MA 229/MA 235 - Lecture 3

IISc

• First and second derivative tests.

- First and second derivative tests.
- Proof of Clairaut's theorem.

- First and second derivative tests.
- Proof of Clairaut's theorem.
- Proof of Taylor's theorem (integral form of remainder).

• The matrix f_{ij} is called the 'Hessian' matrix of f.

• The matrix f_{ij} is called the 'Hessian' matrix of f. For future purposes a twice differentiable function whose second partials are continuous is said to be convex if $\sum_{i,j} v_i f_{ij}(a) v_j \ge 0 \ \forall \ v \ne 0$.

• The matrix f_{ij} is called the 'Hessian' matrix of f. For future purposes a twice differentiable function whose second partials are continuous is said to be convex if $\sum_{i,j} v_i f_{ij}(a) v_j \geq 0 \ \forall \ v \neq 0$. Often, optimization studies convex functions.

- The matrix f_{ij} is called the 'Hessian' matrix of f. For future purposes a twice differentiable function whose second partials are continuous is said to be convex if $\sum_{i,j} v_i f_{ij}(a) v_j \geq 0 \ \forall \ v \neq 0$. Often, optimization studies convex functions.
- In general, given a symmetric $n \times n$ real matrix A, i.e.,

- The matrix f_{ij} is called the 'Hessian' matrix of f. For future purposes a twice differentiable function whose second partials are continuous is said to be convex if $\sum_{i,j} v_i f_{ij}(a) v_j \geq 0 \ \forall \ v \neq 0$. Often, optimization studies convex functions.
- In general, given a symmetric $n \times n$ real matrix A, i.e., $A^T = A$, i.e., $A_{ij} = A_{ji}$,

- The matrix f_{ij} is called the 'Hessian' matrix of f. For future purposes a twice differentiable function whose second partials are continuous is said to be convex if $\sum_{i,j} v_i f_{ij}(a) v_j \geq 0 \ \forall \ v \neq 0$. Often, optimization studies convex functions.
- In general, given a symmetric $n \times n$ real matrix A, i.e., $A^T = A$, i.e., $A_{ij} = A_{ji}$, it is said to be *positive-definite* if $\sum_{i,j} A_{ij} v_i v_j > 0$ for all $v \neq 0$, i.e.,

- The matrix f_{ij} is called the 'Hessian' matrix of f. For future purposes a twice differentiable function whose second partials are continuous is said to be convex if $\sum_{i,j} v_i f_{ij}(a) v_j \geq 0 \ \forall \ v \neq 0$. Often, optimization studies convex functions.
- In general, given a symmetric $n \times n$ real matrix A, i.e., $A^T = A$, i.e., $A_{ij} = A_{ji}$, it is said to be *positive-definite* if $\sum_{i,j} A_{ij} v_i v_j > 0$ for all $v \neq 0$, i.e., $v^T A v > 0$ for all $v \neq 0$.

- The matrix f_{ij} is called the 'Hessian' matrix of f. For future purposes a twice differentiable function whose second partials are continuous is said to be convex if $\sum_{i,j} v_i f_{ij}(a) v_j \geq 0 \ \forall \ v \neq 0$. Often, optimization studies convex functions.
- In general, given a symmetric $n \times n$ real matrix A, i.e., $A^T = A$, i.e., $A_{ij} = A_{ji}$, it is said to be *positive-definite* if $\sum_{i,j} A_{ij} v_i v_j > 0$ for all $v \neq 0$, i.e., $v^T A v > 0$ for all $v \neq 0$.
- This condition is somewhat subtle.

- The matrix f_{ij} is called the 'Hessian' matrix of f. For future purposes a twice differentiable function whose second partials are continuous is said to be convex if $\sum_{i,j} v_i f_{ij}(a) v_j \geq 0 \ \forall \ v \neq 0$. Often, optimization studies convex functions.
- In general, given a symmetric $n \times n$ real matrix A, i.e., $A^T = A$, i.e., $A_{ij} = A_{ji}$, it is said to be *positive-definite* if $\sum_{i,j} A_{ij} v_i v_j > 0$ for all $v \neq 0$, i.e., $v^T A v > 0$ for all $v \neq 0$.
- This condition is somewhat subtle. For 2×2 matrices, $A = \begin{bmatrix} a & b \\ b & d \end{bmatrix}$, supposing $v^T = (x, y)$, we see that

- The matrix f_{ij} is called the 'Hessian' matrix of f. For future purposes a twice differentiable function whose second partials are continuous is said to be convex if $\sum_{i,j} v_i f_{ij}(a) v_j \geq 0 \ \forall \ v \neq 0$. Often, optimization studies convex functions.
- In general, given a symmetric $n \times n$ real matrix A, i.e., $A^T = A$, i.e., $A_{ij} = A_{ji}$, it is said to be *positive-definite* if $\sum_{i,j} A_{ij} v_i v_j > 0$ for all $v \neq 0$, i.e., $v^T A v > 0$ for all $v \neq 0$.
- This condition is somewhat subtle. For 2×2 matrices, $A = \begin{bmatrix} a & b \\ b & d \end{bmatrix}$, supposing $v^T = (x, y)$, we see that $v^T A v = a x^2 + d y^2 + 2b x v$.

- The matrix f_{ij} is called the 'Hessian' matrix of f. For future purposes a twice differentiable function whose second partials are continuous is said to be convex if $\sum_{i,j} v_i f_{ij}(a) v_j \geq 0 \ \forall \ v \neq 0$. Often, optimization studies convex functions.
- In general, given a symmetric $n \times n$ real matrix A, i.e., $A^T = A$, i.e., $A_{ij} = A_{ji}$, it is said to be *positive-definite* if $\sum_{i,j} A_{ij} v_i v_j > 0$ for all $v \neq 0$, i.e., $v^T A v > 0$ for all $v \neq 0$.
- This condition is somewhat subtle. For 2×2 matrices, $A = \begin{bmatrix} a & b \\ b & d \end{bmatrix}$, supposing $v^T = (x,y)$, we see that $v^T A v = a x^2 + d y^2 + 2 b x y$. This expression is positive for all $(x,y) \neq (0,0)$ if and only a>0 and $ad-b^2=\det(A)>0$. (Why?)

