NOTES FOR 7 NOV (THURSDAY)

1. Recap

(1) Studied orthogonal projections.
(2) Finite-dimensional little Riesz representation theorem and adjoints.

2. Linear functionals and adjoints

An operator (between finite-dimensional vector spaces) is called self-adjoint or Hermitian if $T=T^{*}$, i.e., $\langle v, T w\rangle=\langle T v, w\rangle$. This definition coincides with our earlier definition. Please note that in infinited dimensions, self-adjoint is far more subtle (basically because the domains need to be considered carefully).

Note that when V is a finite-dimensional vector space, $T \rightarrow T^{*}$ is an anti-linear isomorphism between $L(V, V)$ and itself. Indeed, $\left.\left.\left\langle v,(a U+b T)^{*}(w)\right\rangle=\langle(a U+b T) v, w\rangle=a\left\langle v, U^{*} w\right\rangle+b\right\rangle v, T^{*} w\right\rangle=$ $\left\langle v,\left(\bar{a} U^{*}+\bar{b} T^{*}\right) w\right\rangle$. Moreover, it is easy to see that $(U T)^{*}=T^{*} U^{*}$ and $\left(T^{*}\right)^{*}=T$. Also note that every linear operator T can be written as $\frac{T+T^{*}}{2}+\sqrt{-1} \frac{T-T^{*}}{2 \sqrt{-1}}$. (Just like $z=x+\sqrt{-1} y$.)

To look at the matrix formulation of the above, firstly, if e_{i} is an ordered orthonormal basis of V, then the matrix of T in that basis is $A_{j i}=\left\langle T e_{i}, e_{j}\right\rangle$. Indeed, $T e_{i}=A_{j i} e_{j}$. Hence, $\left\langle T e_{i}, e_{j}\right\rangle=A_{j i}$. So $\left(A^{*}\right)_{j i}=\left\langle T^{*} e_{i}, e_{j}\right\rangle=\left\langle e_{i}, T e_{j}\right\rangle=\overline{A_{i j}}$. Hence, $A^{*}=A^{\dagger}$. So a Hermitian operator is represented by a Hermitian matrix in an orthonormal basis. Here are examples of adjoints.
(1) Consider the linear map $L_{M}: M a t \rightarrow$ Mat given by $L_{M}(A)=M A$. Then, equipped with the usual inner product $\langle A, B\rangle=\operatorname{tr}\left(A B^{\dagger}\right)$, its adjoint is $\operatorname{tr}\left(L_{M}(A) B^{\dagger}\right)==\operatorname{tr}\left(M A B^{\dagger}\right)=$ $\operatorname{tr}\left(A B^{\dagger} M\right) \operatorname{tr}\left(A\left(L_{M}^{*} B\right)^{\dagger}\right)$. Hence $L_{M}^{*} B=M^{\dagger} B$.
(2) Let V be the space of polynomial functions on $[-1,1]$ of degree ≤ 10 equipped with the L^{2} inner product. Let $T: V \rightarrow V$ be the operator $T(p)=\sqrt{-1} p^{\prime}$. Then $(T p, g)=\int_{-1}^{1} \sqrt{-1} p^{\prime} \bar{g} d x=$ $\sqrt{-1} p(1) \bar{g}(1)-\sqrt{-1} p(0) \bar{g}(0)-\int_{-1}^{1} \sqrt{-1} p \bar{g}^{\prime} d x=\sqrt{-1} p(1) \bar{g}(1)-\sqrt{-1} p(-1) \bar{g}(-1)+(p, T g)$. So it is not self-adjoint unless the boundary term is 0 (for instance if we restrict ourselves to polynomials that vanish at the end-points).

3. Norms of operators

We digress a bit to discuss how much operators "stretch" vectors. Before that, define two norms to be equivalent if there exist positive constants m, M such that $m\|v\|_{1} \leq\|v\|_{2} \leq M\|v\|_{1} \forall v \in V$. Here is a little observation.

Lemma 3.1. On finite-dimensional vector spaces, any two norms are equivalent.
Proof. We shall prove that every norm is equivalent to one that is induced by a fixed inner product (whose norm is $\|.\|_{0}$). Indeed, choose some inner product (by isomorphism with \mathbb{C}^{n} for instance) and take an orthonormal basis e_{1}, \ldots, e_{n}. The unit sphere S_{0} in this norm is compact. (Indeed, it is the unit sphere in \mathbb{C}^{n} in the orthonormal basis.) Moreover, $\|.\|_{1}$ is a continuous function in the $\|.\|_{0}$ topology. Indeed, $\left\|x_{n}-x\right\|_{1} \leq\left|\left(x_{n}-x\right)_{i}\right|\left\|e_{i}\right\|_{1} \leq C\left|x_{n}-x\right|_{i} \leq C \sqrt{n}\left\|x_{n}-x\right\|_{0}$. Hence, the function $\|\cdot\|_{1}$
achieves a minimum m on S_{0} (which is not zero). Thus, $\|v\|_{1}=\|v\|_{0}\left\|\frac{v}{\|v\|_{0}}\right\|_{1} \geq m\|v\|_{0}$. Likewise for the maximum.

