NOTES FOR 7 NOV (THURSDAY)

1. Recap

(1) Studied orthogonal projections.

(2) Finite-dimensional little Riesz representation theorem and adjoints.

2. Linear functionals and adjoints

An operator (between finite-dimensional vector spaces) is called self-adjoint or Hermitian if $T = T^*$, i.e., $\langle v, Tw \rangle = \langle Tv, w \rangle$. This definition coincides with our earlier definition. Please note that in infinited dimensions, self-adjoint is far more subtle (basically because the domains need to be considered carefully).

Note that when *V* is a finite-dimensional vector space, $T \to T^*$ is an anti-linear isomorphism between L(V, V) and itself. Indeed, $\langle v, (aU + bT)^*(w) \rangle = \langle (aU + bT)v, w \rangle = a \langle v, U^*w \rangle + b \rangle v, T^*w \rangle = \langle v, (\bar{a}U^* + \bar{b}T^*)w \rangle$. Moreover, it is easy to see that $(UT)^* = T^*U^*$ and $(T^*)^* = T$. Also note that every linear operator *T* can be written as $\frac{T+T^*}{2} + \sqrt{-1}\frac{T-T^*}{2\sqrt{-1}}$. (Just like $z = x + \sqrt{-1}y$.)

To look at the matrix formulation of the above, firstly, if e_i is an ordered orthonormal basis of V, then the matrix of T in that basis is $A_{ji} = \langle Te_i, e_j \rangle$. Indeed, $Te_i = A_{ji}e_j$. Hence, $\langle Te_i, e_j \rangle = A_{ji}$. So $(A^*)_{ji} = \langle T^*e_i, e_j \rangle = \langle e_i, Te_j \rangle = \overline{A_{ij}}$. Hence, $A^* = A^{\dagger}$. So a Hermitian operator is represented by a Hermitian matrix *in an orthonormal basis*. Here are examples of adjoints.

- (1) Consider the linear map $L_M : Mat \to Mat$ given by $L_M(A) = MA$. Then, equipped with the usual inner product $\langle A, B \rangle = tr(AB^{\dagger})$, its adjoint is $tr(L_M(A)B^{\dagger}) = tr(MAB^{\dagger}) = tr(AB^{\dagger}M)tr(A(L_M^*B)^{\dagger})$. Hence $L_M^*B = M^{\dagger}B$.
- (2) Let *V* be the space of polynomial functions on [-1, 1] of degree ≤ 10 equipped with the L^2 inner product. Let $T: V \to V$ be the operator $T(p) = \sqrt{-1}p'$. Then $(Tp, g) = \int_{-1}^{1} \sqrt{-1}p'\bar{g}dx = \sqrt{-1}p(1)\bar{g}(1) \sqrt{-1}p(0)\bar{g}(0) \int_{-1}^{1} \sqrt{-1}p\bar{g}'dx = \sqrt{-1}p(1)\bar{g}(1) \sqrt{-1}p(-1)\bar{g}(-1) + (p, Tg)$. So it is not self-adjoint unless the boundary term is 0 (for instance if we restrict ourselves to polynomials that vanish at the end-points).

3. Norms of operators

We digress a bit to discuss how much operators "stretch" vectors. Before that, define two norms to be equivalent if there exist positive constants m, M such that $m||v||_1 \le ||v||_2 \le M||v||_1 \forall v \in V$. Here is a little observation.

Lemma 3.1. On finite-dimensional vector spaces, any two norms are equivalent.

Proof. We shall prove that every norm is equivalent to one that is induced by a fixed inner product (whose norm is $\|.\|_0$). Indeed, choose some inner product (by isomorphism with \mathbb{C}^n for instance) and take an orthonormal basis e_1, \ldots, e_n . The unit sphere S_0 in this norm is compact. (Indeed, it is the unit sphere in \mathbb{C}^n in the orthonormal basis.) Moreover, $\|.\|_1$ is a continuous function in the $\|.\|_0$ topology. Indeed, $\|x_n - x\|_1 \le |(x_n - x)_i| \|e_i\|_1 \le C|x_n - x|_i \le C\sqrt{n} \|x_n - x\|_0$. Hence, the function $\|.\|_1$

NOTES FOR 7 NOV (THURSDAY)

achieves a minimum *m* on S_0 (which is not zero). Thus, $||v||_1 = ||v||_0 ||\frac{v}{||v||_0}||_1 \ge m ||v||_0$. Likewise for the maximum.

As a corollary, we see that the unit ball is compact for every finite-dimensional normed vector space. (In fact, if reasonable restrictions are imposed on the norm, this property is true strictly for finite-dimensional spaces.)