3/15

- The matrix f_{ij} is called the 'Hessian' matrix of f. For future purposes a twice differentiable function whose second partials are continuous is said to be convex if $\sum_{i,j} v_i f_{ij}(a) v_j \geq 0 \ \forall \ v \neq 0$. Often, optimization studies convex functions.
- In general, given a symmetric $n \times n$ real matrix A, i.e., $A^T = A$, i.e., $A_{ij} = A_{ji}$, it is said to be *positive-definite* if $\sum_{i,j} A_{ij} v_i v_j > 0$ for all $v \neq 0$, i.e., $v^T A v > 0$ for all $v \neq 0$.
- This condition is somewhat subtle. For 2×2 matrices, $A = \begin{bmatrix} a & b \\ b & d \end{bmatrix}$, supposing $v^T = (x,y)$, we see that $v^T A v = a x^2 + d y^2 + 2 b x y$. This expression is positive for all $(x,y) \neq (0,0)$ if and only a>0 and $ad-b^2=\det(A)>0$. (Why?)
- Similar but more complicated conditions exist for n × n matrices. (

- The matrix f_{ij} is called the 'Hessian' matrix of f. For future purposes a twice differentiable function whose second partials are continuous is said to be convex if $\sum_{i,j} v_i f_{ij}(a) v_j \geq 0 \ \forall \ v \neq 0$. Often, optimization studies convex functions.
- In general, given a symmetric $n \times n$ real matrix A, i.e., $A^T = A$, i.e., $A_{ij} = A_{ji}$, it is said to be *positive-definite* if $\sum_{i,j} A_{ij} v_i v_j > 0$ for all $v \neq 0$, i.e., $v^T A v > 0$ for all $v \neq 0$.
- This condition is somewhat subtle. For 2×2 matrices, $A = \begin{bmatrix} a & b \\ b & d \end{bmatrix}$, supposing $v^T = (x, y)$, we see that $v^T A v = a x^2 + d y^2 + 2 b x y$. This expression is positive for all $(x, y) \neq (0, 0)$ if and only a > 0 and $a d b^2 = \det(A) > 0$. (Why?)
- Similar but more complicated conditions exist for $n \times n$ matrices. (Positive-definiteness is the same as having only positive eigenvalues by the way.)

• Find local extrema of $f(x, y, z) = x^2 - y^2$ on \mathbb{R}^2 : $\nabla f = (2x, -2y) = (0, 0)$ only at the origin.

• Find local extrema of $f(x, y, z) = x^2 - y^2$ on \mathbb{R}^2 : $\nabla f = (2x, -2y) = (0, 0)$ only at the origin. The Hessian is $\begin{bmatrix} 2 & 0 \\ 0 & -2 \end{bmatrix}$.

- Find local extrema of $f(x,y,z)=x^2-y^2$ on \mathbb{R}^2 : $\nabla f=(2x,-2y)=(0,0)$ only at the origin. The Hessian is $\begin{bmatrix} 2 & 0 \\ 0 & -2 \end{bmatrix}$.
- So the origin is neither a local max nor a local min (despite the second derivative being non-zero! (

- Find local extrema of $f(x,y,z)=x^2-y^2$ on \mathbb{R}^2 : $\nabla f=(2x,-2y)=(0,0)$ only at the origin. The Hessian is $\begin{bmatrix} 2 & 0 \\ 0 & -2 \end{bmatrix}$.
- So the origin is neither a local max nor a local min (despite the second derivative being non-zero! (and none of the eigenvalues being zero)).

- Find local extrema of $f(x,y,z)=x^2-y^2$ on \mathbb{R}^2 : $\nabla f=(2x,-2y)=(0,0)$ only at the origin. The Hessian is $\begin{bmatrix} 2 & 0 \\ 0 & -2 \end{bmatrix}$.
- So the origin is neither a local max nor a local min (despite the second derivative being non-zero! (and none of the eigenvalues being zero)).
- There is a direction in which f increases and a direction in which it decreases.

- Find local extrema of $f(x,y,z)=x^2-y^2$ on \mathbb{R}^2 : $\nabla f=(2x,-2y)=(0,0)$ only at the origin. The Hessian is $\begin{bmatrix} 2 & 0 \\ 0 & -2 \end{bmatrix}$.
- So the origin is neither a local max nor a local min (despite the second derivative being non-zero! (and none of the eigenvalues being zero)).
- There is a direction in which f increases and a direction in which it decreases. Such points are called "Saddle points".

- Find local extrema of $f(x,y,z)=x^2-y^2$ on \mathbb{R}^2 : $\nabla f=(2x,-2y)=(0,0)$ only at the origin. The Hessian is $\begin{bmatrix} 2 & 0 \\ 0 & -2 \end{bmatrix}$.
- So the origin is neither a local max nor a local min (despite the second derivative being non-zero! (and none of the eigenvalues being zero)).
- There is a direction in which f increases and a direction in which it decreases. Such points are called "Saddle points".
- More generally, the eigenvectors and eigenvalues of the Hessian tell us about these "principal" directions.

• It is painful

 \bullet It is painful to keep using Σ

ullet It is painful to keep using Σ every time we want to

ullet It is painful to keep using Σ every time we want to sum over.

ullet It is painful to keep using Σ every time we want to sum over. Einstein invented a

• It is painful to keep using Σ every time we want to sum over. Einstein invented a convenient notation for us.

- It is painful to keep using Σ every time we want to sum over. Einstein invented a convenient notation for us.
- "Sum over indices

- It is painful to keep using Σ every time we want to sum over. Einstein invented a convenient notation for us.
- "Sum over indices that are repeated

- It is painful to keep using Σ every time we want to sum over. Einstein invented a convenient notation for us.
- "Sum over indices that are repeated above and below.

- It is painful to keep using Σ every time we want to sum over. Einstein invented a convenient notation for us.
- "Sum over indices that are repeated above and below. Column vectors have superscripts

- It is painful to keep using Σ every time we want to sum over. Einstein invented a convenient notation for us.
- "Sum over indices that are repeated above and below. Column vectors have superscripts and row vectors have subscripts."

