NOTES FOR 8 AUG (THURSDAY)

1. Recap

- (1) Defined row reduced and row echelon forms. Proved that every matrix can be brought to the (unique) row echelon form.
- (2) Proved that AX = 0 has a non-trivial solution if m < n. If m = n it has a non-trivial solution iff it cannot be row equivalent to the identity matrix.
- (3) Defined matrix multiplication and proved that it is associative. Proved that if E = e(I) then e(A) = EA.

2. MATRIX MULTIPLICATION AND INVERTIBLE MATRICES

- (1) As a corollary, *A* is row equivalent to *B* iff B = PA where *P* is a product of $m \times m$ elementary matrices. Indeed, inductively, if after *k* elementary row operations, B' = P'A, then after one more, B = E(P'A) = (EP')A = PA.
- (2) The transpose A^T of an $m \times n$ matrix A is an $n \times m$ matrix defined as $(A^T)_{ij} = A_{ji}$. Note that $(AB)^T = B^T A^T$. If X, Y are row vectors, then XA = Y iff $A^T X^T = Y^T$. So we have a parallel theory of elementary column operations, column echelon forms, and a column rank.

Def : Let *A* be an $n \times n$ matrix over a field. An $n \times n$ matrix *B* satisfying BA = I is called a left inverse of *A*. Likewise, if AB = I, it is called a right inverse. If it satisfies both, it is called an inverse of *A* and *A* is said to be invertible.

It is easy to prove that if *A* is invertible, then its inverse is unique. Indeed, if $B_1A = I$ and $B_2A = I$, then $B_1 = B_1AB_2 = B_2$. Moreover, A^{-1} is invertible with inverse *A*. If *B* is also invertible, then so is *AB* and $(AB)^{-1} = B^{-1}A^{-1}$. Hence, a product of invertible matrices is invertible (by induction). Since elementary row operations are invertible, so are elementary matrices.

Here is a theorem : If *A* is an $n \times n$ matrix, TFAE :

- (1) *A* is left invertible.
- (2) *A* is row equivalent to the identity matrix.
- (3) *A* is a product of elementary matrices.

Proof. $2 \Rightarrow 3 : PA = I$ and hence $A = P^{-1} = (E_1 E_2 ...)^{-1} = ... E_2^{-1} E_1^{-1}$. $3 \Rightarrow 1 : A$ product of invertible matrices is invertible. Also easy to see $3 \Rightarrow 2$. Indeed, $A = E_1 ... E_k$ and hence $E_k^{-1} ... A = I$.

1 ⇒ 2 : If *A* is left invertible, then AX = 0 implies that 0 = BAX = IX = X and hence the row echelon form of *A* is the identity. Therefore, I = PA.

The proof above shows that if *A* is left invertible, then $A = P^{-1}$ and hence *A* is actually right invertible and $A^{-1} = P$ (where *P* is a left inverse of *A*) and hence *A* is invertible ! Likewise, if *A* is right invertible, i.e., there exists a *B* so that AB = I, then *B* is left invertible with left inverse *A*. Hence, *B* is right invertible with right inverse also equal to *A*. Therefore, BA = I and $B = A^{-1}$.

As a consequence, if *A* is invertible and if e(A) = I, then $e(I) = A^{-1}$. Also, if *A*, *B* are $m \times n$ matrices, then *B* is row equivalent to *A* iff B = CA where *C* is an invertible $m \times m$ matrix.

A similar theorem is : *A* is invertible iff AX = 0 has only the trivial solution iff AX = Y has a solution for every *Y*. If AX = 0 has only the trivial solution, *A* is row equivalent to identity. If *A* is invertible,

NOTES FOR 8 AUG (THURSDAY)

then AX = 0 implies that X = 0. Likewise, if A is invertible, AX = Y implies that $X = A^{-1}Y$. If AX = Y has a solution for every Y, then choose Y_i to be the *i*th column of I. Then $AX_i = Y_i$ and hence $A[X_1 \dots X_n] = I$. (Indeed, matrix multiplication acts column by column.) This means that A is right invertible and hence A is actually invertible.

As a last corollary, if $A = A_1A_2...A_k$, then A is invertible iff each A_i is so. Indeed, if each of them is so, we are done. In the other direction, let us induct on k. If A is invertible, then firstly A_k is invertible. Indeed, if not, there exists an $X \neq 0$ such that $A_kX = 0$. Hence AX = 0 - a contradiction. Now, $AA_k^{-1} = A_1...A_{k-1}$. By induction we are done.

3. Vector spaces

Here is a question from earlier : Let $c_1, c_2, ..., c_n$ be real numbers such that $f(x) = c_1 + c_2e^{ix} + c_3e^{2ix} + ... = 0$ for all $x \in \mathbb{R}$. Then $c_i = 0$ for all i.

Proof. There are several ways to prove this statement. One cute way is as follows : Note that $\int_0^{2\pi} e^{ikx}e^{-lx} = \delta_{kl}2\pi$. Hence, $\int_0^{2\pi} f(x)e^{-ilx}dx = 0 = c_l 2\pi \forall l$. This way should be reminiscent of proving a vector is zero by taking dot products with the standard unit vectors in the *x*, *y*, *z* directions.

Here is another observation : If you look at y'' + P(x)y' + Q(x)y = R(x), it behaves exactly like AX = Y, in that if you find one solution, you can get all the other solutions by solving a homogeneous problem.

The above examples suggest that the geometrical intuition of vectors carries over to any set where one has a natural notion of taking linear combinations. Motivated by this, we make the following definition :

A vector space (*V*, 0, \mathbb{F} , +, .) over a field \mathbb{F} is a set *V* equipped with functions + : *V* × *V* \rightarrow *V* and . : $\mathbb{F} \times V \rightarrow V$ and an element $0 \in V$ such that

- (1) (V, +, 0) is an Abelian group.
- (2) a.(v + w) = a.v + a.w
- (3) 1.v = v.
- (4) a(b.v) = (ab).v
- (5) (a+b).v = a.v + b.v

Just using these axioms,

- (1) 0.v = 0: 0.v = (0 + 0).v = 0.v + 0.v.
- (2) c.0 = 0: c.(0 + 0) = c.0 + c.0.
- (3) If c.v = 0 for $c \neq 0$, then $c^{-1}c.v = 1.v = v = 0$.
- (4) -v = (-1).v because (-1).v + 1.v = (-1 + 1).v = 0.v = 0.