HW 5

1. (a) Prove that $p_{A}(\lambda)$ is a universal polynomial in λ and the entries of the $n \times n$ matrix A with integral coefficients, i.e., not only is it a polynomial, but also the coefficients do not depend on anything other than n.
(b) Assume the Cayley-Hamilton theorem holds for all complex $n \times n$ matrices A, i.e., for every $A \in \operatorname{Mat}_{n \times n}(\mathbb{C}), p_{A}(A)=0$. Now prove that it holds even for matrices with entries in a commutative ring.
(c) (Optional) Prove that there exists an open set $U \subset M a t_{n \times n}(\mathbb{C})=\mathbb{C}^{n^{2}}$ such that every element of U is diagonalisable. Now prove that the Cayley-Hamilton theorem holds for all complex matrices.
2. (Hoffman and Kunze) Prove that if $A, B \in M a t_{n \times n}(\mathbb{F})$, then $A B$ and $B A$ have the same eigenvalues in \mathbb{F}.
3. (Hoffman and Kunze) Let A be a 2×2 complex matrix. Prove that A is similar to either a diagonal matrix or an upper triangular matrix with 1 as the off-diagonal entry.
4. (Hoffman and Kunze) Let A be a diagonal $n \times n$ matrix. Let V be the space of $n \times n$ matrices B such that $A B=B A$. Prove that $\operatorname{dim}(V)=a_{1}^{2}+a_{2}^{2}+\ldots a_{k}^{2}$ where a_{i} is the algebraic multiplicity of the $i^{\text {th }}$ eigenvalue of A.
5. Let $A_{i j}=a_{i} b_{j}$ where $a_{i}, b_{j} \in \mathbb{F}$. Determine the eigenvalues and eigenvectors of this matrix. Using this data, calculate $\operatorname{det}(A)$.