- It is painful to keep using Σ every time we want to sum over. Einstein invented a convenient notation for us.
- "Sum over indices that are repeated above and below. Column vectors have superscripts and row vectors have subscripts."
- Examples:

- It is painful to keep using Σ every time we want to sum over. Einstein invented a convenient notation for us.
- "Sum over indices that are repeated above and below. Column vectors have superscripts and row vectors have subscripts."
- Examples:
 - lacktriangle If v is a real row vector,

- It is painful to keep using Σ every time we want to sum over. Einstein invented a convenient notation for us.
- "Sum over indices that are repeated above and below. Column vectors have superscripts and row vectors have subscripts."
- Examples:
 - $oldsymbol{0}$ If v is a real row vector, and w is a real column vector,

- It is painful to keep using Σ every time we want to sum over. Einstein invented a convenient notation for us.
- "Sum over indices that are repeated above and below. Column vectors have superscripts and row vectors have subscripts."
- Examples:
 - ① If v is a real row vector, and w is a real column vector, then $\langle v^T, w \rangle = v_i w^i$.

- It is painful to keep using Σ every time we want to sum over. Einstein invented a convenient notation for us.
- "Sum over indices that are repeated above and below. Column vectors have superscripts and row vectors have subscripts."
- Examples:
 - ① If v is a real row vector, and w is a real column vector, then $\langle v^T, w \rangle = v_i w^i$.
 - ② If A is an $m \times n$ matrix,

- It is painful to keep using Σ every time we want to sum over. Einstein invented a convenient notation for us.
- "Sum over indices that are repeated above and below. Column vectors have superscripts and row vectors have subscripts."
- Examples:
 - ① If v is a real row vector, and w is a real column vector, then $\langle v^T, w \rangle = v_i w^i$.
 - ② If A is an $m \times n$ matrix, and v is an $n \times 1$ vector,

- It is painful to keep using Σ every time we want to sum over. Einstein invented a convenient notation for us.
- "Sum over indices that are repeated above and below. Column vectors have superscripts and row vectors have subscripts."
- Examples:
 - ① If v is a real row vector, and w is a real column vector, then $\langle v^T, w \rangle = v_i w^i$.
 - ② If A is an $m \times n$ matrix, and v is an $n \times 1$ vector, then $(Av)^i = A^i_i v^j$.

- It is painful to keep using Σ every time we want to sum over. Einstein invented a convenient notation for us.
- "Sum over indices that are repeated above and below. Column vectors have superscripts and row vectors have subscripts."
- Examples:
 - ① If v is a real row vector, and w is a real column vector, then $\langle v^T, w \rangle = v_i w^i$.
 - ② If A is an $m \times n$ matrix, and v is an $n \times 1$ vector, then $(Av)^i = A^i_i v^j$.
 - $Tr(A) = A_i^i.$

- It is painful to keep using Σ every time we want to sum over. Einstein invented a convenient notation for us.
- "Sum over indices that are repeated above and below. Column vectors have superscripts and row vectors have subscripts."
- Examples:
 - ① If v is a real row vector, and w is a real column vector, then $\langle v^T, w \rangle = v_i w^i$.
 - ② If A is an $m \times n$ matrix, and v is an $n \times 1$ vector, then $(Av)^i = A^i_i v^j$.
 - $Tr(A) = A_i^i.$
 - **1** $D(f \circ g)_{j}^{i} = [Df]_{k}^{i} [Dg]_{j}^{k}$.

- It is painful to keep using Σ every time we want to sum over. Einstein invented a convenient notation for us.
- "Sum over indices that are repeated above and below. Column vectors have superscripts and row vectors have subscripts."
- Examples:
 - ① If v is a real row vector, and w is a real column vector, then $\langle v^T, w \rangle = v_i w^i$.
 - ② If A is an $m \times n$ matrix, and v is an $n \times 1$ vector, then $(Av)^i = A^i_i v^j$.
 - $Tr(A) = A_i^i.$

- It is painful to keep using Σ every time we want to sum over. Einstein invented a convenient notation for us.
- "Sum over indices that are repeated above and below. Column vectors have superscripts and row vectors have subscripts."
- Examples:
 - ① If v is a real row vector, and w is a real column vector, then $\langle v^T, w \rangle = v_i w^i$.
 - ② If A is an $m \times n$ matrix, and v is an $n \times 1$ vector, then $(Av)^i = A^i_i v^j$.
 - $Tr(A) = A_i^i.$

 - **1** $Tr(AB) = A_j^i B_i^j = B_i^j A_j^i = Tr(BA).$
- If V is a vector space,

- It is painful to keep using Σ every time we want to sum over. Einstein invented a convenient notation for us.
- "Sum over indices that are repeated above and below. Column vectors have superscripts and row vectors have subscripts."
- Examples:
 - ① If v is a real row vector, and w is a real column vector, then $\langle v^T, w \rangle = v_i w^i$.
 - ② If A is an $m \times n$ matrix, and v is an $n \times 1$ vector, then $(Av)^i = A^i_i v^j$.
 - $Tr(A) = A_i^i.$

 - **5** $Tr(AB) = A_i^i B_i^j = B_i^j A_i^i = Tr(BA).$
- If V is a vector space, basis vectors are denoted

- It is painful to keep using Σ every time we want to sum over. Einstein invented a convenient notation for us.
- "Sum over indices that are repeated above and below. Column vectors have superscripts and row vectors have subscripts."
- Examples:
 - ① If v is a real row vector, and w is a real column vector, then $\langle v^T, w \rangle = v_i w^i$.
 - ② If A is an $m \times n$ matrix, and v is an $n \times 1$ vector, then $(Av)^i = A^i_i v^j$.
 - $Tr(A) = A_i^i.$

 - **5** $Tr(AB) = A_i^i B_i^j = B_i^j A_i^i = Tr(BA).$
- If V is a vector space, basis vectors are denoted with subscripts (

- It is painful to keep using Σ every time we want to sum over. Einstein invented a convenient notation for us.
- "Sum over indices that are repeated above and below. Column vectors have superscripts and row vectors have subscripts."
- Examples:
 - ① If v is a real row vector, and w is a real column vector, then $\langle v^T, w \rangle = v_i w^i$.
 - ② If A is an $m \times n$ matrix, and v is an $n \times 1$ vector, then $(Av)^i = A^i_i v^j$.
 - $Tr(A) = A_i^i.$

 - **5** $Tr(AB) = A_i^i B_i^j = B_i^j A_i^i = Tr(BA).$
- If V is a vector space, basis vectors are denoted with subscripts (like e_1, e_2, \ldots) and

