NOTES FOR 5 OCT (TUESDAY)

1. Recar

(1) Defined Hermitian operators and proved the uncertainty principle.
(2) Defined orthonormal bases and did Grahm-Schmidt. Used it to prove the Cholesky decom-
position.

2. ORTHOGONAL PROJECTIONS

The Gram-Schmidt procedure is a special case of an operation called the orthogonal projection.
To develop this concept, firstly, here is a natural definition : Let v € V and let W C V be a subspace.
A vector w € W is said to be a best approximation of v from W if it minimises |[w — v||. It is not hard
to have a geometric picture of the best approximation. However, in infinite-dimensions it gets a
little tricky. Nonetheless, here is a general theorem.

Theorem 2.1. Let W be a subspace of an inner product space V, and let v € V.

(1) A vector w € W is a best approximation of v from W iff v — w is orthogonal to every vector in W.

(2) If a best approximation exists, it is unique.

(3) If W is finite-dimensional, and ey, . . ., e, is any orthonormal basis for W, then w = Y (v, e;)e; is the
best approximation of v from W.

Proof. (1) If wis a best approximation, then given a vector & € W, the function f(t) = |lv—w + ta||?
achieves a local minimum at t = 0. So f’(0) = 0 = 2Re({v — w, a)). Likewise, replacing «
by V=1a, we see that 0 = 2Im({v — w, a)). Thus, v — w is orthogonal to every such vector.
Conversely, if v — w is orthogonal to every vector and if w’ € W, then w’ — w € W and hence
it is easy to see that |[v — w'|* = [lv — w|]> + [|[w’ — w|]?> > |[v — w||*.

(2) If w,w" are two best approximations, then by the previous part, w = w’.
(3) By a direct calculation, v — w is orthogonal to e; for all i and hence orthogonal to all vectors
in W. We are done.
O

Here is a related definition : If S C V is a subset, the orthogonal complement S* is the set of
vectors in V that are orthogonal to S. Note that it is always a subspace. (Why?) Also, {0} = V and
V+ = {0}. When the best approximation w € W to v exists, then w is called the orthogonal projection
of v on W. If every vector has an orthogonal projection to W, then the map Iy : V — W taking v to
its orthogonal projection is called the orthogonal projection map to W.

Firstly, [Ty is a linear map : Indeed, {au +bv— (allwu + bIIwv), w) = a{u—ITwu, w)+b{v—IIwv, w) = 0.
Hence, Iy (au + bv) = allwu + bIIwo. Secondly, ITyy : W — W is the identity. Thirdly, H%/v =Jolly =
ITw. (So if Iy exists, it is “idempotent”.) Fourthly, if ITy exists, then I — Iy is the orthogonal pro-
jection to W+. Indeed, (v — ITywo, w) = 0 for all w € W and hence it is a linear map to W+. Moreover,
(v — (v —TIwv),w’) = (Ilwo,w’) = 0 for all w’ € W*. Hence, v — I[Tv is the best approximation to v
from W+. So, ITy. = I —Ily. Fifthly, if ITyy exists, then ITwv = 0 iff (v, w) = 0 for all w € W and hence
iff v € Wt. Lastly, if ITjy exists, then W @ W+ = V. Indeed, define T(w,w’) = w + w’. If T(w,w’) =0,
thenw = —w’ € WNWH+,ie., (w,w) =0 =(w’,w’). Thusw = w’ = 0. Moreover, v = [Tyov + (I - [Ty)v.
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Hence we are done. Note, that if W is finite-dimensional, ITyy necessarily exists. Likewise, if ITy
exists, then (W+)* = W. This is because W* = ker(ITyy) and (W*)* = ker(ITyy.) = ker(I — ITiy) which
consists of v such that v = IIwo, i.e, v e W.
So the Grahm-Schmidt process is : Let Ily be the orthogonal projection onto the orthogonal com-
plement of wy, ..., wk_1, and let Iy = Ha}ﬂl . Then, defining v, = HTHI;]:—Z];H is the Gram-Schmidt process.
Note that the observations imply that if e;,...,er is an orthonormal set of vectors in V, then
Y v, e)l> < |[o|”. Indeed, v = (I - IT)v + [Tv where ITo is the orthogonal projection to the sub-

space spanned by e;. So ITTo|*> < |[v|l* with equality iff v is in the subspace. As a consequence,
Y| fol f(t)e™m V=Ik g2 < fol |f(t)|?dt. This inequality is called Bessel’s inequality.

There is an interesting way to write an orthogonal projection onto a unit vector w in C" with the
usual inner product. Indeed, IT,v = (v, w)w = }; j Ui jwie;. This motivates the following definition
: Given two vectors u,v € C", the matrix A;; = u;0; is called the outer product of u and v and the
corresponding linear map is written (usually by physicisits) as |u){v]. Note that (IT,v); = (lw){w|v);.
So if wy, ..., wy is an orthonormal basis for a subspace W, then Iy = }_; [w;){w;l.

3. LINEAR FUNCTIONALS AND ADJOINTS

Givenalinearmap T : V — W, there exists a natural map T* : W* — V* given by T*(A)(v) = A(Tv).
This map is called the adjoint map. If V is an inner product space, there is a more interesting
formulation of this adjoint map. Indeed, firstly, we have a special case of the so-called “Little Riesz
representation theorem”.

Lemma 3.1. If V is a finite-dimensional inner product space, then the map V. — V™ given by L(v) = (,v) is
a1l -1 onto map that is “antilinear”, i.e., L(av + bw) = aL(v) + bL(w).

Proof. Firstly, L(v)(w) = (w, v) is linear in w and hence L(v) € V*. Secondly, it is clearly antilinear in v.
Thirdly, if L(v) = 0, then (w, v) = 0 Y w. Thus, [o]> =0and v = 0. Soitis 1— 1. If ¢; is an orthonormal

basis, and A € V*, then A(v) = ), v;A(e;) = (v, Y.; Alei)eiy = L(Y; A(ei)e;). So it is onto. O

So V and V* can be “identified” in a sense for finite-dimensional vector spaces. This means
that T* : V* — V" induces a map (also, confusingly called the adjoint of T) T : V' — V for finite-
dimensional vector spaces as follows : There exists a unique linear map T* : V — V satisfying
(Tv,w) = (v, T*w). Indeed, consider the linear functional A(v) = (Tv,w). The above theorem
implies that there is a unique vector @, € V such that A(v) = (v, @,). Noticing that (v, aw, + bw,) =
(v, Wy) +b(v, y) = a(Tv, x)+b(Tv, y) = (Tv,ax+by) and that W,y is unique, it is equal to ad + b,
Thus, T"w = @, is the unique linear map satisfying the desired relation.
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