HW 6

1. Let $A=\left[\begin{array}{ccc}0 & 1 & 1 \\ 2 & 1 & -1 \\ -6 & -5 & -3\end{array}\right]$. Find matrices P and J such that $P^{-1} A P=J$ where J is the Jordan Canonical Form of A.
2. Solve the system of ODE given by $\frac{d v}{d t}=A \vec{v}$ where A is as in problem 1 .
3. Prove that if A_{i} is a family of commuting operators from a finite-dimensional complex vector space V to itself, then there exists a basis of V such that all the A_{i} are simultaneously upper-triangular.
4. (Hoffman and Kunze) Let V be the space of $n \times n$ matrices over a field \mathbb{F}. Let $A \in V$ and $T, U: V \rightarrow V$ be operators defined by $T(B)=A B$ and $U(B)=A B-B A$. If A is diagonalisable over \mathbb{F}, then are the following true or false ?
(a) T is diagonalisable.
(b) U is diagonalisable.
5. Prove the following.
(a) If $a, b \geq 0$ and p, q are positive real numbers such that $\frac{1}{p}+\frac{1}{q}=1$, then $a b \leq \frac{a^{p}}{p}+\frac{b^{q}}{q}$. (Hint : ab is unchanged if replace $a \rightarrow t a, b \rightarrow \frac{b}{t}$ whereas the right hand side changes. Minimise the right hand side over all positive t.)
(b) Define the map $\|\cdot\|_{p}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ as $\|x\|_{p}=\left(\left|x_{1}\right|^{p}+\left|x_{2}\right|^{p}+\ldots\right)^{1 / p}$. Prove that $\left|\sum_{i} u_{i} v_{i}\right| \leq\|u\|_{p}\|v\|_{q}$ where p, q are as above and $u, v \in \mathbb{R}^{n}$.
(c) Let $p \geq 1$. Prove that $\|\cdot\|_{p}$ is a norm on \mathbb{R}^{n}. Prove that it is induced from an inner product iff $p=2$.
6. (Optional) Suppose
(a) J is an $n \times n$ real matrix such that $J^{2}=-I$. Prove that n is even.
(b) A, B are $n \times n$ real matrices such that $A B-B A$ is invertible and $A^{2}+B^{2}=A B$. Prove that n is a multiple of 3 .
