NOTES FOR 5 SEPT (THURSDAY)

1. Recar

(1) Defined V/W where W C V and proved that if V, W are f.d., then so is V/W and its dimension
is dim(V) — dim(W).

(2) Proved that V/ker(T) = Range(T).

(3) Proved that L(V, W) is a vector space and is f.d. if V, W are, with dimension dim(V)dim(W).
Proved that U o T is a linear transformation and that UT # TU in general (with counterex-
amples).

2. LINEAR TRANSFORMATIONS

Recall that an invertible linear transformation T : V — W is an isomorphism, i.e., its inverse is
also linear. (Similar to matrices, one has the notions of left and right inverses as well.) Moreover, if
A:V > Wand B: U — V are invertible, then AB : U — W is also invertible with inverse B-1A™1.

Def : A linear map T : V — W is called non-singular if ker(T) = {6}. Note that T is 1 — 1 iff it is
non-singular : Indeed, T(v1) = T(v2) © T(v1 — v2) = 0 and vy = vy iff ker(T) = {0}.

Proposition 2.1. Let T : V. — W be linear. Then T is non-singular iff it carries linearly independent subsets
to linearly independent subsets.

Proof. If it is non-singular : Suppose }; ¢;T(v;) = 0 then T(}; c;v;) = 0 and hence ) ; c;v; = 0 which
means (by linear independence of v;) that c; = 0 Vi.

If it carries lin. indep. to lin. indep. : If T(v) = 0 where v # 0, then {v} goes to something not lin.
indep. A contradiction. m]

Consider these examples.

(1) T:R* - R? defined by T(v, w) = (v+w,v). Then T(v,w) = (0,0) implies that (v, w) = (0, 0). So
T is non-singular. Moreover, T is onto because T(y, x — v) = (x, y). In fact, T~Y(a,b) = (b,a—b).

(2) Let V be the space of polynomial functions from RR to itself. Then D : V — V (the differ-
entiation map) is linear, and Dp(x) = 0 iff p(x) = c. So D is singular. However, consdier
E(p(x)) = pox + %ple + .... This map is linear and DE = Id. However, ED(1) = E(0) = 0 # 1.
So it is right invertible but not left invertible.

(3) My : V — Vis non-singular. Consider U(p(x)) = p1 + p2x +.... Then UM, (p(x)) = U(pox +
plxz +...) =po+pix+.... However, M, U(1) = M,(0) = 0. So it is left but not right invertible
and is non-singular.

(4) T:R — R? defined by T(x) = (x,0) is certainly non-singular but not onto.

So it appears that for infinite-dimensional spaces, non-singular has not much to do with invertibility.
However, it appears to be true for finite-dimensions (with the same dimension). (Akin to saying
thatif f: X = Yis1—1and X, Y are finite sets of the same size, then f is onto.) Indeed,

Theorem 2.2. Let V, W be finite-dimensional vector spaces with the same dimension. If T : V — Wisa
linear map, then TFAE.

(1) T is invertible.
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(2) T is non-singular.
(3) T is onto.

Proof. Let n = dim(V) = dim(W) and e, ..., e, be a basis of V. Of course 1 = 2,3. We prove that
2 = 3,1: Indeed, if T is non-singular (it is surely 1 — 1), then T(ey), ..., T(ey,) is a basis of W. Hence,
Rank(T) = n = dim(W) and hence T is onto. (Therefore, T is invertible.)

Now 3 = 2: nullity(T) = 0 and hence T is non-singular. m]

Now we study the relationship between linear maps and matrices.

Theorem 2.3. Let V, W be n, m-dimensional vector spaces respectively over a field IF. Let B, B’ be ordered
bases for V, W respectively. For each T € L(V, W) there exists an m X n matrix A such that Tog = Alg for
allv € V. (Such an A is called the matrix of T in the bases B, B').

Moreover, T — A is an isomorphism between L(V, W) and Mat ., (FF).

Proof. T(v) = T(X;vje;) = LjviT(ej) = X;;jvjAijfi for some unique collection of coefficients A;;.

