
NOTES FOR 5 SEPT (THURSDAY)

1. Recap

(1) Defined V/W where W ⊂ V and proved that if V,W are f.d., then so is V/W and its dimension
is dim(V) − dim(W).

(2) Proved that V/ker(T) ≡ Range(T).
(3) Proved that L(V,W) is a vector space and is f.d. if V,W are, with dimension dim(V)dim(W).

Proved that U ◦ T is a linear transformation and that UT , TU in general (with counterex-
amples).

2. Linear transformations

Recall that an invertible linear transformation T : V → W is an isomorphism, i.e., its inverse is
also linear. (Similar to matrices, one has the notions of left and right inverses as well.) Moreover, if
A : V →W and B : U→ V are invertible, then AB : U→W is also invertible with inverse B−1A−1.

Def : A linear map T : V → W is called non-singular if ker(T) = {~0}. Note that T is 1 − 1 iff it is
non-singular : Indeed, T(v1) = T(v2)⇔ T(v1 − v2) = 0 and v1 = v2 iff ker(T) = {0}.

Proposition 2.1. Let T : V →W be linear. Then T is non-singular iff it carries linearly independent subsets
to linearly independent subsets.

Proof. If it is non-singular : Suppose
∑

i ciT(vi) = 0 then T(
∑

i civi) = 0 and hence
∑

i civi = 0 which
means (by linear independence of vi) that ci = 0 ∀i.
If it carries lin. indep. to lin. indep. : If T(v) = 0 where v , 0, then {v} goes to something not lin.
indep. A contradiction. �

Consider these examples.
(1) T : R2

→ R2 defined by T(v,w) = (v+w, v). Then T(v,w) = (0, 0) implies that (v,w) = (0, 0). So
T is non-singular. Moreover, T is onto because T(y, x− y) = (x, y). In fact, T−1(a, b) = (b, a− b).

(2) Let V be the space of polynomial functions from R to itself. Then D : V → V (the differ-
entiation map) is linear, and Dp(x) = 0 iff p(x) = c. So D is singular. However, consdier
E(p(x)) = p0x + 1

2 p1x2 + . . .. This map is linear and DE = Id. However, ED(1) = E(0) = 0 , 1.
So it is right invertible but not left invertible.

(3) Mx : V → V is non-singular. Consider U(p(x)) = p1 + p2x + . . .. Then UMx(p(x)) = U(p0x +
p1x2 + . . .) = p0 + p1x + . . .. However, MxU(1) = Mx(0) = 0. So it is left but not right invertible
and is non-singular.

(4) T : R→ R2 defined by T(x) = (x, 0) is certainly non-singular but not onto.
So it appears that for infinite-dimensional spaces, non-singular has not much to do with invertibility.
However, it appears to be true for finite-dimensions (with the same dimension). (Akin to saying
that if f : X→ Y is 1 − 1 and X,Y are finite sets of the same size, then f is onto.) Indeed,

Theorem 2.2. Let V,W be finite-dimensional vector spaces with the same dimension. If T : V → W is a
linear map, then TFAE.

(1) T is invertible.
1
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(2) T is non-singular.
(3) T is onto.

Proof. Let n = dim(V) = dim(W) and e1, . . . , en be a basis of V. Of course 1 ⇒ 2, 3. We prove that
2⇒ 3, 1 : Indeed, if T is non-singular (it is surely 1 − 1), then T(e1), . . . ,T(en) is a basis of W. Hence,
Rank(T) = n = dim(W) and hence T is onto. (Therefore, T is invertible.)

Now 3⇒ 2 : nullity(T) = 0 and hence T is non-singular. �

Now we study the relationship between linear maps and matrices.

Theorem 2.3. Let V,W be n,m-dimensional vector spaces respectively over a field F. Let B,B′ be ordered
bases for V,W respectively. For each T ∈ L(V,W) there exists an m × n matrix A such that ~TvB′ = A~vB for
all v ∈ V. (Such an A is called the matrix of T in the bases B,B′).
Moreover, T→ A is an isomorphism between L(V,W) and Matm×n(F).

Proof. T(v) = T(
∑

j v je j) =
∑

j v jT(e j) =
∑

i, j v jAi j fi for some unique collection of coefficients Ai j.

Hence ~TvB′ = A~vB. Clearly, T → A is linear. Moreover, given any matrix A, T(v) :=
∑

i, j v jAi j fi is a
linear map. Thus T→ A is an isomorphism. �

When V = W, very often, B is taken to equal to B′ in which case the case, the matrix A corre-
sponding to T is written as [T]B. Here are some examples.

