
NOTES FOR 5 OCT (TUESDAY)

1. Recap

(1) Defined Hermitian operators and proved the uncertainty principle.
(2) Defined orthonormal bases and did Grahm-Schmidt. Used it to prove the Cholesky decom-

position.

2. Orthogonal projections

The Gram-Schmidt procedure is a special case of an operation called the orthogonal projection.
To develop this concept, firstly, here is a natural definition : Let v ∈ V and let W ⊂ V be a subspace.
A vector w ∈W is said to be a best approximation of v from W if it minimises ‖w − v‖. It is not hard
to have a geometric picture of the best approximation. However, in infinite-dimensions it gets a
little tricky. Nonetheless, here is a general theorem.

Theorem 2.1. Let W be a subspace of an inner product space V, and let v ∈ V.
(1) A vector w ∈W is a best approximation of v from W iff v − w is orthogonal to every vector in W.
(2) If a best approximation exists, it is unique.
(3) If W is finite-dimensional, and e1, . . . , en is any orthonormal basis for W, then w =

∑
i〈v, ei〉ei is the

best approximation of v from W.

Proof. (1) If w is a best approximation, then given a vector α ∈W, the function f (t) = ‖v−w+ tα‖2

achieves a local minimum at t = 0. So f ′(0) = 0 = 2Re(〈v − w, α〉). Likewise, replacing α
by
√
−1α, we see that 0 = 2Im(〈v − w, α〉). Thus, v − w is orthogonal to every such vector.

Conversely, if v − w is orthogonal to every vector and if w′ ∈ W, then w′ − w ∈ W and hence
it is easy to see that ‖v − w′‖2 = ‖v − w‖2 + ‖w′ − w‖2 ≥ ‖v − w‖2.

(2) If w,w′ are two best approximations, then by the previous part, w = w′.
(3) By a direct calculation, v − w is orthogonal to ei for all i and hence orthogonal to all vectors

in W. We are done.
�

Here is a related definition : If S ⊂ V is a subset, the orthogonal complement S⊥ is the set of
vectors in V that are orthogonal to S. Note that it is always a subspace. (Why?) Also, {0}⊥ = V and
V⊥ = {0}. When the best approximation w ∈W to v exists, then w is called the orthogonal projection
of v on W. If every vector has an orthogonal projection to W, then the map ΠW : V →W taking v to
its orthogonal projection is called the orthogonal projection map to W.
Firstly, ΠW is a linear map : Indeed, 〈au+bv−(aΠWu+bΠWv),w〉 = a〈u−ΠWu,w〉+b〈v−ΠWv,w〉 = 0.
Hence, ΠW(au + bv) = aΠWu + bΠWv. Secondly, ΠW : W →W is the identity. Thirdly, Π2

W = I ◦ΠW =
ΠW. (So if ΠW exists, it is “idempotent”.) Fourthly, if ΠW exists, then I −ΠW is the orthogonal pro-
jection to W⊥. Indeed, 〈v −ΠWv,w〉 = 0 for all w ∈W and hence it is a linear map to W⊥. Moreover,
〈v − (v −ΠWv),w′〉 = 〈ΠWv,w′〉 = 0 for all w′ ∈ W⊥. Hence, v −ΠWv is the best approximation to v
from W⊥. So, ΠW⊥ = I−ΠW. Fifthly, if ΠW exists, then ΠWv = 0 iff 〈v,w〉 = 0 for all w ∈W and hence
iff v ∈ W⊥. Lastly, if ΠW exists, then W ⊕W⊥ ≡ V. Indeed, define T(w,w′) = w + w′. If T(w,w′) = 0,
then w = −w′ ∈W∩W⊥, i.e., 〈w,w〉 = 0 = 〈w′,w′〉. Thus w = w′ = 0. Moreover, v = ΠWv + (I−ΠW)v.
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Hence we are done. Note, that if W is finite-dimensional, ΠW necessarily exists. Likewise, if ΠW
exists, then (W⊥)⊥ = W. This is because W⊥ = ker(ΠW) and (W⊥)⊥ = ker(ΠW⊥) = ker(I −ΠW) which
consists of v such that v = ΠWv, i.e., v ∈W.

So the Grahm-Schmidt process is : Let Πk be the orthogonal projection onto the orthogonal com-
plement of w1, . . . ,wk−1, and let Π1 = 1

‖w1‖
I. Then, defining vk =

Πkwk
‖Πkwk‖

is the Gram-Schmidt process.
Note that the observations imply that if e1, . . . , ek is an orthonormal set of vectors in V, then∑

k |〈v, ek〉|
2
≤ ‖v‖2. Indeed, v = (I − Π)v + Πv where Πv is the orthogonal projection to the sub-

space spanned by ei. So ‖Πv‖2 ≤ ‖v‖2 with equality iff v is in the subspace. As a consequence,∑n
k=−n |

∫ 1
0 f (t)e−2π

√
−1ktdt|2 ≤

∫ 1
0 | f (t)|2dt. This inequality is called Bessel’s inequality.

There is an interesting way to write an orthogonal projection onto a unit vector w in Cn with the
usual inner product. Indeed, Πwv = 〈v,w〉w =

∑
i, j v jw̄ jwiei. This motivates the following definition

: Given two vectors u, v ∈ Cn, the matrix Ai j = u jv̄i is called the outer product of u and v and the
corresponding linear map is written (usually by physicisits) as |u〉〈v|. Note that (Πwv)i = (|w〉〈w|v)i.
So if w1, . . . ,wk is an orthonormal basis for a subspace W, then ΠW =

∑
i |wi〉〈wi|.

3. Linear functionals and adjoints

Given a linear map T : V →W, there exists a natural map T∗ : W∗ → V∗ given by T∗(λ)(v) = λ(Tv).
This map is called the adjoint map. If V is an inner product space, there is a more interesting
formulation of this adjoint map. Indeed, firstly, we have a special case of the so-called “Little Riesz
representation theorem”.

Lemma 3.1. If V is a finite-dimensional inner product space, then the map V → V∗ given by L(v) = 〈, v〉 is
a 1 − 1 onto map that is “antilinear”, i.e., L(av + bw) = āL(v) + b̄L(w).

Proof. Firstly, L(v)(w) = 〈w, v〉 is linear in w and hence L(v) ∈ V∗. Secondly, it is clearly antilinear in v.
Thirdly, if L(v) = 0, then 〈w, v〉 = 0 ∀ w. Thus, ‖v‖2 = 0 and v = 0. So it is 1− 1. If ei is an orthonormal
basis, and λ ∈ V∗, then λ(v) =

∑
i viλ(ei) = 〈v,

∑
i λ(ei)ei〉 = L(

∑
i λ(ei)ei). So it is onto. �

So V and V∗ can be “identified” in a sense for finite-dimensional vector spaces. This means
that T∗ : V∗ → V∗ induces a map (also, confusingly called the adjoint of T) T : V → V for finite-
dimensional vector spaces as follows : There exists a unique linear map T∗ : V → V satisfying
〈Tv,w〉 = 〈v,T∗w〉. Indeed, consider the linear functional λ(v) = 〈Tv,w〉. The above theorem
implies that there is a unique vector w̃w ∈ V such that λ(v) = 〈v, w̃w〉. Noticing that 〈v, aw̃x + bw̃y〉 =

ā〈v, w̃x〉+ b̄〈v, w̃y〉 = ā〈Tv, x〉+ b̄〈Tv, y〉 = 〈Tv, ax+by〉 and that w̃ax+by is unique, it is equal to aw̃x +bw̃y.
Thus, T∗w = w̃w is the unique linear map satisfying the desired relation.
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