NOTES FOR 3 SEPT (TUESDAY)

1. Recap

- (1) Gave several examples and non-examples of linear transformations.
- (2) Proved that an abstract polynomial is determined by its polynomial function uniquely over fields of characteristic zero. Also proved that a polynomial over ℝ, ℂ vanishes everywhere if it vanishes in a small open set.
- (3) Proved nullity-rank and that row rank equals column rank (using nullity-rank).
- (4) Defined direct sums and products.

2. Linear transformations

Note that the proof of nullity-rank shows that there is an isomorphism $Nullity \oplus Range \to V$. However, the isomorphism uses a specific basis. (It is as silly as saying any finite-dimensional vector space is isomorphic to \mathbb{F}^n .) Is there a basis-independent way of thinking about the nullity, range, and V? The answer is through the definition of a quotient vector space. The point is that the extended basis f_1, \ldots, f_{n-r} can be changed to $\tilde{f_i} = f_i + \sum_j c_{ij}e_j$ without changing the fact that it is a basis. Geometrically, consider the projection map $\pi_1 : \mathbb{R}^2 \to \mathbb{R}$ given by $\pi_1(x, y) = x$. It is a linear map. The kernel is spanned by the y-axis. To get a basis for the range, the most obvious choice (because we know how to measure angles between vectors) is $\pi_1(\hat{i})$ but we can make it $\pi_1(\hat{i} + a\hat{j}) = \pi_1(\hat{i})$. In some sense, we should consider all the vectors of the type $\hat{i} + a\hat{j}$ as the "same" in order to avoid a specific choice. We can do this neatly using an equivalence relation :

Def : Let $W \subset V$ be a subspace of V. The quotient space V/W as a set is the collection of equivalence classes under the relation $v_1 \sim v_2$ if $v_1 = v_2 + w$ where $w \in W$. This set can be given a vector space structure as $a[v_1] + b[v_2] := [av_1 + bv_2]$. Indeed this operation is well-defined (why ?) It also satisfies all the vector space axioms (why ?)

Here are examples.

- (1) $W = \mathbb{R}$ is the y-axis in $V = \mathbb{R}^2$. Then V/W is the set of vectors spanned by $[\hat{i}]$ (why?) and hence $V/W \equiv \mathbb{R}$.
- (2) If $W = \{\vec{0}\}$ then $V/W \equiv V$. Likewise, if W = V, then $V/W = \{\vec{0}\}$.
- (3) If $T : V \to W$ where V, W are not necessarily finite-dimensional, then $V/ker(T) \equiv Ran(V)$. Indeed, define $[v] \to T(v)$. Why is this well-defined and an isomorphism ? (Notice that no mention of a basis is there in this definition !)
- (4) If V, W are finite dimensional, then V/W is finite-dimensional and dim(V/W) = dim(V) dim(W). Indeed, let w₁..., w_k be a basis of W and let w₁,..., w_k, v₁,..., v_{n-k} be a basis for V. Then [v_i] form a basis for the quotient. (Why?) This gives another proof of the nullity-rank theorem.

The collection of all linear transformations $T : V \to W$ is denoted as L(V, W). This set has a rich structure on it :

(1) L(V, W) is a vector space : Indeed, define the map $T + U : V \to W$ as (T + U)(v) = T(v) + U(v). Clearly $T + U \in L(V, W)$. Likewise, so is $aT : V \to W$ defined as (aT)(v) = aT(v). It is easy to verify that the axioms of a vector space are satisfied (with the zero map being the 0 vector).

NOTES FOR 3 SEPT (TUESDAY)

- (2) If *V*, *W* are *n*, *m* dimensional respectively, then L(V, W) is finite-dimensional of dimension mn: Indeed, Let $e_1, \ldots, e_n, f_1, \ldots, f_m$ be bases of *V* and *W* respectively. Define the *mn* linear transformations $T_{ij}: V \to W$ as $T_{ij}(e_k) = \delta_{ik}f_j$. I claim that T_{ij} form a basis for L(V, W). Indeed,
 - (a) They are linearly independent : $\sum_{i,j} c_{ij} T_{ij} = 0$ means that $\sum_{i,j} c_{ij} T_{ij}(e_k) = 0 \forall 1 \le k \le n$. Thus, $\sum_j c_{kj} f_j = 0$. Since f_j are linearly independent, $c_{kj} = 0 \forall k, j$.
 - (b) They span L(V, W): Indeed, $T(v) = \sum_j v_j T(e_j) = \sum_{i,j} A_{ij} v_j f_i = \sum_{i,j} A_{ij} T_{ji}(v)$. Thus, $T = \sum_{i,j} A_{ij} T_{ji}$.
- (3) Let *V*, *W*, *Z* be vector spaces over a field \mathbb{F} . If $T : V \to W$ and $U : W \to Z$ are linear maps, then $U \circ T : V \to Z$ is a linear map : Indeed, $U \circ T(cv_1+v_2) = U(cT(v_1)+v_2) = cU \circ T(v_1)+U \circ T(v_2)$. A linear map $T : V \to V$ is sometimes called an operator on *V*. The notation T^n is well-defined for a composition of *T* with itself *n* times. $T^0 = I$ by definition.

Here are some examples to illustrate the $UT \neq TU$ in general.

- (1) Let L_1, L_2 be the rotations (anticlockwise) by 90 degrees about the *z*-axis and the *y*-axis respectively. Then $L_2(L_1(\hat{i})) = L_2(\hat{j}) = \hat{j}$ whereas $L_1(L_2(\hat{i})) = L_1(-\hat{k}) = -\hat{k} \neq \hat{j}$.
- (2) Let *V* be the vector space of polynomials functions $\mathbb{R} \to \mathbb{R}$, $D : V \to V$ be the derivative and $M_x : V \to V$ be multiplication by *x*. Then $(L_x D DL_x)(p(x)) = xp' (xp)' = -p$, i.e., $DL_x L_x D = Id$.