NOTES FOR 5 SEPT (THURSDAY)

1. Recap

(1) Defined V / W where $W \subset V$ and proved that if V, W are f.d., then so is V / W and its dimension is $\operatorname{dim}(V)-\operatorname{dim}(W)$.
(2) Proved that $V / \operatorname{ker}(T) \equiv \operatorname{Range}(T)$.
(3) Proved that $L(V, W)$ is a vector space and is f.d. if V, W are, with dimension $\operatorname{dim}(V) \operatorname{dim}(W)$. Proved that $U \circ T$ is a linear transformation and that $U T \neq T U$ in general (with counterexamples).

2. Linear transformations

Recall that an invertible linear transformation $T: V \rightarrow W$ is an isomorphism, i.e., its inverse is also linear. (Similar to matrices, one has the notions of left and right inverses as well.) Moreover, if $A: V \rightarrow W$ and $B: U \rightarrow V$ are invertible, then $A B: U \rightarrow W$ is also invertible with inverse $B^{-1} A^{-1}$.

Def : A linear map $T: V \rightarrow W$ is called non-singular if $\operatorname{ker}(T)=\{\overrightarrow{0}\}$. Note that T is $1-1$ iff it is non-singular : Indeed, $T\left(v_{1}\right)=T\left(v_{2}\right) \Leftrightarrow T\left(v_{1}-v_{2}\right)=0$ and $v_{1}=v_{2}$ iff $\operatorname{ker}(T)=\{0\}$.

Proposition 2.1. Let $T: V \rightarrow W$ be linear. Then T is non-singular iff it carries linearly independent subsets to linearly independent subsets.

Proof. If it is non-singular : Suppose $\sum_{i} c_{i} T\left(v_{i}\right)=0$ then $T\left(\sum_{i} c_{i} v_{i}\right)=0$ and hence $\sum_{i} c_{i} v_{i}=0$ which means (by linear independence of v_{i}) that $c_{i}=0 \forall i$.
If it carries lin. indep. to lin. indep. : If $T(v)=0$ where $v \neq 0$, then $\{v\}$ goes to something not lin. indep. A contradiction.

Consider these examples.
(1) $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $T(v, w)=(v+w, v)$. Then $T(v, w)=(0,0)$ implies that $(v, w)=(0,0)$. So T is non-singular. Moreover, T is onto because $T(y, x-y)=(x, y)$. In fact, $T^{-1}(a, b)=(b, a-b)$.
(2) Let V be the space of polynomial functions from \mathbb{R} to itself. Then $D: V \rightarrow V$ (the differentiation map) is linear, and $D p(x)=0$ iff $p(x)=c$. So D is singular. However, consdier $E(p(x))=p_{0} x+\frac{1}{2} p_{1} x^{2}+\ldots$. This map is linear and $D E=I d$. However, $E D(1)=E(0)=0 \neq 1$. So it is right invertible but not left invertible.
(3) $M_{x}: V \rightarrow V$ is non-singular. Consider $U(p(x))=p_{1}+p_{2} x+\ldots$ Then $U M_{x}(p(x))=U\left(p_{0} x+\right.$ $\left.p_{1} x^{2}+\ldots\right)=p_{0}+p_{1} x+\ldots$. However, $M_{x} U(1)=M_{x}(0)=0$. So it is left but not right invertible and is non-singular.
(4) $T: \mathbb{R} \rightarrow \mathbb{R}^{2}$ defined by $T(x)=(x, 0)$ is certainly non-singular but not onto.

So it appears that for infinite-dimensional spaces, non-singular has not much to do with invertibility. However, it appears to be true for finite-dimensions (with the same dimension). (Akin to saying that if $f: X \rightarrow Y$ is $1-1$ and X, Y are finite sets of the same size, then f is onto.) Indeed,

Theorem 2.2. Let V, W be finite-dimensional vector spaces with the same dimension. If $T: V \rightarrow W$ is a linear map, then TFAE.
(1) T is invertible.
(2) T is non-singular.
(3) T is onto.

Proof. Let $n=\operatorname{dim}(V)=\operatorname{dim}(W)$ and e_{1}, \ldots, e_{n} be a basis of V. Of course $1 \Rightarrow 2,3$. We prove that $2 \Rightarrow 3,1$: Indeed, if T is non-singular (it is surely $1-1$), then $T\left(e_{1}\right), \ldots, T\left(e_{n}\right)$ is a basis of W. Hence, $\operatorname{Rank}(T)=n=\operatorname{dim}(W)$ and hence T is onto. (Therefore, T is invertible.)

