HW 4

- 1. (Hoffman and Kunze) If W is the space of $n \times n$ matrices over the field \mathbb{F} and if f is a linear functional on W such that f(AB) = f(BA) for each $A, B \in W$, then prove that f is a multipler of the trace function.
- 2. Prove that tensor products are associative.
- 3. (Hoffman and Kunze) Let A be a 2×2 matrix over a field \mathbb{F} and suppose that $A^2 = 0$. Show that for each scalar c that $\det(cI A) = c^2$.
- 4. Show that if $char(\mathbb{F}) \neq 2$, an alternating multilinear map

 $T: V \times V \times \dots$ (arbitrary number of times) $\rightarrow \mathbb{F}$

is equivalent to satisfying the condition that $T(v_{\sigma(1)},\ldots) = (-1)^{sgn(\sigma)}T(v_1,\ldots).$

5. Find the determinant of $A = \begin{bmatrix} 1 & x_1 & x_1^2 & \dots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \dots & x_2^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \end{bmatrix}$ (The Vandermonde Determinant), where $x_i \in \mathbb{F}$.