=\left\langle e_{i}, e_{j}\right\rangle=\delta_{i j}$ and hence $\langle v, w\rangle=$ $v^{T} \bar{w}$: exactly the Euclidean expression! What does this mean for Hermitian positive-definite matrices. For that, how does $H_{i j}$ change if one changes the basis? That is, $H_{\text {new }, i j}=\left\langle e_{\text {new }, i}, e_{\text {new }, j}\right\rangle=$
$\left\langle\left(P^{-1}\right)_{k i} e_{o l d, k}\left(\bar{P}^{-1}\right)_{l j} e_{o l d, l}\right\rangle=P_{k i}^{-1} \bar{P}_{l j}^{-1} H_{\text {old }, k l}$, implying that $P^{T} H_{\text {new }} \bar{P}=H_{\text {old }}$ where $\vec{v}_{\text {new }}=P \vec{v}_{\text {old }}$. In other words, given a Hermitian positive-definite matrix H, Gram-Schmidt produces an invertible matrix P such that $H=P^{T} \bar{P}=Q^{\dagger} Q$ (where $Q=\bar{P}$). Moreover, P, Q are actually upper triangular with positive diagonal entries! (Why ?) This decomposition is called the Cholesky decomposition. It is unique! Indeed, if $H=Q^{\dagger} Q=L^{\dagger} L$, then $Q^{\dagger}=L^{\dagger} L Q^{-1}$, i.e., $\left(L^{\dagger}\right)^{-1} Q^{\dagger}=L Q^{-1}$, i.e., Lower $=$ Upper. Hence, both are diagonal. Hence $L=D Q$ where D is diagonal (with positive diagonal entries). So $Q^{\dagger} Q=Q^{\dagger} D^{2} Q$ and hence $D=I$ because Q has positive diagonal entries (and is hence invertible). Note that if there is an efficient way to compute the Cholesky decomposition, then we can solve linear equations $H x=b$ quickly. Indeed, solve $Q^{\dagger} y=b$ and then $Q x=y$ quickly (they are triangular matrices and hence back/forward substitution does the job).