- It is painful to keep using Σ every time we want to sum over. Einstein invented a convenient notation for us.
- "Sum over indices that are repeated above and below. Column vectors have superscripts and row vectors have subscripts."
- Examples:
 - ① If v is a real row vector, and w is a real column vector, then $\langle v^T, w \rangle = v_i w^i$.
 - ② If A is an $m \times n$ matrix, and v is an $n \times 1$ vector, then $(Av)^i = A^i_i v^j$.
 - $Tr(A) = A_i^i.$
- If V is a vector space, basis vectors are denoted with subscripts (like e_1, e_2, \ldots) and components w.r.t a basis are

- It is painful to keep using Σ every time we want to sum over. Einstein invented a convenient notation for us.
- "Sum over indices that are repeated above and below. Column vectors have superscripts and row vectors have subscripts."
- Examples:
 - ① If v is a real row vector, and w is a real column vector, then $\langle v^T, w \rangle = v_i w^i$.
 - ② If A is an $m \times n$ matrix, and v is an $n \times 1$ vector, then $(Av)^i = A^i_i v^j$.
 - $Tr(A) = A_i^i.$

 - **5** $Tr(AB) = A_i^i B_i^j = B_i^j A_i^i = Tr(BA).$
- If V is a vector space, basis vectors are denoted with subscripts (like e_1, e_2, \ldots) and components w.r.t a basis are denoted with superscripts (

- It is painful to keep using Σ every time we want to sum over. Einstein invented a convenient notation for us.
- "Sum over indices that are repeated above and below. Column vectors have superscripts and row vectors have subscripts."
- Examples:
 - ① If v is a real row vector, and w is a real column vector, then $\langle v^T, w \rangle = v_i w^i$.
 - ② If A is an $m \times n$ matrix, and v is an $n \times 1$ vector, then $(Av)^i = A^i_j v^j$.
 - $Tr(A) = A_i^i.$
- If V is a vector space, basis vectors are denoted with subscripts (like e_1, e_2, \ldots) and components w.r.t a basis are denoted with superscripts (like $v = v^i e_i$).

- It is painful to keep using Σ every time we want to sum over. Einstein invented a convenient notation for us.
- "Sum over indices that are repeated above and below. Column vectors have superscripts and row vectors have subscripts."
- Examples:
 - ① If v is a real row vector, and w is a real column vector, then $\langle v^T, w \rangle = v_i w^i$.
 - ② If A is an $m \times n$ matrix, and v is an $n \times 1$ vector, then $(Av)^i = A^i_i v^j$.
 - $Tr(A) = A_i^i.$
- If V is a vector space, basis vectors are denoted with subscripts (like e_1, e_2, \ldots) and components w.r.t a basis are denoted with superscripts (like $v = v^i e_i$). For the dual space,

- It is painful to keep using Σ every time we want to sum over. Einstein invented a convenient notation for us.
- "Sum over indices that are repeated above and below. Column vectors have superscripts and row vectors have subscripts."
- Examples:
 - ① If v is a real row vector, and w is a real column vector, then $\langle v^T, w \rangle = v_i w^i$.
 - ② If A is an $m \times n$ matrix, and v is an $n \times 1$ vector, then $(Av)^i = A^i_j v^j$.
 - $Tr(A) = A_i^i.$
- If V is a vector space, basis vectors are denoted with subscripts (like e_1, e_2, \ldots) and components w.r.t a basis are denoted with superscripts (like $v = v^i e_i$). For the dual space, the indices are flipped, i.e.,

- It is painful to keep using Σ every time we want to sum over. Einstein invented a convenient notation for us.
- "Sum over indices that are repeated above and below. Column vectors have superscripts and row vectors have subscripts."
- Examples:
 - ① If v is a real row vector, and w is a real column vector, then $\langle v^T, w \rangle = v_i w^i$.
 - ② If A is an $m \times n$ matrix, and v is an $n \times 1$ vector, then $(Av)^i = A^i_j v^j$.
 - $Tr(A) = A_i^i.$

 - $Tr(AB) = A^i_j B^j_i = B^j_i A^i_j = Tr(BA).$
- If V is a vector space, basis vectors are denoted with subscripts (like e_1, e_2, \ldots) and components w.r.t a basis are denoted with superscripts (like $v = v^i e_i$). For the dual space, the indices are flipped, i.e., $e_1^* = e^1, \ldots$ and $\omega = \omega_i e^i$.

• Consider $x^2 + y^2 = 1$.

• Consider $x^2 + y^2 = 1$. Is y a differentiable function of x?

• Consider $x^2 + y^2 = 1$. Is y a differentiable function of x? Of course not!

- Consider $x^2 + y^2 = 1$. Is y a differentiable function of x? Of course not!
- $y = \pm \sqrt{1 x^2}$.

- Consider $x^2 + y^2 = 1$. Is y a differentiable function of x? Of course not!
- $y = \pm \sqrt{1 x^2}$. So y is not even

- Consider $x^2 + y^2 = 1$. Is y a differentiable function of x? Of course not!
- $y = \pm \sqrt{1 x^2}$. So y is not even a function of x!

- Consider $x^2 + y^2 = 1$. Is y a differentiable function of x? Of course not!
- $y = \pm \sqrt{1 x^2}$. So y is not even a function of x! Also, both functions are

- Consider $x^2 + y^2 = 1$. Is y a differentiable function of x? Of course not!
- $y = \pm \sqrt{1 x^2}$. So y is not even a function of x! Also, both functions are not differentiable at $x = \pm 1$.

- Consider $x^2 + y^2 = 1$. Is y a differentiable function of x? Of course not!
- $y = \pm \sqrt{1 x^2}$. So y is not even a function of x! Also, both functions are not differentiable at $x = \pm 1$.
- The best we can say is

- Consider $x^2 + y^2 = 1$. Is y a differentiable function of x? Of course not!
- $y = \pm \sqrt{1 x^2}$. So y is not even a function of x! Also, both functions are not differentiable at $x = \pm 1$.
- The best we can say is "near" (a, b) on the circle,

- Consider $x^2 + y^2 = 1$. Is y a differentiable function of x? Of course not!
- $y = \pm \sqrt{1 x^2}$. So y is not even a function of x! Also, both functions are not differentiable at $x = \pm 1$.
- The best we can say is "near" (a, b) on the circle, we can differentiably solve for

- Consider $x^2 + y^2 = 1$. Is y a differentiable function of x? Of course not!
- $y = \pm \sqrt{1 x^2}$. So y is not even a function of x! Also, both functions are not differentiable at $x = \pm 1$.
- The best we can say is "near" (a, b) on the circle, we can differentiably solve for either y in terms of x

- Consider $x^2 + y^2 = 1$. Is y a differentiable function of x? Of course not!
- $y = \pm \sqrt{1 x^2}$. So y is not even a function of x! Also, both functions are not differentiable at $x = \pm 1$.
- The best we can say is "near" (a, b) on the circle, we can differentiably solve for either y in terms of x or x in terms of y.

