NOTES FOR 5 OCT (TUESDAY)

1. Recap

(1) Defined Hermitian operators and proved the uncertainty principle.
(2) Defined orthonormal bases and did Grahm-Schmidt. Used it to prove the Cholesky decomposition.

2. Orthogonal projections

The Gram-Schmidt procedure is a special case of an operation called the orthogonal projection. To develop this concept, firstly, here is a natural definition : Let $v \in V$ and let $W \subset V$ be a subspace. A vector $w \in W$ is said to be a best approximation of v from W if it minimises $\|w-v\|$. It is not hard to have a geometric picture of the best approximation. However, in infinite-dimensions it gets a little tricky. Nonetheless, here is a general theorem.

Theorem 2.1. Let W be a subspace of an inner product space V, and let $v \in V$.
(1) A vector $w \in W$ is a best approximation of v from W iff $v-w$ is orthogonal to every vector in W.
(2) If a best approximation exists, it is unique.
(3) If W is finite-dimensional, and e_{1}, \ldots, e_{n} is any orthonormal basis for W, then $w=\sum_{i}\left\langle v, e_{i}\right\rangle e_{i}$ is the best approximation of v from W.
Proof. (1) If w is a best approximation, then given a vector $\alpha \in W$, the function $f(t)=\|v-w+t \alpha\|^{2}$ achieves a local minimum at $t=0$. So $f^{\prime}(0)=0=2 \operatorname{Re}(\langle v-w, \alpha\rangle)$. Likewise, replacing α by $\sqrt{-1} \alpha$, we see that $0=2 \operatorname{Im}(\langle v-w, \alpha\rangle)$. Thus, $v-w$ is orthogonal to every such vector. Conversely, if $v-w$ is orthogonal to every vector and if $w^{\prime} \in W$, then $w^{\prime}-w \in W$ and hence it is easy to see that $\left\|v-w^{\prime}\right\|^{2}=\|v-w\|^{2}+\left\|w^{\prime}-w\right\|^{2} \geq\|v-w\|^{2}$.
(2) If w, w^{\prime} are two best approximations, then by the previous part, $w=w^{\prime}$.
(3) By a direct calculation, $v-w$ is orthogonal to e_{i} for all i and hence orthogonal to all vectors in W. We are done.

Here is a related definition : If $S \subset V$ is a subset, the orthogonal complement S^{\perp} is the set of vectors in V that are orthogonal to S. Note that it is always a subspace. (Why?) Also, $\{0\}^{\perp}=V$ and $V^{\perp}=\{0\}$. When the best approximation $w \in W$ to v exists, then w is called the orthogonal projection of v on W. If every vector has an orthogonal projection to W, then the map $\Pi_{W}: V \rightarrow W$ taking v to its orthogonal projection is called the orthogonal projection map to W.
Firstly, Π_{W} is a linear map : Indeed, $\left\langle a u+b v-\left(a \Pi_{W} u+b \Pi_{W} v\right), w\right\rangle=a\left\langle u-\Pi_{W} u, w\right\rangle+b\left\langle v-\Pi_{W} v, w\right\rangle=0$. Hence, $\Pi_{W}(a u+b v)=a \Pi_{W} u+b \Pi_{W} v$. Secondly, $\Pi_{W}: W \rightarrow W$ is the identity. Thirdly, $\Pi_{W}^{2}=I \circ \Pi_{W}=$ Π_{W}. (So if Π_{W} exists, it is "idempotent".) Fourthly, if Π_{W} exists, then $I-\Pi_{W}$ is the orthogonal projection to W^{\perp}. Indeed, $\left\langle v-\Pi_{W} v, w\right\rangle=0$ for all $w \in W$ and hence it is a linear map to W^{\perp}. Moreover, $\left\langle v-\left(v-\Pi_{W} v\right), w^{\prime}\right\rangle=\left\langle\Pi_{W} v, w^{\prime}\right\rangle=0$ for all $w^{\prime} \in W^{\perp}$. Hence, $v-\Pi_{W} v$ is the best approximation to v from W^{\perp}. So, $\Pi_{W^{\perp}}=I-\Pi_{W}$. Fifthly, if Π_{W} exists, then $\Pi_{W} v=0$ iff $\langle v, w\rangle=0$ for all $w \in W$ and hence iff $v \in W^{\perp}$. Lastly, if Π_{W} exists, then $W \oplus W^{\perp} \equiv V$. Indeed, define $T\left(w, w^{\prime}\right)=w+w^{\prime}$. If $T\left(w, w^{\prime}\right)=0$, then $w=-w^{\prime} \in W \cap W^{\perp}$, i.e., $\langle w, w\rangle=0=\left\langle w^{\prime}, w^{\prime}\right\rangle$. Thus $w=w^{\prime}=0$. Moreover, $v=\Pi_{W} v+\left(I-\Pi_{W}\right) v$.

