
NOTES FOR 8 AUG (THURSDAY)

1. Recap

(1) Defined row reduced and row echelon forms. Proved that every matrix can be brought to
the (unique) row echelon form.

(2) Proved that AX = 0 has a non-trivial solution if m < n. If m = n it has a non-trivial solution
iff it cannot be row equivalent to the identity matrix.

(3) Defined matrix multiplication and proved that it is associative. Proved that if E = e(I) then
e(A) = EA.

2. Matrix multiplication and invertible matrices

(1) As a corollary, A is row equivalent to B iff B = PA where P is a product of m ×m elementary
matrices. Indeed, inductively, if after k elementary row operations, B′ = P′A, then after one
more, B = E(P′A) = (EP′)A = PA.

(2) The transpose AT of an m × n matrix A is an n × m matrix defined as (AT)i j = A ji. Note that
(AB)T = BTAT . If X,Y are row vectors, then XA = Y iff ATXT = YT. So we have a parallel
theory of elementary column operations, column echelon forms, and a column rank.

Def : Let A be an n× n matrix over a field. An n× n matrix B satisfying BA = I is called a left inverse
of A. Likewise, if AB = I, it is called a right inverse. If it satisfies both, it is called an inverse of A
and A is said to be invertible.
It is easy to prove that if A is invertible, then its inverse is unique. Indeed, if B1A = I and B2A = I,
then B1 = B1AB2 = B2. Moreover, A−1 is invertible with inverse A. If B is also invertible, then so is
AB and (AB)−1 = B−1A−1. Hence, a product of invertible matrices is invertible (by induction). Since
elementary row operations are invertible, so are elementary matrices.
Here is a theorem : If A is an n × n matrix, TFAE :

(1) A is left invertible.
(2) A is row equivalent to the identity matrix.
(3) A is a product of elementary matrices.

Proof. 2⇒ 3 : PA = I and hence A = P−1 = (E1E2 . . .)−1 = . . .E−1
2 E−1

1 . 3⇒ 1 : A product of invertible
matrices is invertible. Also easy to see 3⇒ 2. Indeed, A = E1 . . .Ek and hence E−1

k . . .A = I.
1⇒ 2 : If A is left invertible, then AX = 0 implies that 0 = BAX = IX = X and hence the row echelon
form of A is the identity. Therefore, I = PA. �

The proof above shows that if A is left invertible, then A = P−1 and hence A is actually right
invertible and A−1 = P (where P is a left inverse of A) and hence A is invertible ! Likewise, if A
is right invertible, i.e., there exists a B so that AB = I, then B is left invertible with left inverse A.
Hence, B is right invertible with right inverse also equal to A. Therefore, BA = I and B = A−1.
As a consequence, if A is invertible and if e(A) = I, then e(I) = A−1. Also, if A,B are m × n matrices,
then B is row equivalent to A iff B = CA where C is an invertible m ×m matrix.
A similar theorem is : A is invertible iff AX = 0 has only the trivial solution iff AX = Y has a solution
for every Y. If AX = 0 has only the trivial solution, A is row equivalent to identity. If A is invertible,
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then AX = 0 implies that X = 0. Likewise, if A is invertible, AX = Y implies that X = A−1Y. If
AX = Y has a solution for every Y, then choose Yi to be the ith column of I. Then AXi = Yi and hence
A[X1 . . .Xn] = I. (Indeed, matrix multiplication acts column by column.) This means that A is right
invertible and hence A is actually invertible.
As a last corollary, if A = A1A2 . . .Ak, then A is invertible iff each Ai is so. Indeed, if each of them
is so, we are done. In the other direction, let us induct on k. If A is invertible, then firstly Ak is
invertible. Indeed, if not, there exists an X , 0 such that AkX = 0. Hence AX = 0 - a contradiction.
Now, AA−1

k = A1 . . .Ak−1. By induction we are done.

3. Vector spaces

Here is a question from earlier : Let c1, c2, . . . , cn be real numbers such that f (x) = c1 +c2eix +c3e2ix +
. . . = 0 for all x ∈ R. Then ci = 0 for all i.

Proof. There are several ways to prove this statement. One cute way is as follows : Note that∫ 2π
0 eikxe−lx = δkl2π. Hence,

∫ 2π
0 f (x)e−ilxdx = 0 = cl2π ∀ l. This way should be reminiscent of proving

a vector is zero by taking dot products with the standard unit vectors in the x, y, z directions. �

Here is another observation : If you look at y′′ + P(x)y′ + Q(x)y = R(x), it behaves exactly like
AX = Y, in that if you find one solution, you can get all the other solutions by solving a homogeneous
problem.

The above examples suggest that the geometrical intuition of vectors carries over to any set where
one has a natural notion of taking linear combinations. Motivated by this, we make the following
definition :
A vector space (V, 0,F,+, .) over a field F is a set V equipped with functions + : V × V → V and
. : F × V → V and an element 0 ∈ V such that

(1) (V,+, 0) is an Abelian group.
(2) a.(v + w) = a.v + a.w
(3) 1.v = v.
(4) a(b.v) = (ab).v
(5) (a + b).v = a.v + b.v

Just using these axioms,
(1) 0.v = 0 : 0.v = (0 + 0).v = 0.v + 0.v.
(2) c.0 = 0 : c.(0 + 0) = c.0 + c.0.
(3) If c.v = 0 for c , 0, then c−1c.v = 1.v = v = 0.
(4) −v = (−1).v because (−1).v + 1.v = (−1 + 1).v = 0.v = 0.
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