NOTES FOR 3 OCT (THURSDAY)

1. Recap

(1) Proved the existence of tensor products (where I intentionally omitted some details) and produced examples of tensors that are not pure tensors.
(2) Proved the existence and uniqueness of a signed volume function that is multilinear, alternating, and normalised. Defined the determinant of a matrix and proved that it is multiplicative. Also proved that A is invertible iff $\operatorname{det}(A) \neq 0$.

2. Determinants

Now we prove the second half of the theorem.
Theorem 2.1. $\operatorname{det}\left(A^{T}\right)=\operatorname{det}(A)$.
Proof. If A is not invertible, neither is A^{T}. Hence both determinants are 0 and equal. If A is invertible, then $\operatorname{det}(A)=\Pi_{i} \operatorname{det}\left(E_{i}^{T}\right)$. For elementary column operations, this property is easily true. Hence it is true for A.

As a consequence, all the properties above hold when "column" is replaced with "row". The proof of $\operatorname{det}(A)$ determining whether a matrix is invertible or not, actually gives us a way to calculate it. Indeed, bring A to its row echelon (or for that matter column echelon) form B. Then $B=P A$. Thus, $\operatorname{det}(B)=\operatorname{det}(P) \operatorname{det}(A)=(-1)^{i} \Pi_{j} c_{j} \operatorname{det}(A)$ where i is the number of row interchanges and c_{j} are constants that elementary row operations use to scale rows with, i.e., $R_{i_{j}} \rightarrow c_{j} R_{i_{j}}$. $\operatorname{det}(B)$ can be calculated easily. (It is 1 or 0 .) Here is an example.

$$
A=\left[\begin{array}{lll}
1 & 2 & 0 \tag{2.1}\\
0 & 1 & 3 \\
2 & 2 & 1
\end{array}\right]
$$

$R_{3} \rightarrow R_{3}-2 R_{1}, R_{3} \rightarrow R_{3}+2 R_{2}$ gives

$$
\operatorname{det}(A)=\left|\begin{array}{lll}
1 & 2 & 0 \tag{2.2}\\
0 & 1 & 3 \\
0 & 0 & 7
\end{array}\right|=7\left|\begin{array}{lll}
1 & 2 & 0 \\
0 & 1 & 3 \\
0 & 0 & 1
\end{array}\right|=7\left|\begin{array}{lll}
1 & 2 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right|=7\left|\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right|=7
$$

Now we prove a standard formula for the determinant: $\operatorname{det}(A)=\sum_{i} A_{1 i}(-1)^{i+1} M_{i}$ (called "expanding along the first row") where M_{i} is the determinant of the matrix obtained by removing the $1^{\text {st }}$ row and $i^{\text {th }}$ column of A. (A similar formula can be written using the other rows and columns.) Indeed, the RHS is clearly 1 for the identity matrix. Uniqueness of the determinant shows the desired formula given the following.
(1) Multilinearity: Let $C_{i} \rightarrow a C_{i}+b v_{i}$. Then $\operatorname{det}(\tilde{A})=\sum_{k \neq i} A_{1 i}(-1)^{i+1} \tilde{M}_{i}+\left(a A_{1 i}+b v_{i}\right)(-1)^{1+i} M_{i}$. By induction hypothesis we are done.
(2) Alternation: Let $C_{i}=C_{j}=v$. Then $\operatorname{det}(A)=\sum_{k \neq i, j} A_{1 i}(-1)^{k+1} M_{k}+v_{i}(-1)^{i+1} M_{i}+v_{i}(-1)^{j+1} M_{j}$. The first term is zero by induction hypothesis. The second term is zero because $M_{i}=$ $-(-1)^{j-i} M_{j}$.

Let us return to equation 2.2 the above example. Expanding along the first column yields $\operatorname{det}(A)=$ $\left|\begin{array}{ll}1 & 3 \\ 0 & 7\end{array}\right|=7-0=7$. This leads us to an important little observation (and a definition) : An $n \times n$ matrix A is said to be upper triangular (and likewise lower triangular) if $A_{i j}=0$ whenever $i>j$. (It is strictly upper triangular if the diagonal entries are zero as well.) The determinant of an upper triangular matrix equals the product of its diagonal entries: Indeed, expanding along the first column, $\operatorname{det}(A)=A_{11} M_{11}$ and M_{11} is the determinant of another upper triangular matrix. By induction on n we are done.

