NOTES FOR 8 AUG (THURSDAY)

1. Recap

(1) Defined row reduced and row echelon forms. Proved that every matrix can be brought to the (unique) row echelon form.
(2) Proved that $A X=0$ has a non-trivial solution if $m<n$. If $m=n$ it has a non-trivial solution iff it cannot be row equivalent to the identity matrix.
(3) Defined matrix multiplication and proved that it is associative. Proved that if $E=e(I)$ then $e(A)=E A$.

2. Matrix multiplication and invertible matrices

(1) As a corollary, A is row equivalent to B iff $B=P A$ where P is a product of $m \times m$ elementary matrices. Indeed, inductively, if after k elementary row operations, $B^{\prime}=P^{\prime} A$, then after one more, $B=E\left(P^{\prime} A\right)=\left(E P^{\prime}\right) A=P A$.
(2) The transpose A^{T} of an $m \times n$ matrix A is an $n \times m$ matrix defined as $\left(A^{T}\right)_{i j}=A_{j i}$. Note that $(A B)^{T}=B^{T} A^{T}$. If X, Y are row vectors, then $X A=Y$ iff $A^{T} X^{T}=Y^{T}$. So we have a parallel theory of elementary column operations, column echelon forms, and a column rank.
Def : Let A be an $n \times n$ matrix over a field. An $n \times n$ matrix B satisfying $B A=I$ is called a left inverse of A. Likewise, if $A B=I$, it is called a right inverse. If it satisfies both, it is called an inverse of A and A is said to be invertible.
It is easy to prove that if A is invertible, then its inverse is unique. Indeed, if $B_{1} A=I$ and $B_{2} A=I$, then $B_{1}=B_{1} A B_{2}=B_{2}$. Moreover, A^{-1} is invertible with inverse A. If B is also invertible, then so is $A B$ and $(A B)^{-1}=B^{-1} A^{-1}$. Hence, a product of invertible matrices is invertible (by induction). Since elementary row operations are invertible, so are elementary matrices.
Here is a theorem : If A is an $n \times n$ matrix, TFAE :
(1) A is left invertible.
(2) A is row equivalent to the identity matrix.
(3) A is a product of elementary matrices.

Proof. $2 \Rightarrow 3: P A=I$ and hence $A=P^{-1}=\left(E_{1} E_{2} \ldots\right)^{-1}=\ldots E_{2}^{-1} E_{1}^{-1} .3 \Rightarrow 1$: A product of invertible matrices is invertible. Also easy to see $3 \Rightarrow 2$. Indeed, $A=E_{1} \ldots E_{k}$ and hence $E_{k}^{-1} \ldots A=I$.
$1 \Rightarrow 2$: If A is left invertible, then $A X=0$ implies that $0=B A X=I X=X$ and hence the row echelon form of A is the identity. Therefore, $I=P A$.
The proof above shows that if A is left invertible, then $A=P^{-1}$ and hence A is actually right invertible and $A^{-1}=P$ (where P is a left inverse of A) and hence A is invertible! Likewise, if A is right invertible, i.e., there exists a B so that $A B=I$, then B is left invertible with left inverse A. Hence, B is right invertible with right inverse also equal to A. Therefore, $B A=I$ and $B=A^{-1}$.
As a consequence, if A is invertible and if $e(A)=I$, then $e(I)=A^{-1}$. Also, if A, B are $m \times n$ matrices, then B is row equivalent to A iff $B=C A$ where C is an invertible $m \times m$ matrix.
A similar theorem is : A is invertible iff $A X=0$ has only the trivial solution iff $A X=Y$ has a solution for every Y. If $A X=0$ has only the trivial solution, A is row equivalent to identity. If A is invertible,
then $A X=0$ implies that $X=0$. Likewise, if A is invertible, $A X=Y$ implies that $X=A^{-1} Y$. If $A X=Y$ has a solution for every Y, then choose Y_{i} to be the i th column of I. Then $A X_{i}=Y_{i}$ and hence $A\left[X_{1} \ldots X_{n}\right]=I$. (Indeed, matrix multiplication acts column by column.) This means that A is right invertible and hence A is actually invertible.
As a last corollary, if $A=A_{1} A_{2} \ldots A_{k}$, then A is invertible iff each A_{i} is so. Indeed, if each of them is so, we are done. In the other direction, let us induct on k. If A is invertible, then firstly A_{k} is invertible. Indeed, if not, there exists an $X \neq 0$ such that $A_{k} X=0$. Hence $A X=0$ - a contradiction. Now, $A A_{k}^{-1}=A_{1} \ldots A_{k-1}$. By induction we are done.

3. Vector spaces

Here is a question from earlier: Let $c_{1}, c_{2}, \ldots, c_{n}$ be real numbers such that $f(x)=c_{1}+c_{2} e^{i x}+c_{3} e^{2 i x}+$ $\ldots=0$ for all $x \in \mathbb{R}$. Then $c_{i}=0$ for all i.
Proof. There are several ways to prove this statement. One cute way is as follows : Note that $\int_{0}^{2 \pi} e^{i k x} e^{-l x}=\delta_{k l} 2 \pi$. Hence, $\int_{0}^{2 \pi} f(x) e^{-i l x} d x=0=c_{l} 2 \pi \forall l$. This way should be reminiscent of proving a vector is zero by taking dot products with the standard unit vectors in the x, y, z directions.

Here is another observation : If you look at $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=R(x)$, it behaves exactly like $A X=Y$, in that if you find one solution, you can get all the other solutions by solving a homogeneous problem.

The above examples suggest that the geometrical intuition of vectors carries over to any set where one has a natural notion of taking linear combinations. Motivated by this, we make the following definition:
A vector space $(V, 0, \mathbb{F},+,$.$) over a field \mathbb{F}$ is a set V equipped with functions $+: V \times V \rightarrow V$ and .$: \mathbb{F} \times V \rightarrow V$ and an element $0 \in V$ such that
(1) $(V,+, 0)$ is an Abelian group.
(2) $a \cdot(v+w)=a \cdot v+a \cdot w$
(3) $1 . v=v$.
(4) $a(b . v)=(a b) \cdot v$
(5) $(a+b) \cdot v=a \cdot v+b . v$

Just using these axioms,
(1) $0 . v=0: 0 . v=(0+0) . v=0 . v+0 . v$.
(2) $c .0=0: c .(0+0)=c .0+c .0$.
(3) If $c \cdot v=0$ for $c \neq 0$, then $c^{-1} c \cdot v=1 \cdot v=v=0$.
(4) $-v=(-1) \cdot v$ because $(-1) \cdot v+1 \cdot v=(-1+1) \cdot v=0 \cdot v=0$.