- Consider $x^2 + y^2 = 1$. Is y a differentiable function of x? Of course not!
- $y = \pm \sqrt{1 x^2}$. So y is not even a function of x! Also, both functions are not differentiable at $x = \pm 1$.
- The best we can say is "near" (a, b) on the circle, we can differentiably solve for either y in terms of x or x in terms of y.
- We can also

- Consider $x^2 + y^2 = 1$. Is y a differentiable function of x? Of course not!
- $y = \pm \sqrt{1 x^2}$. So y is not even a function of x! Also, both functions are not differentiable at $x = \pm 1$.
- The best we can say is "near" (a, b) on the circle, we can differentiably solve for either y in terms of x or x in terms of y.
- We can also generalise this observation to

- Consider $x^2 + y^2 = 1$. Is y a differentiable function of x? Of course not!
- $y = \pm \sqrt{1 x^2}$. So y is not even a function of x! Also, both functions are not differentiable at $x = \pm 1$.
- The best we can say is "near" (a, b) on the circle, we can differentiably solve for either y in terms of x or x in terms of y.
- We can also generalise this observation to $x^2 + y^2 = r^2$.

- Consider $x^2 + y^2 = 1$. Is y a differentiable function of x? Of course not!
- $y = \pm \sqrt{1 x^2}$. So y is not even a function of x! Also, both functions are not differentiable at $x = \pm 1$.
- The best we can say is "near" (a, b) on the circle, we can differentiably solve for either y in terms of x or x in terms of y.
- We can also generalise this observation to $x^2 + y^2 = r^2$. Near say $(\frac{r}{\sqrt{2}}, \frac{r}{\sqrt{2}})$,

- Consider $x^2 + y^2 = 1$. Is y a differentiable function of x? Of course not!
- $y = \pm \sqrt{1 x^2}$. So y is not even a function of x! Also, both functions are not differentiable at $x = \pm 1$.
- The best we can say is "near" (a, b) on the circle, we can differentiably solve for either y in terms of x or x in terms of y.
- We can also generalise this observation to $x^2 + y^2 = r^2$. Near say $(\frac{r}{\sqrt{2}}, \frac{r}{\sqrt{2}})$, $y = \sqrt{r^2 x^2}$ is

- Consider $x^2 + y^2 = 1$. Is y a differentiable function of x? Of course not!
- $y = \pm \sqrt{1 x^2}$. So y is not even a function of x! Also, both functions are not differentiable at $x = \pm 1$.
- The best we can say is "near" (a, b) on the circle, we can differentiably solve for either y in terms of x or x in terms of y.
- We can also generalise this observation to $x^2 + y^2 = r^2$. Near say $(\frac{r}{\sqrt{2}}, \frac{r}{\sqrt{2}})$, $y = \sqrt{r^2 x^2}$ is a smooth function of (r, x).

- Consider $x^2 + y^2 = 1$. Is y a differentiable function of x? Of course not!
- $y = \pm \sqrt{1 x^2}$. So y is not even a function of x! Also, both functions are not differentiable at $x = \pm 1$.
- The best we can say is "near" (a, b) on the circle, we can differentiably solve for either y in terms of x or x in terms of y.
- We can also generalise this observation to $x^2 + y^2 = r^2$. Near say $(\frac{r}{\sqrt{2}}, \frac{r}{\sqrt{2}})$, $y = \sqrt{r^2 x^2}$ is a smooth function of (r, x).
- What about $x^{\sin(y)} + y^2 + e^{xy} = 1$?

- Consider $x^2 + y^2 = 1$. Is y a differentiable function of x? Of course not!
- $y = \pm \sqrt{1 x^2}$. So y is not even a function of x! Also, both functions are not differentiable at $x = \pm 1$.
- The best we can say is "near" (a, b) on the circle, we can differentiably solve for either y in terms of x or x in terms of y.
- We can also generalise this observation to $x^2 + y^2 = r^2$. Near say $(\frac{r}{\sqrt{2}}, \frac{r}{\sqrt{2}})$, $y = \sqrt{r^2 x^2}$ is a smooth function of (r, x).
- What about $x^{\sin(y)} + y^2 + e^{xy} = 1$? It is not clear

- Consider $x^2 + y^2 = 1$. Is y a differentiable function of x? Of course not!
- $y = \pm \sqrt{1 x^2}$. So y is not even a function of x! Also, both functions are not differentiable at $x = \pm 1$.
- The best we can say is "near" (a, b) on the circle, we can differentiably solve for either y in terms of x or x in terms of y.
- We can also generalise this observation to $x^2 + y^2 = r^2$. Near say $(\frac{r}{\sqrt{2}}, \frac{r}{\sqrt{2}})$, $y = \sqrt{r^2 x^2}$ is a smooth function of (r, x).
- What about $x^{\sin(y)} + y^2 + e^{xy} = 1$? It is not clear whether we can solve

- Consider $x^2 + y^2 = 1$. Is y a differentiable function of x? Of course not!
- $y = \pm \sqrt{1 x^2}$. So y is not even a function of x! Also, both functions are not differentiable at $x = \pm 1$.
- The best we can say is "near" (a, b) on the circle, we can differentiably solve for either y in terms of x or x in terms of y.
- We can also generalise this observation to $x^2 + y^2 = r^2$. Near say $(\frac{r}{\sqrt{2}}, \frac{r}{\sqrt{2}})$, $y = \sqrt{r^2 x^2}$ is a smooth function of (r, x).
- What about $x^{\sin(y)} + y^2 + e^{xy} = 1$? It is not clear whether we can solve for either variable

- Consider $x^2 + y^2 = 1$. Is y a differentiable function of x? Of course not!
- $y = \pm \sqrt{1 x^2}$. So y is not even a function of x! Also, both functions are not differentiable at $x = \pm 1$.
- The best we can say is "near" (a, b) on the circle, we can differentiably solve for either y in terms of x or x in terms of y.
- We can also generalise this observation to $x^2 + y^2 = r^2$. Near say $(\frac{r}{\sqrt{2}}, \frac{r}{\sqrt{2}})$, $y = \sqrt{r^2 x^2}$ is a smooth function of (r, x).
- What about $x^{\sin(y)} + y^2 + e^{xy} = 1$? It is not clear whether we can solve for either variable in terms of the other.

