HW 7

1. Prove that the polarisation identity for normed complex vector spaces implies that the norm comes from an inner product.
2. Let V be a finite-dimensional inner product space and let $T_{i}: V \rightarrow V$ be a family of commuting self-adjoint operators. Prove that there exists an orthonormal basis of T such that all T_{i} are simultaneously diagonal in this basis.
3. Let A be an $m \times n$ complex matrix. What is the rank of $A^{\dagger} A$ in terms of the rank of A ? Also, prove that there are unitary matrices U, V such that $U^{\dagger} A A^{\dagger} U$ and $V^{\dagger} A^{\dagger} A V$ are diagonal, and $U^{\dagger} A V=\Sigma$ is a "diagonal matrix" (whatever that means in this context) consisting of non-negative numbers (called the singular values of A).
4. (Artin) Let $z=e^{2 \pi i / n}$ and let A be the $n \times n$ matrix whose entries are $a_{j k}=z^{j k} / \sqrt{n}$. Prove that A is unitary.
5. For every $n \times n$ complex matrix A, prove that there are four unitary matrices U_{i} (which may depend on A) and four complex numbers c_{i} (which may again depend on A) such that $A=\sum_{i=1}^{4} c_{i} U_{i}$.