Now $3 \Rightarrow 2$: $\operatorname{nullity}(T)=0$ and hence T is non-singular.
Now we study the relationship between linear maps and matrices.
Theorem 2.3. Let V, W be n, m-dimensional vector spaces respectively over a field \mathbb{F}. Let $\mathcal{B}, \mathcal{B}^{\prime}$ be ordered bases for V, W respectively. For each $T \in L(V, W)$ there exists an $m \times n$ matrix A such that $\overrightarrow{T v}_{\mathcal{B}^{\prime}}=A \vec{v}_{\mathcal{B}}$ for all $v \in V$. (Such an A is called the matrix of T in the bases $\mathcal{B}, \mathcal{B}^{\prime}$).
Moreover, $T \rightarrow A$ is an isomorphism between $L(V, W)$ and $\operatorname{Mat}_{m \times n}(\mathbb{F})$.
Proof. $T(v)=T\left(\sum_{j} v_{j} e_{j}\right)=\sum_{j} v_{j} T\left(e_{j}\right)=\sum_{i, j} v_{j} A_{i j} f_{i}$ for some unique collection of coefficients $A_{i j}$. Hence $\overrightarrow{T v}_{\mathcal{B}^{\prime}}=A \vec{v}_{\mathcal{B}}$. Clearly, $T \rightarrow A$ is linear. Moreover, given any matrix $A, T(v):=\sum_{i, j} v_{j} A_{i j} f_{i}$ is a linear map. Thus $T \rightarrow A$ is an isomorphism.

When $V=W$, very often, \mathcal{B} is taken to equal to \mathcal{B}^{\prime} in which case the case, the matrix A corresponding to T is written as $[T]_{\mathcal{B}}$. Here are some examples.
(1) Let $T: V=\mathbb{F}^{n} \rightarrow W=\mathbb{F}^{m}$ be $T(v)=A v$. Then, if V, W are equipped with their standard bases, the matrix corresponding to T is A itself.
(2) Let V be the space of all polynomial functions of degree $\leq 3, f_{p}(x): \mathbb{R} \rightarrow \mathbb{R}$. Then define $D: V \rightarrow V$ by differentiation. Then $D(1)=0, D(x)=1, D\left(x^{2}\right)=2 \cdot x, D\left(x^{3}\right)=3 \cdot x^{2}$. Hence,

$$
[D]=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 3 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

(3) In the previous example, choose the domain basis to be standard and the range basis to be $e_{1}^{\prime}=1, e_{2}^{\prime}=x, e_{3}^{\prime}=x^{2}-1, e_{4}=x^{3}-3 x$. Then $D(1)=0, D(x)=e_{1}^{\prime}, D\left(x^{2}\right)=2 e_{2}^{\prime}, D\left(x^{3}\right)=3 x^{2}=$

$$
3 e_{3}^{\prime}+3 e_{1}^{\prime} . \text { So }[D]=\left(\begin{array}{llll}
0 & 1 & 0 & 3 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 3 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Here is an important result about composition of linear maps.
Proposition 2.4. Let V, W, Z be finite-dimensional vector spaces over a field \mathbb{F}. Let $T: V \rightarrow W, U: W \rightarrow Z$ be linear maps. Let $\mathcal{B}, \mathcal{B}^{\prime}, \mathcal{B}^{\prime \prime}$ be ordered bases for these three spaces. Let A, B be the matrices of T, U with respect to these bases. Then the matrix of $U \circ T$ with respect to $\mathcal{B}, \mathcal{B}^{\prime}$ is $C=B A$.
Proof. Indeed, $\overrightarrow{T v}_{\mathcal{B}^{\prime}}=A \vec{v}_{\mathcal{B}}$ and $\vec{U} \vec{w}_{\mathcal{B}^{\prime \prime}}=B \vec{w}_{\mathcal{B}^{\prime}}$. Thus, $U \vec{\circ} T v_{\mathcal{B}^{\prime \prime}}=B \vec{T} v_{\mathcal{B}^{\prime}}=B A \vec{v}_{\mathcal{B}}$.
Note that if $V=W$ and the basis is chosen to be the same on both sides, then an operator $T: V \rightarrow V$ gives a unique $n \times n$ matrix A (this correspondence is an isomorphism). Moreover, products are preserved. As a consequence, if T is invertible, i.e., $U T=T U=I$, then so is A (and vice-versa), and T^{-1} is represented by A^{-1}. Now we see what happens when we change the bases involved.
Theorem 2.5. Let V be a finite-dimensional vector space over a field \mathbb{F}. Let $\mathcal{B}=\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}, \mathcal{B}^{\prime}=\left\{e_{1}^{\prime}, \ldots\right\}$ be two ordered bases. Let $T: V \rightarrow V$ be an operator. If $P=\left[P_{1} P_{2} \ldots P_{n}\right]$ is a $n \times n$ matrix with
columns $P_{i}={\overrightarrow{e_{i \mathcal{B}}}}_{\prime}$ then $[T]_{\mathcal{B}}=P[T]_{\mathcal{B}^{\prime}} P^{-1}$. Alternatively, if U is the operator defined by Ue $e_{i}=e_{i}^{\prime}$, then $[T]_{\mathcal{B}^{\prime}}=[U]_{\mathcal{B}}[T]_{\mathcal{B}}[U]_{\mathcal{B}}^{-1}$.

