
NOTES FOR 7 NOV (THURSDAY)

1. Recap

(1) Studied orthogonal projections.
(2) Finite-dimensional little Riesz representation theorem and adjoints.

2. Linear functionals and adjoints

An operator (between finite-dimensional vector spaces) is called self-adjoint or Hermitian if
T = T∗, i.e., 〈v,Tw〉 = 〈Tv,w〉. This definition coincides with our earlier definition. Please note that
in infinited dimensions, self-adjoint is far more subtle (basically because the domains need to be
considered carefully).

Note that when V is a finite-dimensional vector space, T → T∗ is an anti-linear isomorphism
between L(V,V) and itself. Indeed, 〈v, (aU + bT)∗(w)〉 = 〈(aU + bT)v,w〉 = a〈v,U∗w〉 + b〉v,T∗w〉 =
〈v, (āU∗ + b̄T∗)w〉. Moreover, it is easy to see that (UT)∗ = T∗U∗ and (T∗)∗ = T. Also note that every
linear operator T can be written as T+T∗

2 +
√
−1 T−T∗

2
√
−1

. (Just like z = x +
√
−1y.)

To look at the matrix formulation of the above, firstly, if ei is an ordered orthonormal basis of V,
then the matrix of T in that basis is A ji = 〈Tei, e j〉. Indeed, Tei = A jie j. Hence, 〈Tei, e j〉 = A ji. So
(A∗) ji = 〈T∗ei, e j〉 = 〈ei,Te j〉 = Ai j. Hence, A∗ = A†. So a Hermitian operator is represented by a
Hermitian matrix in an orthonormal basis. Here are examples of adjoints.

(1) Consider the linear map LM : Mat → Mat given by LM(A) = MA. Then, equipped
with the usual inner product 〈A,B〉 = tr(AB†), its adjoint is tr(LM(A)B†) == tr(MAB†) =
tr(AB†M)tr(A(L∗MB)†). Hence L∗MB = M†B.

(2) Let V be the space of polynomial functions on [−1, 1] of degree ≤ 10 equipped with the L2

inner product. Let T : V → V be the operator T(p) =
√
−1p′. Then (Tp, g) =

∫ 1
−1

√
−1p′ ḡdx =

√
−1p(1)ḡ(1) −

√
−1p(0)ḡ(0) −

∫ 1
−1

√
−1pḡ′dx =

√
−1p(1)ḡ(1) −

√
−1p(−1)ḡ(−1) + (p,Tg). So

it is not self-adjoint unless the boundary term is 0 (for instance if we restrict ourselves to
polynomials that vanish at the end-points).

3. Norms of operators

We digress a bit to discuss how much operators “stretch” vectors. Before that, define two norms
to be equivalent if there exist positive constants m,M such that m‖v‖1 ≤ ‖v‖2 ≤M‖v‖1 ∀ v ∈ V. Here
is a little observation.

Lemma 3.1. On finite-dimensional vector spaces, any two norms are equivalent.

Proof. We shall prove that every norm is equivalent to one that is induced by a fixed inner product
(whose norm is ‖.‖0). Indeed, choose some inner product (by isomorphism with Cn for instance)
and take an orthonormal basis e1, . . . , en. The unit sphere S0 in this norm is compact. (Indeed, it is
the unit sphere in Cn in the orthonormal basis.) Moreover, ‖.‖1 is a continuous function in the ‖.‖0
topology. Indeed, ‖xn − x‖1 ≤ |(xn − x)i|‖ei‖1 ≤ C|xn − x|i ≤ C

√
n‖xn − x‖0. Hence, the function ‖.‖1
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achieves a minimum m on S0 (which is not zero). Thus, ‖v‖1 = ‖v‖0‖ v
‖v‖0
‖1 ≥ m‖v‖0. Likewise for the

maximum. �

As a corollary, we see that the unit ball is compact for every finite-dimensional normed vector
space. (In fact, if reasonable restrictions are imposed on the norm, this property is true strictly for
finite-dimensional spaces.)
If T : V → W is a linear map between two normed vector spaces, then the operator norm of
T is defined as ‖T‖ = sup

‖v‖=1 ‖Tv‖. If V and W are finite-dimensional, then the supremum is a
maximum by compactness of the unit ball. Hence, on the space Matn×n(C), there are several possible
(equivalent) equivalent norms : The operator norm, The norm from the inner product on Cn2

, and
the taxi-cab norm ‖A‖ =

∑
i, j |Ai j|. However, the equivalence might change with n. For instance, the

operator norm of I is 1, whereas in the other norms it is
√

n,n, which grow with increasing n. Note
that if A is invertible, then 1 ≤ ‖A‖op‖A−1

‖op.
Here is an interesting and useful lemma.