If $T: V \rightarrow W$ is a linear map between two normed vector spaces, then the operator norm of T is defined as $||T|| = \sup_{||v||=1} ||Tv||$. If V and W are finite-dimensional, then the supremum is a maximum by compactness of the unit ball. Hence, on the space $Mat_{n\times n}(\mathbb{C})$, there are several possible (equivalent) equivalent norms : The operator norm, The norm from the inner product on \mathbb{C}^{n^2} , and the taxi-cab norm $||A|| = \sum_{i,j} |A_{ij}|$. However, the equivalence might change with *n*. For instance, the operator norm of *I* is 1, whereas in the other norms it is \sqrt{n} , *n*, which grow with increasing *n*. Note that if *A* is invertible, then $1 \leq ||A||_{op} ||A^{-1}||_{op}$.

Here is an interesting and useful lemma.

Lemma 3.2. Let $A \in Mat_{n \times n}(\mathbb{C})$.

- (1) If $||A||_{op} < 1$, then I A is invertible.
- (2) The series $e^A = \sum_k \frac{A^k}{k!}$ converges. Moreover, $e^{A+B} = e^A e^B$ if A and B commute. Also, the function e^{At} is differentiable for all $t \in \mathbb{R}$ with the derivative being Ae^{At} .
- (1) Let $B = \sum_{k} A^{k}$. This series converges in the operator norm topology. Indeed, $\|\sum_{k=N}^{M} A^{k}\|_{op} \leq \sum_{k=N}^{M} \|A\|^{k} \leq \frac{\|A\|^{N}}{1-\|A\|} \to 0$ as $N \to \infty$. So at least *B* is a Cauchy sequence. Since all norms over f.d. spaces are equivalent, this space is complete and *B* converges (in Proof. fact, in all other norms too). So, in particular, the elements of *B* converge absolutely. Now, $(I-A)B = B - AB = \sum_{k} A^{k} - \sum_{k} A^{k+1}$. By absolute convergence, any order of summation gives the same result. Hence (I - A)B = I.
 - (2) Akin to the above, $\|\sum_{k=N}^{M} \frac{A^k}{k!}\| \le \sum_{k=N}^{M} \frac{\|A\|^k}{k!}$ which is of course Cauchy and hence converges (and hence does so absolutely, entrywise). The property $e^{A+B} = e^A e^B$ if A and B commute has the same proof as for numbers. Now, $\lim_{h\to 0} \frac{e^{A(t+h)}-e^{At}}{h} - Ae^{At} = e^{At}(\lim_{h\to 0} \frac{e^{Ah}-I-hA}{h}$. Now, $\left\|\frac{e^{Ah}-I-hA}{h}\right\| = \left\|h(\frac{A}{2!}+\ldots)\right\| \le \left|h\left(\frac{\|A\|}{2!}+\ldots\right)\to 0 \text{ as } h\to 0.$

As a corollary,

Proposition 3.3. The differential equation $\frac{dv}{dt} = Av$ with $v(0) = v_0$ has a unique solution $v = e^{At}v_0$.

Proof. Note that
$$\frac{d(e^{-At}v)}{dt} = 0$$
. Hence, $v = e^{At}v_0$.

4. UNITARY OPERATORS; SPECTRAL THEOREM FOR SELF-ADJOINT OPERATORS

Let V, W be inner product spaces. A linear map $T: V \to W$ is said to preserve inner products if (Tu, Tv) = (u, v) for all $u, v \in V$. If T is an isomorphism, it is said to be a unitary isomorphism. If V and *W* are the same, it is called a unitary operator.

Note that a map is inner-product preserving iff it takes an orthornormal basis to an orthonormal set. Indeed, $(e_i, e_j) = (Te_i, Te_j) = \delta_{ij}$ if e_i is an orthonormal basis and T is inner-product preserving. Conversely, $(Tv, Tw) = (\sum_i v_i T(e_i), \sum_j w_j T(e_j)) = v_i \overline{w}_j = (v, w)$ if it takes an orthonormal basis to an orthonormal set. Hence, if V is finite-dimensional, then an inner-product preserving operator is unitary. The product of two unitaries is a unitary. Moreover, clearly inner-product preserving maps

NOTES FOR 7 NOV (THURSDAY)

preserve the norms too. In fact, a linear norm-preserving map is inner product preserving (linearity is crucial). Indeed, this follows from a polarisation identity.

Another point is :

Proposition 4.1. Let U be a unitary operator on an inner product space V. Then U has an adjoint, i.e., an operator $U^* : V \to V$ such that $(Ux, y) = (x, U^*y) \forall x, y \in V$ and it satisfies $UU^* = U^*U = I$.

Proof. U has an inverse U^{-1} . Now $||U^{-1}x|| = ||U(U^{-1})x|| = ||x||$ and hence U^{-1} is unitary too. Now $(x, U^{-1}y) = (U^{-1}Ux, U^{-1}y) = (Ux, y)$. Thus, $U^* = U^{-1}$.

If e_i is an orthonormal basis and A is the matrix of U in that basis, then $(x, y) = (Ux, Uy) = (Ax)^T \overline{Ay}$. Thus, $A^{\dagger}A = I$ and likewise, $AA^{\dagger} = I$. Such a matrix is called a unitary matrix. A real unitary matrix is called an orthogonal matrix.