HW 4

1. (Hoffman and Kunze) If W is the space of $n \times n$ matrices over the field \mathbb{F} and if f is a linear functional on W such that $f(A B)=f(B A)$ for each $A, B \in W$, then prove that f is a multipler of the trace function.
2. Prove that tensor products are associative.
3. (Hoffman and Kunze) Let A be a 2×2 matrix over a field \mathbb{F} and suppose that $A^{2}=0$. Show that for each scalar c that $\operatorname{det}(c I-A)=c^{2}$.
4. Show that if $\operatorname{char}(\mathbb{F}) \neq 2$, an alternating multilinear map

$$
T: V \times V \times \ldots(\text { arbitrary number of times }) \rightarrow \mathbb{F}
$$

is equivalent to satisfying the condition that $T\left(v_{\sigma(1)}, \ldots\right)=(-1)^{\operatorname{sgn}(\sigma)} T\left(v_{1}, \ldots\right)$.
5. Find the determinant of $A=\left[\begin{array}{ccccc}1 & x_{1} & x_{1}^{2} & \ldots & x_{1}^{n-1} \\ 1 & x_{2} & x_{2}^{2} & \ldots & x_{2}^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots\end{array}\right]$ (The Vandermonde Determinant), where $x_{i} \in \mathbb{F}$.