Hence T_)Z)Br = Avg. Clearly, T — A is linear. Moreover, given any matrix A, T(v) := Zi,j vjAjjfiis a
linear map. Thus T — A is an isomorphism. m]

When V = W, very often, 8 is taken to equal to B’ in which case the case, the matrix A corre-
sponding to T is written as [T]g. Here are some examples.
(1) Let T : V =F" - W = F" be T(v) = Av. Then, if V,W are equipped with their standard
bases, the matrix corresponding to T is A itself.
(2) Let V be the space of all polynomial functions of degree < 3, f,(x) : R — R. Then define
D : V — V by differentiation. Then D(1) = 0, D(x) = 1, D(x?) = 2.x, D(x*) = 3.x?. Hence,

0100
0020
b= 000 3
0 00O
(3) In the previous example, choose the domain basis to be standard and the range basis to be
e =1, =xe = x> —1,e4 = x> = 3x. Then D(1) = 0,D(x) = ei,D(xZ) = 2e§,D(x3) =3x? =
010 3
, , 10020
3¢} +3e}. So [D] = 000 3
0 00O

Here is an important result about composition of linear maps.

Proposition 2.4. Let V, W, Z be finite-dimensional vector spaces over a field F. Let T : V - W, U: W — Z
be linear maps. Let B,8B’,B" be ordered bases for these three spaces. Let A, B be the matrices of T, U with
respect to these bases. Then the matrix of U o T with respect to B, B’ is C = BA.

Proof. Indeed, Tog = AGg and Uwg: = Bilg. Thus, U o Tvg: = BTog = BAds. m]

Note thatif V = W and the basis is chosen to be the same on both sides, then an operatorT: V — V
gives a unique n X n matrix A (this correspondence is an isomorphism). Moreover, products are
preserved. As a consequence, if T is invertible, i.e., UT = TU = I, then so is A (and vice-versa), and
T-! is represented by A~. Now we see what happens when we change the bases involved.

Theorem 2.5. Let V be a finite-dimensional vector space over a field IF. Let B = {eq, ez, ...,e,}, B = {ei, -

be two ordered bases. Let T : V. — V be an operator. If P = [P1P...P,] is a n X n matrix with
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columns P; = e?;g then [T]g = P[T]g P~ Alternatively, if U is the operator defined by Ue; = e, then
[T]g = [Uls[T1s[U],"

Proof. The i column A; of [T]g is Te;s which is equal to PTeig = P[T]g € = P[Tlg P e, which
is the i column of P[T]g P Clearly this statement is the same as the alternate statement using
u. m|

This theorem motivates the following definition : Let A, B be two n X n matrices. Then A is said to
be similar to B if there exists an invertible 1 X n matrix P such that A = PBP~!. (Note that similarity
is an equivalence relation.)

It is not hard to see that A ~ B iff the linear transformation v — Bv from [F" to itself in the basis
obtained from the columns of P~! is expressed by the matrix A.

Here are some examples.

(1) Consider 71 : R2 - R given by m1(x,y) = x. In the standard basis, the matrix for this
transformation is [A] = [ (1) 8 . Suppose we take a new basis e; = 1+ f,ez =2+ f (why

is this a new basis ?), then let P~! be the matrix whose columns are [ejes] = [ 1 i ] Then
_1 2 . . . . —1 —1 —2
pP= 1 -1 (why is this P?) Hence in the new basis, [B] = PAP™ = 1 2 | Indeed,

ni(e1) = 1= ey — ey and 7y(e2) = 21 = 2(ex — e1).

(2) Let V be the space of polynomial functions R to itself with degree < 3. Let D : V — V be
the derivative operator. Let 8’ = {1,x, x%,x%} and B = {1, x + ¢, (x + 1), (x + t)3}. Note that
e1 = e}, ep = e +tey, e3 = e} +2ter + tzei, ey = ey +3tel + 31,‘26’2 + t3ei. Let P! be the matrix whose
columns are [ejezezes]. We know D in the basis 8’ and hence in the basis B, it is PDP!.
However, a simpler way is to use the definition : De; = 0,De; = 1 = e, De3 = 2e5, Dey = 3es.
Interestingly, this illustrates that PDP~! can be equal to D.
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