
NOTES FOR 1 OCT (TUESDAY)

1. Recap

(1) Defined V ⊗W through a universal property and proved uniqueness up to isomorphism.
(2) Calculated the dimension of V ⊗W. Started proving existence as the quotient F(V ×W)/Z.
(3) A small point : Our earlier definition of alternating multilinear is problematic when F

has characteristic 2. The correct way to rectify this point is by defining alternating as
T(v1, v2, . . .) = 0 if vi = v j for some i , j. This definition implies the previous one but is
equivalent to it only when char(F) , 2.

2. Tensor products

Proof. (Continued..) Now if L : V × W → Z is a bilinear map, then define L̃ : V ⊗ W → Z
on pure tensors first as L̃(π(v,w)) = L(v,w), i.e., L̃(v ⊗ w) = L(v,w). This definition makes sense
because if [(v,w)] = [(v′,w′)], then (v,w) = (v′,w′)+ a linear combination of the relations. However,
L(relations) = 0 by bilinearity. Since every tensor is a finite linear combination of pure tensors, we can
extend L̃ linearly in a unique manner to all of V⊗W. Uniqueness follows from the construction. �

Here is an example : R ⊗ R ≡ R. Indeed, their dimensions match up. More concretely, if V
has an ordered basis ei and W has an ordered basis f j, then consider the set ei ⊗ f j. We claim this
set is a basis of V ⊗ W. Indeed, firstly it is linearly independent : If

∑
i, j ci, jei ⊗ f j = 0 (a finite

linear combination), then consider the bilinear map La,b(v,w) = vawb. It factors uniquely through a
linear map that satisfies 0 = L̃a,b(

∑
i, j ci, jei ⊗ f j) =

∑
i, j ci, jL̃a,b(ei ⊗ f j) =

∑
i, j ci, jδiaδ jb = ca,b. Hence all

the ci, j = 0. Secondly, every vector in V ⊗W is a finite linear combination of vectors of the form
v ⊗ w =

∑
i, j viw jei ⊗ f j.

3. Determinants

Given ax + by = c, dx + ey = f , it is easy to see that the formula for x, y involves ad − bc as the
denominator (implying that if ad − bc = 0, we are in trouble). A geometric viewpoint is as follows
(x, y) → A(x, y) is a linear transformation. If this linear transformation crushes a square to a line,
there is no way it is surjective (and even injectivity fails). The signed area of the image of a square
is indeed ad − bc. Likewise, one can expect that the volume of a figure formed by the columns of an
n × n matrix A to play a role in the invertibility or the lack of thereof. It seems reasonable to expect
that the signed volume will change sign if the columns are interchanged. It will also be = 1 for the
standard basis. Shockingly enough, these properties are almost enough to determine a formula for
the signed volume !

Theorem 3.1. Let V be a finite-dimensional vector space of dimension n, and letB be an ordered basis. There
exists a unique alternating multilinear map det : V×V×V . . . (n times)→ F such that det(e1, . . . , en) = 1.

Proof. Since alternating implies (and is implied by when char(F) , 2) the sign property, if such a det
function existed, then it ought to satisfy

det(v1, v2, . . . , vn) = det(
∑

i1

(v1)i1ei1 ,
∑

i2

(v2)i2ei2 , . . .) =
∑
i1,...

vi1vi2 . . . εi1i2...
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where εi1i2... = det(ei1 , ei2 , . . . , ein) = (−1)sgn(σ) when all the i j are distinct and 0 when two of them
coincide.
Actually, we can use this necessary condition as the unique definition of the determinant map.
Indeed, the normalisation condition is easily seen to be true. So is multilinearity. As for alternation,
det(v, . . . , v, . . .) =

∑
i1... vi1(v2)i2 . . . vi j . . . εi1i2... = −

∑
vi j . . . εi ji2...i1.... We can assume without loss of

generality that all the i j are distinct. For every term where i1 < i j, there exists another copy with i1, i j
interchanged. Hence det(v, . . . , v, . . .) = 0. �

As a corollary, we can see if that ordering of the basis changes, then det(eσ(1), . . .) = (−1)sgn(σ).
When A is an n × n matrix, we define det(A) to be

∑
i1... det(Ai11ei1 ,Ai22ei2 , . . .). This determinant

function on matrices satisfies the following properties.

Theorem 3.2. (1) det(AB) = det(A) det(B).
(2) If A′ is obtained from A by Ci → Ci + kC j then det(A′) = det(A).
(3) If columns are interchanged, we pick up a sign in the determinant.
(4) If Ci → kCi, then the determinant scales by k.
(5) If Ci = kC j then det = 0.

Proof. The last four properties are trivially true by the above theorem. Only the first is non-trivial.
Indeed, for the first property,

det(AB) =
∑

i1...,k1...

det(Ai1k1Bk11ei1 , . . .) =
∑

i1...,k1...

Ai1k1Ai2k2Bk11 . . . εi1i2...

Now det(
∑

i1 Ai1k1ei1 , . . .) = (−1)sgn(k→1) det(
∑

i1 Ai11ei1 , . . .) = (−1)sgn(k) det(A) (interchanging columns
picks a sign).

det(AB) = det(A)
∑

K

(−1)sgn(k)Bk11 . . . = det(A) det(B).(3.1)

�

The above theorem also tells us the determinants of elementary column operations. Moreover,

Theorem 3.3. A is invertible iff det(A) , 0. Moreover, if A is invertible, det(A−1) = 1/det(A).

Proof. If A is invertible, then A = ET
k . . .E

T
1 where ET

i are elementary column operations. Since
det(ET

i ) , 0, we see that det(A) , 0. If A is not invertible, then the row-echelon form of A has at least
one column of zeroes. Hence det(A) = 0.
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