- Consider $x^2 + y^2 = 1$. Is y a differentiable function of x? Of course not!
- $y = \pm \sqrt{1 x^2}$. So y is not even a function of x! Also, both functions are not differentiable at $x = \pm 1$.
- The best we can say is "near" (a, b) on the circle, we can differentiably solve for either y in terms of x or x in terms of y.
- We can also generalise this observation to $x^2 + y^2 = r^2$. Near say $(\frac{r}{\sqrt{2}}, \frac{r}{\sqrt{2}})$, $y = \sqrt{r^2 x^2}$ is a smooth function of (r, x).
- What about $x^{\sin(y)} + y^2 + e^{xy} = 1$? It is not clear whether we can solve for either variable in terms of the other. Even if we can,

- Consider $x^2 + y^2 = 1$. Is y a differentiable function of x? Of course not!
- $y = \pm \sqrt{1 x^2}$. So y is not even a function of x! Also, both functions are not differentiable at $x = \pm 1$.
- The best we can say is "near" (a, b) on the circle, we can differentiably solve for either y in terms of x or x in terms of y.
- We can also generalise this observation to $x^2 + y^2 = r^2$. Near say $(\frac{r}{\sqrt{2}}, \frac{r}{\sqrt{2}})$, $y = \sqrt{r^2 x^2}$ is a smooth function of (r, x).
- What about $x^{\sin(y)} + y^2 + e^{xy} = 1$? It is not clear whether we can solve for either variable in terms of the other. Even if we can, it is unlikely that

- Consider $x^2 + y^2 = 1$. Is y a differentiable function of x? Of course not!
- $y = \pm \sqrt{1 x^2}$. So y is not even a function of x! Also, both functions are not differentiable at $x = \pm 1$.
- The best we can say is "near" (a, b) on the circle, we can differentiably solve for either y in terms of x or x in terms of y.
- We can also generalise this observation to $x^2 + y^2 = r^2$. Near say $(\frac{r}{\sqrt{2}}, \frac{r}{\sqrt{2}})$, $y = \sqrt{r^2 x^2}$ is a smooth function of (r, x).
- What about $x^{\sin(y)} + y^2 + e^{xy} = 1$? It is not clear whether we can solve for either variable in terms of the other. Even if we can, it is unlikely that we can write a simple formula for the solution.

• More generally,

• More generally, given a C^k function $F: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m$,

• More generally, given a C^k function $F: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m$, we can ask,

• More generally, given a C^k function $F: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m$, we can ask, "Can we solve for

• More generally, given a C^k function $F: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m$, we can ask, "Can we solve for y as a C^1 function of

• More generally, given a C^k function $F: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m$, we can ask, "Can we solve for y as a C^1 function of x, c from

• More generally, given a C^k function $F: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m$, we can ask, "Can we solve for y as a C^1 function of x, c from F(x, y) = c?"

- More generally, given a C^k function $F: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m$, we can ask, "Can we solve for y as a C^1 function of x, c from F(x,y)=c?"
- Since C^1 functions

- More generally, given a C^k function $F: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m$, we can ask, "Can we solve for y as a C^1 function of x, c from F(x,y)=c?"
- Since C^1 functions can be approximated by

- More generally, given a C^k function $F: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m$, we can ask, "Can we solve for y as a C^1 function of x, c from F(x,y)=c?"
- Since C^1 functions can be approximated by linear functions,

- More generally, given a C^k function $F: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m$, we can ask, "Can we solve for y as a C^1 function of x, c from F(x,y)=c?"
- ullet Since C^1 functions can be approximated by linear functions, let us at least try our luck

- More generally, given a C^k function $F: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m$, we can ask, "Can we solve for y as a C^1 function of x, c from F(x,y)=c?"
- Since C^1 functions can be approximated by linear functions, let us at least try our luck when F(x, y) = Ax + By where

- More generally, given a C^k function $F: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m$, we can ask, "Can we solve for y as a C^1 function of x, c from F(x,y)=c?"
- Since C^1 functions can be approximated by linear functions, let us at least try our luck when F(x, y) = Ax + By where A, B are constant matrices (of what type?).

- More generally, given a C^k function $F: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m$, we can ask, "Can we solve for y as a C^1 function of x, c from F(x,y)=c?"
- Since C^1 functions can be approximated by linear functions, let us at least try our luck when F(x,y) = Ax + By where A, B are constant matrices (of what type?).
- So if Ax + By = c,

- More generally, given a C^k function $F: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m$, we can ask, "Can we solve for y as a C^1 function of x, c from F(x,y)=c?"
- Since C^1 functions can be approximated by linear functions, let us at least try our luck when F(x,y) = Ax + By where A, B are constant matrices (of what type?).
- So if Ax + By = c, can we solve for y in terms of x, c uniquely?

- More generally, given a C^k function $F: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m$, we can ask, "Can we solve for y as a C^1 function of x, c from F(x,y) = c?"
- Since C^1 functions can be approximated by linear functions, let us at least try our luck when F(x,y) = Ax + By where A, B are constant matrices (of what type?).
- So if Ax + By = c, can we solve for y in terms of x, c uniquely? By = c Ax.

