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Recap

Defined integral curves and proved existence/uniqueness.

Proved that compactly supported vector fields are complete.

Flows (1-PS) of diffeomorphisms.

Proved that the diffeo group acts transitively.
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Another application of flows

What is an example of a local smooth vector field near a
point? The simplest one is ∂

∂x1
for some coordinate x1.

A related physical question: Following a small paper boat in a
river, can we somehow get a sense of the time elapsed? Of
course, the farther the paper boat gets, the more the time has
elapsed. However, what if the boat is placed at a point where
the river isn’t moving?

Theorem: Let X be a smooth vector field on a smooth
manifold M (without boundary). Suppose X (p) 6= 0. Then
there exists a neighbourhood around p and a coordinate chart
s i such that X = ∂

∂s1
in that neighbourhood.

In a sense, s1 functions as a “time coordinate”.
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Another application of flows

Proof: In a coordinate neighbourhood (U, x) of p centred at p,
X 6= 0. WLog assume that X 1 6= 0 on U. By the
existence/uniqueness theorem, after shrinking U if necessary, there
exists ε > 0 such that there is an integral curve on (−ε, ε) starting
from any q ∈ U. Consider the map F : (− ε

2 ,
ε
2)× V → M (where

V is some neighbourhood of the origin) given by
F (s, x2, . . . , xn) = γ(s) where γ is the integral curve starting at
(0, x2, . . . , xn). By the smooth dependence part of the existence
theorem, F is a smooth map. Assuming V is small enough, we can
assume that the image of F lies in U. The derivative of F is

(s = 0, 0, . . . , 0) is DF =

 X 1(p) 0 0 . . .
X 2(p) 1 0 . . .

...
...

...
. . .

 (why?), which is

invertible (why?) Thus by IFT, F is a local diffeo and hence
(s, x2, . . . , xn) is a new coordinate chart around p. In this chart,
the integral curve starting at (0, x2, . . . , xn) is
γ(t) = (t, x2, . . . , xn). Thus, γ′ = (1, 0, . . . , 0) and X = ∂

∂s .
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Collar neighbourhood theorem (vague optional pearls of
wisdom)

Collar neighbourhood theorem (proof omitted): If M is a
smooth manifold-with-boundary, there is a neighbourhood of
∂M that is diffeomorphic to a “collar” [0, 1)× ∂M such that
∂M goes to {0} × ∂M.

The point is that using this theorem one can define the
“double” of a manifold-with-boundary.

One can also define a connected sum of two manifolds by
removing spheres and “gluing” them.
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Lie bracket: motivation

Suppose we have two vector fields X ,Y that are linearly
independent at p. Can we say that there is a neighbourhood
and a coordinate chart s i such that X = ∂

∂s1
and Y = ∂

∂s2
?

If there was such a chart, the coordinate “axes” should have
been obtained by flowing these vector fields. But how do we
know that if we around a “coordinate square”, we will come
back to the same point?

In other words, γ(s, p) and ψ(t, p) are integral curves of X ,Y
resp. starting at p, then how do we know that
γ(−s, ψ(−t, γ(s, ψ(t, p)))) = p? At least, is
∂2γ(−s,ψ(−t,γ(s,ψ(t,p))))

∂s∂t |s=t=0 = 0?
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Lie bracket: motivation

∂γ i (−s,F (s,t))
∂s |s=0 = −dγ i

ds |s=0 + ∂γ i

∂x j
∂F j

∂s |s=0 =

−X i (F (0, t)) + ∂F i

∂s |s=0.

Now
∂F j

∂s |s=0 = ∂ψj

∂xk
|s=0

∂γk

∂s |s=0 = ∂ψj

∂xk
(−t, ψ(t, p))X k(ψ(t, p)).

Taking one more derivative, we get
∂2γ(−s,ψ(−t,γ(s,ψ(t,p))))

∂s∂t |s=t=0 =

−∂X i

∂x j
(p)∂F

j

∂t |t=0 + ∂
∂t

(
∂ψi

∂xk
(−t, ψ(t, p))X k(ψ(t, p))

)
t=0

,

which is −∂Y i

∂xk
(p)X k(p) + ∂X i

∂xk
(p)Y k(p).
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Lie bracket: Definition

This last expression actually defines a vector field (why?)

Is there an coordinate-invariant way of defining this vector
field?

Def: Let X ,Y be smooth vector fields on a manifold M.
Then [X ,Y ]p(f ) = Xp(Y (f ))− Yp(X (f )) is a vector field on
M called the Lie bracket of X and Y .

Lemma (proof by calculation): The Lie bracket genuinely
defines a vector field whose components are given above.
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Lie bracket: Properties

[X ,Y ] = −[Y ,X ].

[X ,Y ] is multi-linear in X ,Y .

It is not associative! That is [X , [Y ,Z ]] 6= [[X ,Y ],Z ]! Indeed,
[X , [Y ,Z ]] + [Y , [Z ,X ]] + [Z , [X ,Y ]] = 0 (Jacobi’s identity).

Any vector space equipped with such a “bracket” is called a
Lie algebra. The space of smooth vector fields is an example.
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Lie bracket: Characterisation of coordinate vector fields

If X ,Y are coordinate vector fields, they Lie-commute (why?).

Conversely, Theorem (proof omitted): If X 1,X 2, . . . ,X k are
smooth Lie-commuting vector fields that are linearly
independent at p, there is a neighbourhood and a coordinate
chart such that X i = ∂

∂x i
.
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