Using determinants we can actually find a formula for the inverse of a matrix. Define the Adjugate matrix $\operatorname{Adj}(A)_{i j}=(-1)^{i+j} M_{j i}$. Let us compute the following.

$$
\begin{gather*}
(\operatorname{AAdj}(A))_{i i}=\sum_{k} A_{i k}(-1)^{i+k} M_{i k}=\operatorname{det}(A) \\
\text { when } i \neq j(\operatorname{AAdj}(A))_{i j}=\sum_{k} A_{i k}(-1)^{i+k} M_{j k} \tag{2.3}
\end{gather*}
$$

To evaluate the second expression, take a new matrix N whose $i^{\text {th }}$ column consists of the $j^{\text {th }}$ column of A and everything else is the same as A. Then $\operatorname{det}(N)=0$. Then $\sum_{k} \operatorname{Adj}(N)_{i k} N_{k i}=$ $\sum_{k}(-1)^{i+k} \min (N)_{k i} N_{k i}=\operatorname{det}(N)=0$. Note that $\min (N)_{k i}=\min (A)_{k i}$. Also, $N_{k i}=A_{k j}$. Hence the second expression above is 0 . Thus, $\operatorname{AAdj}(A)=\operatorname{det}(A) I$. The above expression gives a formula for the inverse $A^{-1}=\frac{\operatorname{Adj}(A)}{\operatorname{det}(A)}$. It also allows us to derive Cramer's rule: To solve $A X=Y$ when $\operatorname{det}(A) \neq 0, X=A^{-1} Y=\frac{\operatorname{Adj}(A) Y}{\operatorname{det}(A)}$. Now $(\operatorname{Adj}(A) Y)_{i}=\sum_{j}(\operatorname{Adj}(A))_{i j} Y_{j}=\sum_{j}(-1)^{i+j} M_{j i} Y_{j}$ which is simply the determinant of the matrix obtained by replacing the $i^{\text {th }}$ column of A with Y.

Determinants seem to be a useful tool for $n \times n$ matrices. What about $m \times n$ matrices ? Even for $n \times n$ matrices, if $\operatorname{det}(A)=0$, are we completely in the dark? Actually, no. Let's take an example : $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 1 & 0 \\ 2 & 0 & 6\end{array}\right]$. The determinant of A is clearly 0 . The column echelon form is easily seen to be $B=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & -4 & 0\end{array}\right]$. So the rank is 2. In the original matrix, the minor $M_{11}=1 \neq 0$. So it seems that the rank is equal to the dimension of the largest non-zero minor. In fact, this observation is correct.

Theorem 2.2. Let $A \in \operatorname{Mat}_{m \times n}(\mathbb{F})$. Let k be the largest integer so that there exists a $k \times k$ submatrix of A whose determinant is $\neq 0$. The rank of A equals k.

Proof. Row and column operations do not affect the rank. We prove that they do not affect k either. Given this claim, we are done. Indeed, bringing A simultaneously to the row and column echelon form, we see the result. We prove only for elementary row operations (taking transpose clearly does not affect either quantity). Let M be a $l \times l$ minor of A and M^{\prime} be the same $l \times l$ minor of A^{\prime}.
(1) $R_{i} \Leftrightarrow R_{j}$: It is clear that $\operatorname{det}(M)= \pm \operatorname{det}\left(M^{\prime}\right)$ if either i, j are both in M or neither is in M. If only i is in M, then choose M^{\prime} to have the $j^{\text {th }}$ row of A^{\prime} instead of the $i^{\text {th }}$ row (but in the correct position). So if A has an $l \times l$ nonzero minor, then so does A^{\prime} (and vice-versa). Hence k is unchanged under this operation.
(2) $R_{i} \rightarrow c R_{i}$ where $c \neq 0$: As above, $\operatorname{det}\left(M^{\prime}\right)$ is either $c \operatorname{det}(M)$ or $\operatorname{det}(M)$ (depending on whether entries from R_{i} are in M or not). Hence k is unchanged.
(3) $R_{i} \rightarrow R_{i}+c R_{j}$: If i, j are both present in M or are both absent, $\operatorname{det}(M)=\operatorname{det}\left(M^{\prime}\right)$. If only j is present, even then this is true. If only i is present, then $\operatorname{det}\left(M^{\prime}\right)$ fails to be non-zero iff the determinant obtained by replacing R_{i} in M^{\prime} with R_{j} is non-zero. So take a new minor of A^{\prime} where instead of R_{i} we have R_{j}. So if A has an $l \times l$ nonzero minor, then so does A^{\prime} (and vice-versa because this operation is reversible). Hence k is unchanged under this operation.

Lastly, if $B=P A P^{-1}$, then $\operatorname{det}(B)=\operatorname{det}(A)$, i.e., given a linear transformation $T: V \rightarrow V$ where V is a finite-dimensional vector space, $\operatorname{det}(T)$ defined as $\operatorname{det}\left(A_{\mathcal{B}}\right)$ where \mathcal{B} is any ordered basis of V is well-defined.

3. Eigenvalues and Eigenvectors

Consider these two problems :
(1) Given a matrix R that represents a rotation in \mathbb{R}^{3}, find its axis of rotation.
(2) Solve $\frac{d x}{d t}=2 x+3 y, \frac{d y}{d t}=3 x+2 y$.
(3) The chance of it raining tomorrow if it rains today is 0.7 and if it does not rain, it is 0.5 . Given that it rained today, what is the chance of it raining after many days ?

