
NOTES FOR 3 OCT (THURSDAY)

1. Recap

(1) Proved the existence of tensor products (where I intentionally omitted some details) and
produced examples of tensors that are not pure tensors.

(2) Proved the existence and uniqueness of a signed volume function that is multilinear, alternat-
ing, and normalised. Defined the determinant of a matrix and proved that it is multiplicative.
Also proved that A is invertible iff det(A) , 0.

2. Determinants

Now we prove the second half of the theorem.

Theorem 2.1. det(AT) = det(A).

Proof. If A is not invertible, neither is AT. Hence both determinants are 0 and equal. If A is invertible,
then det(A) = Πi det(ET

i ). For elementary column operations, this property is easily true. Hence it is
true for A. �

As a consequence, all the properties above hold when “column” is replaced with “row”. The
proof of det(A) determining whether a matrix is invertible or not, actually gives us a way to calculate
it. Indeed, bring A to its row echelon (or for that matter column echelon) form B. Then B = PA.
Thus, det(B) = det(P) det(A) = (−1)iΠ jc j det(A) where i is the number of row interchanges and c j
are constants that elementary row operations use to scale rows with, i.e., Ri j → c jRi j . det(B) can be
calculated easily. (It is 1 or 0.) Here is an example.

A =

 1 2 0
0 1 3
2 2 1

(2.1)

R3 → R3 − 2R1, R3 → R3 + 2R2 gives

det(A) =

∣∣∣∣∣∣∣∣
1 2 0
0 1 3
0 0 7

∣∣∣∣∣∣∣∣ = 7

∣∣∣∣∣∣∣∣
1 2 0
0 1 3
0 0 1

∣∣∣∣∣∣∣∣ = 7

∣∣∣∣∣∣∣∣
1 2 0
0 1 0
0 0 1

∣∣∣∣∣∣∣∣ = 7

∣∣∣∣∣∣∣∣
1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣∣∣ = 7(2.2)

Now we prove a standard formula for the determinant : det(A) =
∑

i A1i(−1)i+1Mi (called “expanding
along the first row”) where Mi is the determinant of the matrix obtained by removing the 1st row and
ith column of A. (A similar formula can be written using the other rows and columns.) Indeed, the
RHS is clearly 1 for the identity matrix. Uniqueness of the determinant shows the desired formula
given the following.

(1) Multilinearity : Let Ci → aCi + bvi. Then det(Ã) =
∑

k,i A1i(−1)i+1M̃i + (aA1i + bvi)(−1)1+iMi.
By induction hypothesis we are done.

(2) Alternation : Let Ci = C j = v. Then det(A) =
∑

k,i, j A1i(−1)k+1Mk + vi(−1)i+1Mi + vi(−1) j+1M j.
The first term is zero by induction hypothesis. The second term is zero because Mi =
−(−1) j−iM j.
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Let us return to equation 2.2 the above example. Expanding along the first column yields det(A) =∣∣∣∣∣ 1 3
0 7

∣∣∣∣∣ = 7 − 0 = 7. This leads us to an important little observation (and a definition) : An n × n

matrix A is said to be upper triangular (and likewise lower triangular) if Ai j = 0 whenever i > j.
(It is strictly upper triangular if the diagonal entries are zero as well.) The determinant of an
upper triangular matrix equals the product of its diagonal entries : Indeed, expanding along the
first column, det(A) = A11M11 and M11 is the determinant of another upper triangular matrix. By
induction on n we are done.

Using determinants we can actually find a formula for the inverse of a matrix. Define the Adjugate
matrix Adj(A)i j = (−1)i+ jM ji. Let us compute the following.

(AAdj(A))ii =
∑

k

Aik(−1)i+kMik = det(A)

when i , j (AAdj(A))i j =
∑

k

Aik(−1)i+kM jk(2.3)

To evaluate the second expression, take a new matrix N whose ith column consists of the jth

column of A and everything else is the same as A. Then det(N) = 0. Then
∑

k Adj(N)ikNki =∑
k(−1)i+kmin(N)kiNki = det(N) = 0. Note that min(N)ki = min(A)ki. Also, Nki = Akj. Hence the

second expression above is 0. Thus, AAdj(A) = det(A)I. The above expression gives a formula
for the inverse A−1 =

Adj(A)
det(A) . It also allows us to derive Cramer’s rule : To solve AX = Y when

det(A) , 0, X = A−1Y =
Adj(A)Y
det(A) . Now (Adj(A)Y)i =

∑
j(Adj(A))i jY j =

∑
j(−1)i+ jM jiY j which is simply

the determinant of the matrix obtained by replacing the ith column of A with Y.
Determinants seem to be a useful tool for n × n matrices. What about m × n matrices ? Even for

n × n matrices, if det(A) = 0, are we completely in the dark ? Actually, no. Let’s take an example :

A =

 1 2 3
0 1 0
2 0 6

. The determinant of A is clearly 0. The column echelon form is easily seen to be

B =

 1 0 0
0 1 0
2 −4 0

. So the rank is 2. In the original matrix, the minor M11 = 1 , 0. So it seems that

the rank is equal to the dimension of the largest non-zero minor. In fact, this observation is correct.

Theorem 2.2. Let A ∈ Matm×n(F). Let k be the largest integer so that there exists a k × k submatrix of A
whose determinant is , 0. The rank of A equals k.

Proof. Row and column operations do not affect the rank. We prove that they do not affect k either.
Given this claim, we are done. Indeed, bringing A simultaneously to the row and column echelon
form, we see the result. We prove only for elementary row operations (taking transpose clearly does
not affect either quantity). Let M be a l × l minor of A and M′ be the same l × l minor of A′.

(1) Ri ⇔ R j : It is clear that det(M) = ±det(M′) if either i, j are both in M or neither is in M.
If only i is in M, then choose M′ to have the jth row of A′ instead of the ith row (but in the
correct position). So if A has an l × l nonzero minor, then so does A′ (and vice-versa). Hence
k is unchanged under this operation.

(2) Ri → cRi where c , 0 : As above, det(M′) is either c det(M) or det(M) (depending on whether
entries from Ri are in M or not). Hence k is unchanged.



NOTES FOR 3 OCT (THURSDAY) 3

(3) Ri → Ri + cR j : If i, j are both present in M or are both absent, det(M) = det(M′). If only j is
present, even then this is true. If only i is present, then det(M′) fails to be non-zero iff the
determinant obtained by replacing Ri in M′ with R j is non-zero. So take a new minor of A′

where instead of Ri we have R j. So if A has an l × l nonzero minor, then so does A′ (and
vice-versa because this operation is reversible). Hence k is unchanged under this operation.

�

Lastly, if B = PAP−1, then det(B) = det(A), i.e., given a linear transformation T : V → V where V
is a finite-dimensional vector space, det(T) defined as det(AB) where B is any ordered basis of V is
well-defined.

3. Eigenvalues and Eigenvectors

Consider these two problems :
(1) Given a matrix R that represents a rotation in R3, find its axis of rotation.
(2) Solve dx

dt = 2x + 3y, dy
dt = 3x + 2y.

(3) The chance of it raining tomorrow if it rains today is 0.7 and if it does not rain, it is 0.5. Given
that it rained today, what is the chance of it raining after many days ?
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