As a corollary, we see that the unit ball is compact for every finite-dimensional normed vector space. (In fact, if reasonable restrictions are imposed on the norm, this property is true strictly for finite-dimensional spaces.)
If $T: V \rightarrow W$ is a linear map between two normed vector spaces, then the operator norm of T is defined as $\|T\|=\sup _{\|v\|=1}\|T v\|$. If V and W are finite-dimensional, then the supremum is a maximum by compactness of the unit ball. Hence, on the space $\operatorname{Mat}_{n \times n}(\mathbb{C})$, there are several possible (equivalent) equivalent norms : The operator norm, The norm from the inner product on $\mathbb{C}^{n^{2}}$, and the taxi-cab norm $\|A\|=\sum_{i, j}\left|A_{i j}\right|$. However, the equivalence might change with n. For instance, the operator norm of I is 1 , whereas in the other norms it is \sqrt{n}, n, which grow with increasing n. Note that if A is invertible, then $1 \leq\|A\|_{o p}\left\|A^{-1}\right\|_{o p}$.

Here is an interesting and useful lemma.
Lemma 3.2. Let $A \in \operatorname{Mat}_{n \times n}(\mathbb{C})$.
(1) If $\|A\|_{o p}<1$, then $I-A$ is invertible.
(2) The series $e^{A}=\sum_{k} \frac{A^{k}}{k!}$ converges. Moreover, $e^{A+B}=e^{A} e^{B}$ if A and B commute. Also, the function $e^{A t}$ is differentiable for all $t \in \mathbb{R}$ with the derivative being $A e^{A t}$.

Proof. (1) Let $B=\sum_{k} A^{k}$. This series converges in the operator norm topology. Indeed, $\left\|\sum_{k=N}^{M} A^{k}\right\|_{o p} \leq \sum_{k=N}^{M}\|A\|^{k} \leq \frac{\|A\|^{N}}{1-\|A\|} \rightarrow 0$ as $N \rightarrow \infty$. So at least B is a Cauchy sequence. Since all norms over f.d. spaces are equivalent, this space is complete and B converges (in fact, in all other norms too). So, in particular, the elements of B converge absolutely. Now, $(I-A) B=B-A B=\sum_{k} A^{k}-\sum_{k} A^{k+1}$. By absolute convergence, any order of summation gives the same result. Hence $(I-A) B=I$.
(2) Akin to the above, $\left\|\sum_{k=N}^{M} \frac{A^{k}}{k!}\right\| \leq \sum_{k=N}^{M} \frac{\|A\|^{k}}{k!}$ which is of course Cauchy and hence converges (and hence does so absolutely, entrywise). The property $e^{A+B}=e^{A} e^{B}$ if A and B commute has the same proof as for numbers. Now, $\lim _{h \rightarrow 0} \frac{e^{A(t+h)}-e^{A t}}{h}-A e^{A t}=e^{A t}\left(\lim _{h \rightarrow 0} \frac{e^{A h}-I-h A}{h}\right.$. Now, $\left\|\frac{\|{ }^{A h}-I-h A}{h}\right\|=\left\|h\left(\frac{A}{2!}+\ldots\right)\right\| \leq|h|\left(\frac{\|A\|}{2!}+\ldots\right) \rightarrow 0$ as $h \rightarrow 0$.

As a corollary,
Proposition 3.3. The differential equation $\frac{d v}{d t}=A v$ with $v(0)=v_{0}$ has a unique solution $v=e^{A t} v_{0}$.
Proof. Note that $\frac{d\left(e^{-A t} v\right)}{d t}=0$. Hence, $v=e^{A t} v_{0}$.

4. Unitary operators; Spectral theorem for self-adjoint operators

Let V, W be inner product spaces. A linear map $T: V \rightarrow W$ is said to preserve inner products if (Tu,Tv) $=(u, v)$ for all $u, v \in V$. If T is an isomorphism, it is said to be a unitary isomorphism. If V and W are the same, it is called a unitary operator.

Note that a map is inner-product preserving iff it takes an orthornormal basis to an orthonormal set. Indeed, $\left(e_{i}, e_{j}\right)=\left(T e_{i}, T e_{j}\right)=\delta_{i j}$ if e_{i} is an orthonormal basis and T is inner-product preserving. Conversely, $(T v, T w)=\left(\sum_{i} v_{i} T\left(e_{i}\right), \sum_{j} w_{j} T\left(e_{j}\right)\right)=v_{i} \bar{w}_{j}=(v, w)$ if it takes an orthonormal basis to an orthonormal set. Hence, if V is finite-dimensional, then an inner-product preserving operator is unitary. The product of two unitaries is a unitary. Moreover, clearly inner-product preserving maps
preserve the norms too. In fact, a linear norm-preserving map is inner product preserving (linearity is crucial). Indeed, this follows from a polarisation identity.

Another point is :
Proposition 4.1. Let U be a unitary operator on an inner product space V. Then U has an adjoint, i.e., an operator $U^{*}: V \rightarrow V$ such that $(U x, y)=\left(x, U^{*} y\right) \forall x, y \in V$ and it satisfies $U U^{*}=U^{*} U=I$.
Proof. U has an inverse U^{-1}. Now $\left\|U^{-1} x\right\|=\left\|U\left(U^{-1}\right) x\right\|=\|x\|$ and hence U^{-1} is unitary too. Now $\left(x, U^{-1} y\right)=\left(U^{-1} U x, U^{-1} y\right)=(U x, y)$. Thus, $U^{*}=U^{-1}$.

If e_{i} is an orthonormal basis and A is the matrix of U in that basis, then $(x, y)=(U x, U y)=(A x)^{T} \overline{A y}$. Thus, $A^{\dagger} A=I$ and likewise, $A A^{\dagger}=I$. Such a matrix is called a unitary matrix. A real unitary matrix is called an orthogonal matrix.