Proof. The $i^{\text {th }}$ column A_{i} of $[T]_{\mathcal{B}}$ is $\overrightarrow{T e_{i \mathcal{B}}}$ which is equal to $P \overrightarrow{T_{i \mathcal{B}^{\prime}}}=P[T]_{\mathcal{B}^{\prime}} \vec{e}_{\mathcal{B}^{\prime}}=P[T]_{\mathcal{B}^{\prime}} P^{-1} \vec{e}_{i \mathcal{B}}$ which is the $i^{\text {th }}$ column of $P[T]_{\mathcal{B}^{\prime}} P^{-1}$. Clearly this statement is the same as the alternate statement using U.

This theorem motivates the following definition : Let A, B be two $n \times n$ matrices. Then A is said to be similar to B if there exists an invertible $n \times n$ matrix P such that $A=P B P^{-1}$. (Note that similarity is an equivalence relation.)

It is not hard to see that $A \sim B$ iff the linear transformation $v \rightarrow B v$ from \mathbb{F}^{n} to itself in the basis obtained from the columns of P^{-1} is expressed by the matrix A.
Here are some examples.
(1) Consider $\pi_{1}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by $\pi_{1}(x, y)=x$. In the standard basis, the matrix for this transformation is $[A]=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$. Suppose we take a new basis $e_{1}=\hat{i}+\hat{j}, e_{2}=2 \hat{i}+\hat{j}$ (why is this a new basis ?), then let P^{-1} be the matrix whose columns are $\left[e_{1} e_{2}\right]=\left[\begin{array}{ll}1 & 2 \\ 1 & 1\end{array}\right]$. Then $P=\left[\begin{array}{cc}-1 & 2 \\ 1 & -1\end{array}\right]$ (why is this P ?) Hence in the new basis, $[B]=P A P^{-1}=\left[\begin{array}{cc}-1 & -2 \\ 1 & 2\end{array}\right]$. Indeed, $\pi_{1}\left(e_{1}\right)=\hat{i}=e_{2}-e_{1}$ and $\pi_{1}\left(e_{2}\right)=2 \hat{i}=2\left(e_{2}-e_{1}\right)$.
(2) Let V be the space of polynomial functions \mathbb{R} to itself with degree ≤ 3. Let $D: V \rightarrow V$ be the derivative operator. Let $\mathcal{B}^{\prime}=\left\{1, x, x^{2}, x^{3}\right\}$ and $\mathcal{B}=\left\{1, x+t,(x+t)^{2},(x+t)^{3}\right\}$. Note that $e_{1}=e_{1}^{\prime}, e_{2}=e_{2}^{\prime}+t e_{1}, e_{3}=e_{3}^{\prime}+2 t e_{2}^{\prime}+t^{2} e_{1}^{\prime}, e_{4}=e_{4}^{\prime}+3 t e_{3}^{\prime}+3 t^{2} e_{2}^{\prime}+t^{3} e_{1}^{\prime}$. Let P^{-1} be the matrix whose columns are $\left[e_{1} e_{2} e_{3} e_{4}\right]$. We know D in the basis \mathcal{B}^{\prime} and hence in the basis \mathcal{B}, it is $P D P^{-1}$. However, a simpler way is to use the definition: $D e_{1}=0, D e_{2}=1=e_{1}, D e_{3}=2 e_{2}, D e_{4}=3 e_{3}$. Interestingly, this illustrates that $P D P^{-1}$ can be equal to D.

