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Proved that compactly supported vector fields are complete.
Flows (1-PS) of diffeomorphisms.

Proved that the diffeo group acts transitively.
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river, can we somehow get a sense of the time elapsed? Of
course, the farther the paper boat gets, the more the time has
elapsed. However, what if the boat is placed at a point where
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e Collar neighbourhood theorem (proof omitted): If M is a
smooth manifold-with-boundary, there is a neighbourhood of
OM that is diffeomorphic to a “collar” [0,1) x OM such that
OM goes to {0} x OM.

@ The point is that using this theorem one can define the
“double” of a manifold-with-boundary.

@ One can also define a connected sum of two manifolds by
removing spheres and “gluing” them.
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been obtained by flowing these vector fields. But how do we
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back to the same point?

e In other words, (s, p) and (t, p) are integral curves of X, Y
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Lie bracket: motivation

@ Suppose we have two vector fields X, Y that are linearly
independent at p. Can we say that there is a neighbourhood

and a coordinate chart s’ such that X = 1 and Y = 852

@ If there was such a chart, the coordlnate ‘axes” should have
been obtained by flowing these vector fields. But how do we
know that if we around a “coordinate square”, we will come
back to the same point?

e In other words, (s, p) and (t, p) are integral curves of X, Y
resp. starting at p, then how do we know that

7(_57 w(_t77(57 w(t7 P)))) = p?
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Lie bracket: motivation

@ Suppose we have two vector fields X, Y that are linearly
independent at p. Can we say that there is a neighbourhood

and a coordinate chart s’ such that X = 1 and Y = 852

@ If there was such a chart, the coordlnate ‘axes” should have
been obtained by flowing these vector fields. But how do we
know that if we around a “coordinate square”, we will come
back to the same point?

e In other words, (s, p) and (t, p) are integral curves of X, Y
resp. starting at p, then how do we know that

Y(=s,¥(—t,7(s,9(t, p)))) = p? At least, is
27(—5,¢(—t7’7(5u¢(t’P)))) P O?
Os0t ’5*1'*0 :
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97/ (=s,F(s,t)) _ _dy oy oFi
0 T s=0 = — G5 ls=0 + 55 Bs ls=0 =

—X/(F(0,1)) + % |s=o.
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Lie bracket: motivation

o aw('—gsl-'(s,t)),szo :__%|S:0 + gz}% o =
—X(F(0, 1)) + 9 |s=o0.
@ Now .
8FJ|5 0= 8xk|5 =07"9s 85 |s 0= ﬁ(_taw(t P))Xk(iﬁ(ta P))
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v/ (—s,F(s,t d o oFi

o PSRN o — ) o4 200, =
—X(F(0,1)) + 9| s—0.

o Now

U | o= 200 om0 = 28 (— 4 (t, p)) XK (4(2, p))-

@ Taking one more derivative,
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' (=s,F(s,1)) _ _dy ' oFi _
g ls=0 = G ls=0 + 55 B

e = ox] 0s 1s=0 =
—XI(F(0,1)) + % |s=o-
o Now

8FJ|s 0= 3Xk|s =075 35 |s 0= axk( t, P(t, p))X (4 (t, p)).

@ Taking one more derivative, we get
27(*S,w(5tg(s,w(t,i3))))| o =

B () le=o + g (G5 (b w(E )X (0t p))

t=0'
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Lie bracket: motivation

V' (=s,F(s,t)) __dy v oFi _
s ls=0 = =5 |s=0 + 535 Fg ls=0 =

—X/(F(0,1)) + % |s=o.

o Now
aFJ|$ 0 — 8Xk|5 =075 85 |S 0 — axk( t 1/](1: P))Xk(¢(ta P))

@ Taking one more derivative, we get
27(*S,w(5tg(s,w(t,i3))))| o =

~ 2PV -0 + & (S5 (—t u(e DX (e )
which is ——( )Xk(p) + axk( )YX(p).
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@ This last expression actually defines a vector field (why?)

@ Is there an coordinate-invariant way of defining this vector
field?

@ Def: Let X, Y be smooth vector fields on a manifold M.
Then [X, Y]o(f) = Xp(Y(f)) — Yp(X(f)) is a vector field on
M
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@ Def: Let X, Y be smooth vector fields on a manifold M.
Then [X, Y]o(f) = Xp(Y(f)) — Yp(X(f)) is a vector field on
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defines a vector field
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Lie bracket: Definition

@ This last expression actually defines a vector field (why?)

@ Is there an coordinate-invariant way of defining this vector
field?

@ Def: Let X, Y be smooth vector fields on a manifold M.
Then [X, Y]o(f) = Xp(Y(f)) — Yp(X(f)) is a vector field on
M called the Lie bracket of X and Y.

@ Lemma (proof by calculation): The Lie bracket genuinely
defines a vector field whose components are given above.

Lie bracket 8/10
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Lie bracket: Properties

o [X,Y]=-[Y,X]

e [X, Y] is multi-linear in X, Y.

@ It is not associative! Thatis [X,[Y, Z]] # [[X, Y], Z]! Indeed,
(X, [Y,Z]]| +[Y,[Z,X]] +[Z,[X, Y]] = 0 (Jacobi's identity).

@ Any vector space equipped with such a “bracket” is called a
Lie algebra. The space of smooth vector fields is an example.
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e If X, Y are coordinate vector fields, they Lie-commute (why?).

o Conversely, Theorem (proof omitted): If X!, X2 ..., Xk are
smooth Lie-commuting vector fields that are linearly
independent at p, there is a neighbourhood and a coordinate

chart

Lie bracket 10/10



Lie bracket: Characterisation of coordinate vector fields

e If X, Y are coordinate vector fields, they Lie-commute (why?).

o Conversely, Theorem (proof omitted): If X!, X2 ..., Xk are
smooth Lie-commuting vector fields that are linearly
independent at p, there is a neighbourhood and a coordinate

chart such that X/ = %.
X
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