Hence we are done. Note, that if W is finite-dimensional, Π_{W} necessarily exists. Likewise, if Π_{W} exists, then $\left(W^{\perp}\right)^{\perp}=W$. This is because $W^{\perp}=\operatorname{ker}\left(\Pi_{W}\right)$ and $\left(W^{\perp}\right)^{\perp}=\operatorname{ker}\left(\Pi_{W^{\perp}}\right)=\operatorname{ker}\left(I-\Pi_{W}\right)$ which consists of v such that $v=\Pi_{W} v$, i.e., $v \in W$.

So the Grahm-Schmidt process is: Let Π_{k} be the orthogonal projection onto the orthogonal complement of w_{1}, \ldots, w_{k-1}, and let $\Pi_{1}=\frac{1}{\left\|w_{1}\right\|} I$. Then, defining $v_{k}=\frac{\Pi_{k} w_{k}}{\left\|\Pi_{k} w_{k}\right\|}$ is the Gram-Schmidt process.

Note that the observations imply that if e_{1}, \ldots, e_{k} is an orthonormal set of vectors in V, then $\sum_{k}\left|\left\langle v, e_{k}\right\rangle\right|^{2} \leq\|v\|^{2}$. Indeed, $v=(I-\Pi) v+\Pi v$ where Πv is the orthogonal projection to the subspace spanned by e_{i}. So $\|\Pi v\|^{2} \leq\|v\|^{2}$ with equality iff v is in the subspace. As a consequence, $\sum_{k=-n}^{n}\left|\int_{0}^{1} f(t) e^{-2 \pi \sqrt{-1} k t} d t\right|^{2} \leq \int_{0}^{1}|f(t)|^{2} d t$. This inequality is called Bessel's inequality.

There is an interesting way to write an orthogonal projection onto a unit vector w in \mathbb{C}^{n} with the usual inner product. Indeed, $\Pi_{w} v=\langle v, w\rangle w=\sum_{i, j} v_{j} \bar{w}_{j} w_{i} e_{i}$. This motivates the following definition : Given two vectors $u, v \in \mathbb{C}^{n}$, the matrix $A_{i j}=u_{j} \bar{v}_{i}$ is called the outer product of u and v and the corresponding linear map is written (usually by physicisits) as $|u\rangle\langle v|$. Note that $\left(\Pi_{w} v\right)_{i}=(|w\rangle\langle w| v)_{i}$. So if w_{1}, \ldots, w_{k} is an orthonormal basis for a subspace W, then $\Pi_{W}=\sum_{i}\left|w_{i}\right\rangle\left\langle w_{i}\right|$.

3. Linear functionals and adjoints

Given a linear map $T: V \rightarrow W$, there exists a natural map $T^{*}: W^{*} \rightarrow V^{*}$ given by $T^{*}(\lambda)(v)=\lambda(T v)$. This map is called the adjoint map. If V is an inner product space, there is a more interesting formulation of this adjoint map. Indeed, firstly, we have a special case of the so-called "Little Riesz representation theorem".
Lemma 3.1. If V is a finite-dimensional inner product space, then the map $V \rightarrow V^{*}$ given by $L(v)=\langle, v\rangle$ is a $1-1$ onto map that is "antilinear", i.e., $L(a v+b w)=\bar{a} L(v)+\bar{b} L(w)$.
Proof. Firstly, $L(v)(w)=\langle w, v\rangle$ is linear in w and hence $L(v) \in V^{*}$. Secondly, it is clearly antilinear in v. Thirdly, if $L(v)=0$, then $\langle w, v\rangle=0 \forall w$. Thus, $\|v\|^{2}=0$ and $v=0$. So it is $1-1$. If e_{i} is an orthonormal basis, and $\lambda \in V^{*}$, then $\lambda(v)=\sum_{i} v_{i} \lambda\left(e_{i}\right)=\left\langle v, \sum_{i} \overline{\lambda\left(e_{i}\right)} e_{i}\right\rangle=L\left(\sum_{i} \overline{\lambda\left(e_{i}\right)} e_{i}\right)$. So it is onto.

So V and V^{*} can be "identified" in a sense for finite-dimensional vector spaces. This means that $T^{*}: V^{*} \rightarrow V^{*}$ induces a map (also, confusingly called the adjoint of T) $T: V \rightarrow V$ for finitedimensional vector spaces as follows: There exists a unique linear map $T^{*}: V \rightarrow V$ satisfying $\langle T v, w\rangle=\left\langle v, T^{*} w\right\rangle$. Indeed, consider the linear functional $\lambda(v)=\langle T v, w\rangle$. The above theorem implies that there is a unique vector $\tilde{w}_{w} \in V$ such that $\lambda(v)=\left\langle v, \tilde{w}_{w}\right\rangle$. Noticing that $\left\langle v, a \tilde{w}_{x}+b \tilde{w}_{y}\right\rangle=$ $\bar{a}\left\langle v, \tilde{w}_{x}\right\rangle+\bar{b}\left\langle v, \tilde{w}_{y}\right\rangle=\bar{a}\langle T v, x\rangle+\bar{b}\langle T v, y\rangle=\langle T v, a x+b y\rangle$ and that $\tilde{w}_{a x+b y}$ is unique, it is equal to $a \tilde{w}_{x}+b \tilde{w}_{y}$. Thus, $T^{*} w=\tilde{w}_{w}$ is the unique linear map satisfying the desired relation.