(1) Let T : V = Fn
→ W = Fm be T(v) = Av. Then, if V,W are equipped with their standard

bases, the matrix corresponding to T is A itself.
(2) Let V be the space of all polynomial functions of degree ≤ 3, fp(x) : R → R. Then define

D : V → V by differentiation. Then D(1) = 0, D(x) = 1, D(x2) = 2.x, D(x3) = 3.x2. Hence,

[D] =


0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0


(3) In the previous example, choose the domain basis to be standard and the range basis to be

e′1 = 1, e′2 = x, e′3 = x2
− 1, e4 = x3

− 3x. Then D(1) = 0,D(x) = e′1,D(x2) = 2e′2,D(x3) = 3x2 =

3e′3 + 3e′1. So [D] =


0 1 0 3
0 0 2 0
0 0 0 3
0 0 0 0


Here is an important result about composition of linear maps.

Proposition 2.4. Let V,W,Z be finite-dimensional vector spaces over a field F. Let T : V →W, U : W → Z
be linear maps. Let B,B′,B′′ be ordered bases for these three spaces. Let A,B be the matrices of T,U with
respect to these bases. Then the matrix of U ◦ T with respect to B,B′ is C = BA.

Proof. Indeed, ~TvB′ = A~vB and ~UwB′′ = B~wB′ . Thus, ~U ◦ TvB′′ = B ~TvB′ = BA~vB. �

Note that if V = W and the basis is chosen to be the same on both sides, then an operator T : V → V
gives a unique n × n matrix A (this correspondence is an isomorphism). Moreover, products are
preserved. As a consequence, if T is invertible, i.e., UT = TU = I, then so is A (and vice-versa), and
T−1 is represented by A−1. Now we see what happens when we change the bases involved.

Theorem 2.5. Let V be a finite-dimensional vector space over a field F. LetB = {e1, e2, . . . , en},B′ = {e′1, . . .}
be two ordered bases. Let T : V → V be an operator. If P = [P1P2 . . .Pn] is a n × n matrix with
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columns Pi = ~ei
′

B then [T]B = P[T]B′P−1. Alternatively, if U is the operator defined by Uei = e′i , then
[T]B′ = [U]B[T]B[U]−1

B
.

Proof. The ith column Ai of [T]B is ~TeiB which is equal to P ~TeiB′ = P[T]B′~eiB′ = P[T]B′P−1~eiB which
is the ith column of P[T]B′P−1. Clearly this statement is the same as the alternate statement using
U. �

This theorem motivates the following definition : Let A,B be two n×n matrices. Then A is said to
be similar to B if there exists an invertible n × n matrix P such that A = PBP−1. (Note that similarity
is an equivalence relation.)

It is not hard to see that A ∼ B iff the linear transformation v → Bv from Fn to itself in the basis
obtained from the columns of P−1 is expressed by the matrix A.
Here are some examples.

(1) Consider π1 : R2
→ R given by π1(x, y) = x. In the standard basis, the matrix for this

transformation is [A] =

[
1 0
0 0

]
. Suppose we take a new basis e1 = î + ĵ, e2 = 2î + ĵ (why

is this a new basis ?), then let P−1 be the matrix whose columns are [e1e2] =

[
1 2
1 1

]
. Then

P =

[
−1 2
1 −1

]
(why is this P?) Hence in the new basis, [B] = PAP−1 =

[
−1 −2
1 2

]
. Indeed,

π1(e1) = î = e2 − e1 and π1(e2) = 2î = 2(e2 − e1).
(2) Let V be the space of polynomial functions R to itself with degree ≤ 3. Let D : V → V be

the derivative operator. Let B′ = {1, x, x2, x3
} and B = {1, x + t, (x + t)2, (x + t)3

}. Note that
e1 = e′1, e2 = e′2 + te1, e3 = e′3 +2te′2 + t2e′1, e4 = e′4 +3te′3 +3t2e′2 + t3e′1. Let P−1 be the matrix whose
columns are [e1e2e3e4]. We know D in the basis B′ and hence in the basis B, it is PDP−1.
However, a simpler way is to use the definition : De1 = 0,De2 = 1 = e1,De3 = 2e2,De4 = 3e3.
Interestingly, this illustrates that PDP−1 can be equal to D.
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