NOTES FOR 7 NOV (THURSDAY)

1. Recar

(1) Studied orthogonal projections.
(2) Finite-dimensional little Riesz representation theorem and adjoints.

2. LINEAR FUNCTIONALS AND ADJOINTS

An operator (between finite-dimensional vector spaces) is called self-adjoint or Hermitian if
T =T 1ie., (v,Tw) = (Tv,w). This definition coincides with our earlier definition. Please note that
in infinited dimensions, self-adjoint is far more subtle (basically because the domains need to be
considered carefully).

Note that when V is a finite-dimensional vector space, T — T~ is an anti-linear isomorphism
between L(V, V) and itself. Indeed, (v, (al + bT)*(w)) = {(al + bT)v,w) = a{v, U*w) + byo, T*w) =
(v, @U* + bT*)w). Moreover, it is easy to see that (UT)* = T*U* and (T*)* = T. Also note that every
linear operator T can be written as TET* + V-1 % (Justlikez = x + \/—_1y.)

To look at the matrix formulation of the above, firstly, if e; is an ordered orthonormal basis of V,
then the matrix of T in that basis is Aj; = (Te;,¢;). Indeed, Te; = Ajiej. Hence, (Te;,ej) = Aji. So
(A%ji = (T'ei,e) = (e;, Tej) = A_lj Hence, A* = A'. So a Hermitian operator is represented by a
Hermitian matrix in an orthonormal basis. Here are examples of adjoints.

(1) Consider the linear map Ly : Mat — Mat given by Ly(A) = MA. Then, equipped
with the usual inner product (A, B) = tr(ABY), its adjoint is tr(Ly(A)BT) == tr(MAB') =
tr(AB*M)tr(A(L;,B)"). Hence L} B = M'B.

(2) Let V be the space of polynomial functions on [-1, 1] of degree < 10 equipped with the L2
inner product. Let T : V — V be the operator T(p) = V-1p’. Then (Tp,g) = f_l 1 V-1p'gdx =

_ _ 1 ., _ _
V=1p(1)3(1) = V=1p(0)3(0) = [ V=1pg'dx = V=1p(1)3(1) = V=1p(-1)3(-1) + (p, Tg). So
it is not self-adjoint unless the boundary term is 0 (for instance if we restrict ourselves to
polynomials that vanish at the end-points).

3. NORMS OF OPERATORS

We digress a bit to discuss how much operators “stretch” vectors. Before that, define two norms
to be equivalent if there exist positive constants m, M such that m|[v||; < [[v|l, < Mlv]l; ¥V v € V. Here
is a little observation.

Lemma 3.1. On finite-dimensional vector spaces, any two norms are equivalent.

Proof. We shall prove that every norm is equivalent to one that is induced by a fixed inner product

(whose norm is ||.|lp). Indeed, choose some inner product (by isomorphism with C" for instance)

and take an orthonormal basis ey, ..., e,. The unit sphere Sy in this norm is compact. (Indeed, it is

the unit sphere in C" in the orthonormal basis.) Moreover, ||.||; is a continuous function in the ||.||o

topology. Indeed, |lx, — x|l1 < |(x; — x)illleilli < Clx, — x|; < C+/nllx, — xlo. Hence, the function ||.||;
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achieves a minimum m on Sy (which is not zero). Thus, ||v]|; = ||U||0||ﬁ||1 > m||v||p. Likewise for the
maximum. m|

As a corollary, we see that the unit ball is compact for every finite-dimensional normed vector

space. (In fact, if reasonable restrictions are imposed on the norm, this property is true strictly for
finite-dimensional spaces.)
If T:V — Wis a linear map between two normed vector spaces, then the operator norm of
T is defined as ||T|| = SUP =1 ITo|l. If V and W are finite-dimensional, then the supremum is a
maximum by compactness of the unit ball. Hence, on the space Mat,x,(C), there are several possible
(equivalent) equivalent norms : The operator norm, The norm from the inner product on C", and
the taxi-cab norm ||A]| = Zi, j |Aij|. However, the equivalence might change with n. For instance, the
operator norm of I is 1, whereas in the other norms it is v/, n, which grow with increasing n. Note
that if A is invertible, then 1 < ||A||0p||A‘1||op.

Here is an interesting and useful lemma.

Lemma 3.2. Let A € Mat,x,(C).
(1) IfllAllop < 1, then I — A is invertible.
(2) The series e = Y 4 converges. Moreover, eA*B = eAeB if A and B commute. Also, the function et
is differentiable for all t € R with the derivative being Ae™.

Proof. (1) Let B = Y A*. This series converges in the operator norm topology. Indeed,
||ZQ£NAk”0p < Z‘f{viNllAHk < % — 0as N - oo. So at least B is a Cauchy sequence.
Since all norms over f.d. spaces are equivalent, this space is complete and B converges (in
fact, in all other norms too). So, in particular, the elements of B converge absolutely. Now,
(I-A)B =B-AB = Y, Ak-Y, A*1. By absolute convergence, any order of summation gives

the same result. Hence (I — A)B = 1.
(2) Akin to the above, || ZkM: N %k” < f{w N ”’2," which is of course Cauchy and hence converges

(and hence does so absolutely, entrywise). The property e1*8 = edeP if A and B commute
At oAt el I hA

has the same proof as for numbers. Now, limy,_,y == — Ae’t’ = eM(limy, . Now,
=LA = (A + ) < AL+ ) - 0ash — 0.
o
As a corollary,
Proposition 3.3. The differential equatzon = Av with v(0) = v has a unique solution v = vy,
Proof. Note that & U) = 0. Hence, v = e*vy. O

4. UNITARY OPERATORS; SPECTRAL THEOREM FOR SELF-ADJOINT OPERATORS

Let V, W be inner product spaces. A linear map T : V — W is said to preserve inner products if
(Tu, Tv) = (u,v) for all u,v € V. If T is an isomorphism, it is said to be a unitary isomorphism. If V'
and W are the same, it is called a unitary operator.

Note that a map is inner-product preserving iff it takes an orthornormal basis to an orthonormal
set. Indeed, (e, ¢j) = (Te;, Tej) = 0; if ¢; is an orthonormal basis and T is inner-product preserving.
Conversely, (Tv, Tw) = (3;viT(e), Y. j w;T(e;)) = viw; = (v, w) if it takes an orthonormal basis to an
orthonormal set. Hence, if V is finite-dimensional, then an inner-product preserving operator is
unitary. The product of two unitaries is a unitary. Moreover, clearly inner-product preserving maps
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preserve the norms too. In fact, a linear norm-preserving map is inner product preserving (linearity
is crucial). Indeed, this follows from a polarisation identity.
Another point is :

Proposition 4.1. Let U be a unitary operator on an inner product space V. Then U has an adjoint, i.e., an
operator U* : V. — V such that (Ux, y) = (x, U'y) ¥V x,y € V and it satisfies UU* = U"U = L.

Proof. U has an inverse U-!. Now [[U x| = [UMU x| = ||x|| and hence U ! is unitary too. Now
(x, Uly) = (U 'Ux, U ly) = (Ux,y). Thus, U* = UL o

If ¢; is an orthonormal basis and A is the matrix of U in that basis, then (x, y) = (Ux, Uy) = (Ax)TA_y.
Thus, AtA = I and likewise, AAT = I. Such a matrix is called a unitary matrix. A real unitary matrix
is called an orthogonal matrix.
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