Lemma 3.2. Let A ∈Matn×n(C).
(1) If ‖A‖op < 1, then I − A is invertible.
(2) The series eA =

∑
k

Ak

k! converges. Moreover, eA+B = eAeB if A and B commute. Also, the function eAt

is differentiable for all t ∈ R with the derivative being AeAt.

Proof. (1) Let B =
∑

k Ak. This series converges in the operator norm topology. Indeed,
‖
∑M

k=N Ak
‖op ≤

∑M
k=N ‖A‖

k
≤
‖A‖N

1−‖A‖ → 0 as N → ∞. So at least B is a Cauchy sequence.
Since all norms over f.d. spaces are equivalent, this space is complete and B converges (in
fact, in all other norms too). So, in particular, the elements of B converge absolutely. Now,
(I−A)B = B−AB =

∑
k Ak
−
∑

k Ak+1. By absolute convergence, any order of summation gives
the same result. Hence (I − A)B = I.

(2) Akin to the above, ‖
∑M

k=N
Ak

k! ‖ ≤
∑M

k=N
‖A‖k

k! which is of course Cauchy and hence converges
(and hence does so absolutely, entrywise). The property eA+B = eAeB if A and B commute
has the same proof as for numbers. Now, limh→0

eA(t+h)
−eAt

h − AeAt = eAt(limh→0
eAh
−I−hA

h . Now,
‖

eAh
−I−hA

h ‖ = ‖h( A
2! + . . .)‖ ≤ |h|( ‖A‖2! + . . .)→ 0 as h→ 0.

�

As a corollary,

Proposition 3.3. The differential equation dv
dt = Av with v(0) = v0 has a unique solution v = eAtv0.

Proof. Note that d(e−Atv)
dt = 0. Hence, v = eAtv0. �

4. Unitary operators; Spectral theorem for self-adjoint operators

Let V,W be inner product spaces. A linear map T : V → W is said to preserve inner products if
(Tu,Tv) = (u, v) for all u, v ∈ V. If T is an isomorphism, it is said to be a unitary isomorphism. If V
and W are the same, it is called a unitary operator.

Note that a map is inner-product preserving iff it takes an orthornormal basis to an orthonormal
set. Indeed, (ei, e j) = (Tei,Te j) = δi j if ei is an orthonormal basis and T is inner-product preserving.
Conversely, (Tv,Tw) = (

∑
i viT(ei),

∑
j w jT(e j)) = viw̄ j = (v,w) if it takes an orthonormal basis to an

orthonormal set. Hence, if V is finite-dimensional, then an inner-product preserving operator is
unitary. The product of two unitaries is a unitary. Moreover, clearly inner-product preserving maps
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preserve the norms too. In fact, a linear norm-preserving map is inner product preserving (linearity
is crucial). Indeed, this follows from a polarisation identity.

Another point is :

Proposition 4.1. Let U be a unitary operator on an inner product space V. Then U has an adjoint, i.e., an
operator U∗ : V → V such that (Ux, y) = (x,U∗y) ∀ x, y ∈ V and it satisfies UU∗ = U∗U = I.

Proof. U has an inverse U−1. Now ‖U−1x‖ = ‖U(U−1)x‖ = ‖x‖ and hence U−1 is unitary too. Now
(x,U−1y) = (U−1Ux,U−1y) = (Ux, y). Thus, U∗ = U−1. �

If ei is an orthonormal basis and A is the matrix of U in that basis, then (x, y) = (Ux,Uy) = (Ax)TAy.
Thus, A†A = I and likewise, AA† = I. Such a matrix is called a unitary matrix. A real unitary matrix
is called an orthogonal matrix.
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