
NOTES FOR 6 AUG (TUESDAY)

1. Recap

(1) Defined fields and gave examples and counterexamples. (Basically, the only new example
was Zn.)

(2) Showed that row equivalent coefficient matrices give rise to homogeneous equations with
the same solution sets.

2. Row operations

Here is a definition : An m × n matrix A is called row-reduced if :
(1) The first non-zero entry of every row is 1.
(2) The other entries below and above these 1’s are zero.

Here is a useful proposition : Every matrix over a field is row equivalent to a row-reduced matrix.

Proof. A 1 × n matrix can obviously be row reduced in 1 step. Inductively, consider an (m + 1) × n
matrix. First make the pivot of the first row 1. Then row-reduce the the m × n submatrix (leaving
the first row intact). Use the leading 1’s (the pivots) to make the corresponding entries in the first
row zero. �

Here is another definition : A matrix A is said to be in row echelon form if it is row reduced and if
the pivot in row k occurs in the k jth column, then k1 < k2 < . . .. It is easy to come up with examples
and counterexamples to these concepts.
Every matrix is row equivalent to a row echelon matrix. Indeed, row reduce the matrix and use a
finite number of row interchanges to bring it to the row echelon form.
Here is a proposition about solutions of homogeneous equations : If A is an m×n matrix and m < n,
then AX = 0 has a non-trivial solution.

Proof. Bring A to its row echelon form B. There are at most m pivots and n variables. Hence, we
can solve for at most m variables with at least n − m free variables. Therefore there is a non-trivial
solution. �

Here is a related result : If A is an n × n square matrix, then A is row-equivalent to the identity
matrix iff AX = 0 has only the trivial solution.

Proof. The ”if” direction is trivial. If AX = 0 has only the trivial solution, then after row-reducing to
the echelon form BX = 0, the last pivot has to occur in the last row (if the last row is identically zero,
we have non-trivial solutions). Hence B = I. �

Now we shall deal with the real problem : Solving AX = Y. Note that if AX0 = Y, then any other
solution of AX = Y is of the form X0 + Z where AZ = 0. So the problem is to know whether there is
even a single solution or not. (If there is none, such a system is said to be inconsistent.) When dealing
with such equations, row operations should be performed on the right hand side as well. Therefore,
we consider the “augmented” matrix A′i j = Ai j ∀ 1 ≤ i ≤ m, 1 ≤ j ≤ n and A′in+1 = Yi ∀ 1 ≤ i ≤ m.
Clearly, row-equivalent augmented matrices give rise to equivalent equations. In the row-echelon
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form, it is easy to see that if in any row, the first n columns are zero and the last entry is not, then
we have an inconsistent system. Otherwise, we can simply solve for the pivots and set the other
variables to arbitrary values. It is once again easy to look at examples.

Terminology : The number of non-zero rows in the row echelon form is called the row rank of A.

3. Matrix multiplication and invertible matrices

Since taking linear combinations of rows is so important, given a bunch of m × n elements of
the field Ai j, and a bunch of rows β1, . . . , βn, new rows γi =

∑
j Ai jβ j define a matrix C such that

Cik = (γi)k. Note that if B jk = (β j)k, then Cik =
∑

j Ai jB jk. We product of an m×n matrix A and an n×p
matrix B to be the m × p matrix C = AB given as above. Clearly, products of arbitrary matrices do
not make sense. Moreover, matrix multiplication is not commutative (even over Z2). It is crucial to
note that the rows of C are linear combinations of the rows of B with the coefficients being A. Here
are important examples.

(1) AI = IA = A for square matrices.
(2) 0A = 0 for appropriately sized zero matrices.
(3) AX = Y is honest matrix multiplication.
(4) Matrix multiplication is associative : Indeed, (A(BC))il =

∑
j Ai j(BC) jl =

∑
j Ai j
∑

k B jkCkl =∑
k(
∑

j Ai jB jk)Ckl = ((AB)C)il.
In particular, An is unambiguously defined.

(5) An elementary matrix is an m×m matrix that can be obtained from the m×m identity matrix
by means of an elementary row operation. Let e be an elementary row operation and E = e(I).
Then e(A) = EA.

Proof. We shall do this case-by-case.
(a) Rr → cRr. Then (E)rj = cδrj, Ei j = δi j i , r. Also, e(A)rj = cArj, e(A)i j = Ai j i , r. Hence

e(A) = EA.
(b) Rr ↔ Rs. In this case (E)rj = δsj, Esj = δrj, Ei j = δi j ∀ i , r, s. Clearly, (EA)rk =

∑
j ErjA jk =

Ask and likewise for (EA)sk. (EA)ik =
∑

j δi jA jk = Aik.
(c) Rr → Rr + cRs. (E)i j = δi j ∀ i , r. Erj = δrj + cδsj. Note that (EA)ik = Aik ∀ i , r.

(EA)rk =
∑

j(δrj + cδsj)A jk = Ark + cAsk.
�
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