- More generally, given a C^k function $F: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m$, we can ask, "Can we solve for y as a C^1 function of x, c from F(x,y) = c?"
- Since C^1 functions can be approximated by linear functions, let us at least try our luck when F(x,y) = Ax + By where A, B are constant matrices (of what type?).
- So if Ax + By = c, can we solve for y in terms of x, c uniquely? By = c Ax. Therefore, this question

- More generally, given a C^k function $F: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m$, we can ask, "Can we solve for y as a C^1 function of x, c from F(x,y) = c?"
- Since C^1 functions can be approximated by linear functions, let us at least try our luck when F(x,y) = Ax + By where A, B are constant matrices (of what type?).
- So if Ax + By = c, can we solve for y in terms of x, c uniquely? By = c Ax. Therefore, this question has an affirmative answer

- More generally, given a C^k function $F: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m$, we can ask, "Can we solve for y as a C^1 function of x, c from F(x,y)=c?"
- Since C^1 functions can be approximated by linear functions, let us at least try our luck when F(x,y) = Ax + By where A, B are constant matrices (of what type?).
- So if Ax + By = c, can we solve for y in terms of x, c uniquely? By = c Ax. Therefore, this question has an affirmative answer iff B is an invertible matrix.

A special case - the inverse function theorem

Often in maths,

• Often in maths, general cases can be

• Often in maths, general cases can be reduced to

 Often in maths, general cases can be reduced to the simplest non-trivial special cases.

- Often in maths, general cases can be reduced to the simplest non-trivial special cases.
- Suppose m = 0, i.e.,

- Often in maths, general cases can be reduced to the simplest non-trivial special cases.
- Suppose m = 0, i.e., if F(y) = c,

- Often in maths, general cases can be reduced to the simplest non-trivial special cases.
- Suppose m = 0, i.e., if F(y) = c, can we locally

- Often in maths, general cases can be reduced to the simplest non-trivial special cases.
- Suppose m = 0, i.e., if F(y) = c, can we locally solve for y as a C^1 function of c?

- Often in maths, general cases can be reduced to the simplest non-trivial special cases.
- Suppose m = 0, i.e., if F(y) = c, can we locally solve for y as a C^1 function of c? That is,

- Often in maths, general cases can be reduced to the simplest non-trivial special cases.
- Suppose m=0, i.e., if F(y)=c, can we locally solve for y as a C^1 function of c? That is, when do local inverses exist and are differentiable, i.e.,

- Often in maths, general cases can be reduced to the simplest non-trivial special cases.
- Suppose m=0, i.e., if F(y)=c, can we locally solve for y as a C^1 function of c? That is, when do local inverses exist and are differentiable, i.e., when is F a local diffeomorphism?

- Often in maths, general cases can be reduced to the simplest non-trivial special cases.
- Suppose m=0, i.e., if F(y)=c, can we locally solve for y as a C^1 function of c? That is, when do local inverses exist and are differentiable, i.e., when is F a local diffeomorphism? Also, what is

- Often in maths, general cases can be reduced to the simplest non-trivial special cases.
- Suppose m=0, i.e., if F(y)=c, can we locally solve for y as a C^1 function of c? That is, when do local inverses exist and are differentiable, i.e., when is F a local diffeomorphism? Also, what is the derivative of F^{-1} ?

- Often in maths, general cases can be reduced to the simplest non-trivial special cases.
- Suppose m=0, i.e., if F(y)=c, can we locally solve for y as a C^1 function of c? That is, when do local inverses exist and are differentiable, i.e., when is F a local diffeomorphism? Also, what is the derivative of F^{-1} ?
- When n=1,

- Often in maths, general cases can be reduced to the simplest non-trivial special cases.
- Suppose m=0, i.e., if F(y)=c, can we locally solve for y as a C^1 function of c? That is, when do local inverses exist and are differentiable, i.e., when is F a local diffeomorphism? Also, what is the derivative of F^{-1} ?
- When n = 1, by monotonicity,

- Often in maths, general cases can be reduced to the simplest non-trivial special cases.
- Suppose m=0, i.e., if F(y)=c, can we locally solve for y as a C^1 function of c? That is, when do local inverses exist and are differentiable, i.e., when is F a local diffeomorphism? Also, what is the derivative of F^{-1} ?
- When n = 1, by monotonicity, this problem is not hard.

- Often in maths, general cases can be reduced to the simplest non-trivial special cases.
- Suppose m=0, i.e., if F(y)=c, can we locally solve for y as a C^1 function of c? That is, when do local inverses exist and are differentiable, i.e., when is F a local diffeomorphism? Also, what is the derivative of F^{-1} ?
- When n = 1, by monotonicity, this problem is not hard.
- In general,

- Often in maths, general cases can be reduced to the simplest non-trivial special cases.
- Suppose m=0, i.e., if F(y)=c, can we locally solve for y as a C^1 function of c? That is, when do local inverses exist and are differentiable, i.e., when is F a local diffeomorphism? Also, what is the derivative of F^{-1} ?
- When n = 1, by monotonicity, this problem is not hard.
- In general, we need a theorem.

- Often in maths, general cases can be reduced to the simplest non-trivial special cases.
- Suppose m=0, i.e., if F(y)=c, can we locally solve for y as a C^1 function of c? That is, when do local inverses exist and are differentiable, i.e., when is F a local diffeomorphism? Also, what is the derivative of F^{-1} ?
- When n = 1, by monotonicity, this problem is not hard.
- In general, we need a theorem. We expect that

- Often in maths, general cases can be reduced to the simplest non-trivial special cases.
- Suppose m=0, i.e., if F(y)=c, can we locally solve for y as a C^1 function of c? That is, when do local inverses exist and are differentiable, i.e., when is F a local diffeomorphism? Also, what is the derivative of F^{-1} ?
- When n = 1, by monotonicity, this problem is not hard.
- In general, we need a theorem. We expect that it is good enough for

- Often in maths, general cases can be reduced to the simplest non-trivial special cases.
- Suppose m=0, i.e., if F(y)=c, can we locally solve for y as a C^1 function of c? That is, when do local inverses exist and are differentiable, i.e., when is F a local diffeomorphism? Also, what is the derivative of F^{-1} ?
- When n = 1, by monotonicity, this problem is not hard.
- In general, we need a theorem. We expect that it is good enough for DF_a to be invertible.

- Often in maths, general cases can be reduced to the simplest non-trivial special cases.
- Suppose m=0, i.e., if F(y)=c, can we locally solve for y as a C^1 function of c? That is, when do local inverses exist and are differentiable, i.e., when is F a local diffeomorphism? Also, what is the derivative of F^{-1} ?
- When n = 1, by monotonicity, this problem is not hard.
- In general, we need a theorem. We expect that it is good enough for DF_a to be invertible. Indeed, this expectation is true.

