HW 2

1. A commutative ring $(R,+, \times, 0,1)$ is a set with functions $\times: R \times R \rightarrow R,+$: $R \times R \rightarrow R$, and elements $0,1 \in R$ such that $(R,+, 0)$ is an Abelian group (i.e., commutativity, distributivity, 0 is the identity, and inverses exist), $(R, \times, 1)$ satisfies commutativity, distributivity, and that 1 is the multiplicative identity. (The only difference from a field is that inverses do not necessarily exist.)
(a) Define the notion of a polynomial ring $R[x]$.
(b) Inductively define $\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ where \mathbb{F} is a field.
(c) Prove that $\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ is a vector space.
(d) Define the map $p\left(x_{1}, \ldots, x_{n}\right) \rightarrow p\left(x_{1}+a_{1}, \ldots, x_{n}+a_{n}\right)$ (where $a_{i} \in \mathbb{F}$) appropriately and prove that it is a linear isomorphism.
(e) Show that an abstract polynomial with integer coefficients can be interpreted as an abstract polynomial with coefficients in a given commutative ring R.
(f) Prove that if a polynomial function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ with integer coefficients is zero, then the corresponding polynomial function $R^{n} \rightarrow R$ is identically zero.
(g) (Optional) Prove that a polynomial function over an infinite field uniquely determines the corresponding abstract polynomial.
2. Prove that interchanging rows of any matrix (not just column echelon) does not change the column rank.
3. Let \mathbb{F} be a finite field with characteristic p where p is a prime, i.e., p is the smallest number such that $1+1+\ldots+1($ ptimes $)=0$. Prove that \mathbb{F} is a vector space over the field \mathbb{Z}_{p}. Conclude that there is an n such that the size of \mathbb{F} is p^{n}.
4. How many proper subspaces are there in the vector space \mathbb{Z}_{p}^{n} ?
5. How many invertible $n \times n$ matrices whose entries are in \mathbb{Z}_{p} are there ?
6. (Hoffman and Kunze) Let W_{1}, W_{2} be subspaces of a vector space V such that $W_{1}+W_{2}=V$ and $W_{1} \cap W_{2}=\{0\}$. Prove that for each vector α in V, there are unique vectors $v_{1} \in W_{1}, v_{2} \in W_{2}$ such that $\alpha=v_{1}+v_{2}$. (In this situation, V is said to be a (n internal) direct sum of W_{1}, W_{2} and written as $V=W_{1} \oplus W_{2}$.) Generalise this phenomenon to k-subspaces $W_{1}, W_{2}, \ldots, W_{k}$.
