HW 6

- 1. Let $A = \begin{bmatrix} 0 & 1 & 1 \\ 2 & 1 & -1 \\ -6 & -5 & -3 \end{bmatrix}$. Find matrices P and J such that $P^{-1}AP = J$ where J is the Jordan Canonical Form of A.
- 2. Solve the system of ODE given by $\frac{dv}{dt} = A\vec{v}$ where A is as in problem 1.
- 3. Prove that if A_i is a family of commuting operators from a finite-dimensional complex vector space V to itself, then there exists a basis of V such that all the A_i are simultaneously upper-triangular.
- 4. (Hoffman and Kunze) Let V be the space of $n \times n$ matrices over a field \mathbb{F} . Let $A \in V$ and $T, U : V \to V$ be operators defined by T(B) = AB and U(B) = AB BA. If A is diagonalisable over \mathbb{F} , then are the following true or false ?
 - (a) T is diagonalisable.
 - (b) U is diagonalisable.
- 5. Prove the following.
 - (a) If $a, b \ge 0$ and p, q are positive real numbers such that $\frac{1}{p} + \frac{1}{q} = 1$, then $ab \le \frac{a^p}{p} + \frac{b^q}{q}$. (Hint : ab is unchanged if replace $a \to ta, b \to \frac{b}{t}$ whereas the right hand side changes. Minimise the right over all positive t.)
 - (b) Define the map $\|.\|_p : \mathbb{R}^n \to \mathbb{R}$ as $\|x\|_p = (|x_1|^p + |x_2|^p + \ldots)^{1/p}$. Prove that $|\sum_i u_i v_i| \le \|u\|_p \|v\|_q$ where p, q are as above and $u, v \in \mathbb{R}^n$.
 - (c) Let $p \ge 1$. Prove that $\|.\|_p$ is a norm on \mathbb{R}^n . Prove that it is induced from an inner product iff p = 2.
- 6. (Optional) Suppose
 - (a) J is an $n \times n$ real matrix such that $J^2 = -I$. Prove that n is even.
 - (b) A, B are $n \times n$ real matrices such that AB BA is invertible and $A^2 + B^2 = AB$. Prove that n is a multiple of 3.