
NOTES FOR 3 SEPT (TUESDAY)

1. Recap

(1) Gave several examples and non-examples of linear transformations.
(2) Proved that an abstract polynomial is determined by its polynomial function uniquely over

fields of characteristic zero. Also proved that a polynomial over R,C vanishes everywhere
if it vanishes in a small open set.

(3) Proved nullity-rank and that row rank equals column rank (using nullity-rank).
(4) Defined direct sums and products.

2. Linear transformations

Note that the proof of nullity-rank shows that there is an isomorphism Nullity ⊕ Range → V.
However, the isomorphism uses a specific basis. (It is as silly as saying any finite-dimensional
vector space is isomorphic to Fn.) Is there a basis-independent way of thinking about the nullity,
range, and V ? The answer is through the definition of a quotient vector space. The point is that
the extended basis f1, . . . , fn−r can be changed to f̃i = fi +

∑
j ci je j without changing the fact that it

is a basis. Geometrically, consider the projection map π1 : R2
→ R given by π1(x, y) = x. It is a

linear map. The kernel is spanned by the y-axis. To get a basis for the range, the most obvious
choice (because we know how to measure angles between vectors) is π1(î) but we can make it
π1(î + a ĵ) = π1(î). In some sense, we should consider all the vectors of the type î + a ĵ as the “same”
in order to avoid a specific choice. We can do this neatly using an equivalence relation :
Def : Let W ⊂ V be a subspace of V. The quotient space V/W as a set is the collection of equivalence
classes under the relation v1 ∼ v2 if v1 = v2 + w where w ∈ W. This set can be given a vector space
structure as a[v1]+ b[v2] := [av1 + bv2]. Indeed this operation is well-defined (why ?) It also satisfies
all the vector space axioms (why ?)
Here are examples.

(1) W = R is the y-axis in V = R2. Then V/W is the set of vectors spanned by [î] (why?) and
hence V/W ≡ R.

(2) If W = {~0} then V/W ≡ V. Likewise, if W = V, then V/W = {~0}.
(3) If T : V → W where V,W are not necessarily finite-dimensional, then V/ker(T) ≡ Ran(V).

Indeed, define [v] → T(v). Why is this well-defined and an isomorphism ? (Notice that no
mention of a basis is there in this definition !)

(4) If V,W are finite dimensional, then V/W is finite-dimensional and dim(V/W) = dim(V) −
dim(W). Indeed, let w1 . . . ,wk be a basis of W and let w1, . . . ,wk, v1, . . . , vn−k be a basis for V.
Then [vi] form a basis for the quotient. (Why?) This gives another proof of the nullity-rank
theorem.

The collection of all linear transformations T : V → W is denoted as L(V,W). This set has a rich
structure on it :

(1) L(V,W) is a vector space : Indeed, define the map T +U : V →W as (T +U)(v) = T(v)+U(v).
Clearly T + U ∈ L(V,W). Likewise, so is aT : V → W defined as (aT)(v) = aT(v). It is easy to
verify that the axioms of a vector space are satisfied (with the zero map being the 0 vector).
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(2) If V,W are n,m dimensional respectively, then L(V,W) is finite-dimensional of dimension
mn : Indeed, Let e1, . . . , en, f1, . . . , fm be bases of V and W respectively. Define the mn linear
transformations Ti j : V →W as Ti j(ek) = δik f j. I claim that Ti j form a basis for L(V,W). Indeed,
(a) They are linearly independent :

∑
i, j ci jTi j = 0 means that

∑
i, j ci jTi j(ek) = 0 ∀ 1 ≤ k ≤ n.

Thus,
∑

j ckj f j = 0. Since f j are linearly independent, ckj = 0 ∀k, j.
(b) They span L(V,W) : Indeed, T(v) =

∑
j v jT(e j) =

∑
i, j Ai jv j fi =

∑
i, j Ai jT ji(v). Thus,

T =
∑

i, j Ai jT ji.
(3) Let V,W,Z be vector spaces over a field F. If T : V →W and U : W → Z are linear maps, then

U◦T : V → Z is a linear map : Indeed, U◦T(cv1+v2) = U(cT(v1)+v2) = cU◦T(v1)+U◦T(v2). A
linear map T : V → V is sometimes called an operator on V. The notation Tn is well-defined
for a composition of T with itself n times. T0 = I by definition.

Here are some examples to illustrate the UT , TU in general.
(1) Let L1,L2 be the rotations (anticlockwise) by 90 degrees about the z-axis and the y-axis

respectively. Then L2(L1(î)) = L2( ĵ) = ĵ whereas L1(L2(î)) = L1(−k̂) = −k̂ , ĵ.
(2) Let V be the vector space of polynomials functions R → R, D : V → V be the derivative

and Mx : V → V be multiplication by x. Then (LxD − DLx)(p(x)) = xp′ − (xp)′ = −p, i.e.,
DLx − LxD = Id.
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