• Let $U, V \subset \mathbb{R}^n$ be open sets.

• Let $U, V \subset \mathbb{R}^n$ be open sets. Suppose $F: U \to V$ is a C^k function (

• Let $U, V \subset \mathbb{R}^n$ be open sets. Suppose $F: U \to V$ is a C^k function (where $k \ge 1$ can be ∞).

• Let $U, V \subset \mathbb{R}^n$ be open sets. Suppose $F: U \to V$ is a C^k function (where $k \ge 1$ can be ∞). If DF_a is invertible at $a \in U$,

• Let $U, V \subset \mathbb{R}^n$ be open sets. Suppose $F: U \to V$ is a C^k function (where $k \geq 1$ can be ∞). If DF_a is invertible at $a \in U$, then there exist connected neighbourhoods $a \in U_a \subset U$, $F(a) \in V_a \subset V$

• Let $U, V \subset \mathbb{R}^n$ be open sets. Suppose $F: U \to V$ is a C^k function (where $k \geq 1$ can be ∞). If DF_a is invertible at $a \in U$, then there exist connected neighbourhoods $a \in U_a \subset U$, $F(a) \in V_a \subset V$ such that $F: U_a \to V_a$ is a C^k -diffeomorphism.

• Let $U, V \subset \mathbb{R}^n$ be open sets. Suppose $F: U \to V$ is a C^k function (where $k \geq 1$ can be ∞). If DF_a is invertible at $a \in U$, then there exist connected neighbourhoods $a \in U_a \subset U$, $F(a) \in V_a \subset V$ such that $F: U_a \to V_a$ is a C^k -diffeomorphism. Moreover,

• Let $U, V \subset \mathbb{R}^n$ be open sets. Suppose $F: U \to V$ is a C^k function (where $k \geq 1$ can be ∞). If DF_a is invertible at $a \in U$, then there exist connected neighbourhoods $a \in U_a \subset U$, $F(a) \in V_a \subset V$ such that $F: U_a \to V_a$ is a C^k -diffeomorphism. Moreover, $DF_{f(a)}^{-1} = (DF_a)^{-1}$.

- Let $U, V \subset \mathbb{R}^n$ be open sets. Suppose $F: U \to V$ is a C^k function (where $k \geq 1$ can be ∞). If DF_a is invertible at $a \in U$, then there exist connected neighbourhoods $a \in U_a \subset U$, $F(a) \in V_a \subset V$ such that $F: U_a \to V_a$ is a C^k -diffeomorphism. Moreover, $DF_{f(a)}^{-1} = (DF_a)^{-1}$.
- You might have

- Let $U, V \subset \mathbb{R}^n$ be open sets. Suppose $F: U \to V$ is a C^k function (where $k \geq 1$ can be ∞). If DF_a is invertible at $a \in U$, then there exist connected neighbourhoods $a \in U_a \subset U$, $F(a) \in V_a \subset V$ such that $F: U_a \to V_a$ is a C^k -diffeomorphism. Moreover, $DF_{f(a)}^{-1} = (DF_a)^{-1}$.
- You might have seen the case when k = 1.

- Let $U, V \subset \mathbb{R}^n$ be open sets. Suppose $F: U \to V$ is a C^k function (where $k \geq 1$ can be ∞). If DF_a is invertible at $a \in U$, then there exist connected neighbourhoods $a \in U_a \subset U$, $F(a) \in V_a \subset V$ such that $F: U_a \to V_a$ is a C^k -diffeomorphism. Moreover, $DF_{f(a)}^{-1} = (DF_a)^{-1}$.
- You might have seen the case when k = 1. Given that case,

- Let $U, V \subset \mathbb{R}^n$ be open sets. Suppose $F: U \to V$ is a C^k function (where $k \geq 1$ can be ∞). If DF_a is invertible at $a \in U$, then there exist connected neighbourhoods $a \in U_a \subset U$, $F(a) \in V_a \subset V$ such that $F: U_a \to V_a$ is a C^k -diffeomorphism. Moreover, $DF_{f(a)}^{-1} = (DF_a)^{-1}$.
- You might have seen the case when k=1. Given that case, the general case is

- Let $U, V \subset \mathbb{R}^n$ be open sets. Suppose $F: U \to V$ is a C^k function (where $k \geq 1$ can be ∞). If DF_a is invertible at $a \in U$, then there exist connected neighbourhoods $a \in U_a \subset U$, $F(a) \in V_a \subset V$ such that $F: U_a \to V_a$ is a C^k -diffeomorphism. Moreover, $DF_{f(a)}^{-1} = (DF_a)^{-1}$.
- You might have seen the case when k=1. Given that case, the general case is an easy inductive application

- Let $U, V \subset \mathbb{R}^n$ be open sets. Suppose $F: U \to V$ is a C^k function (where $k \geq 1$ can be ∞). If DF_a is invertible at $a \in U$, then there exist connected neighbourhoods $a \in U_a \subset U$, $F(a) \in V_a \subset V$ such that $F: U_a \to V_a$ is a C^k -diffeomorphism. Moreover, $DF_{f(a)}^{-1} = (DF_a)^{-1}$.
- You might have seen the case when k=1. Given that case, the general case is an easy inductive application of the chain rule to the

- Let $U, V \subset \mathbb{R}^n$ be open sets. Suppose $F: U \to V$ is a C^k function (where $k \geq 1$ can be ∞). If DF_a is invertible at $a \in U$, then there exist connected neighbourhoods $a \in U_a \subset U$, $F(a) \in V_a \subset V$ such that $F: U_a \to V_a$ is a C^k -diffeomorphism. Moreover, $DF_{f(a)}^{-1} = (DF_a)^{-1}$.
- You might have seen the case when k = 1. Given that case, the general case is an easy inductive application of the chain rule to the formula for the derivative of F^{-1} .

- Let $U, V \subset \mathbb{R}^n$ be open sets. Suppose $F: U \to V$ is a C^k function (where $k \geq 1$ can be ∞). If DF_a is invertible at $a \in U$, then there exist connected neighbourhoods $a \in U_a \subset U$, $F(a) \in V_a \subset V$ such that $F: U_a \to V_a$ is a C^k -diffeomorphism. Moreover, $DF_{f(a)}^{-1} = (DF_a)^{-1}$.
- You might have seen the case when k = 1. Given that case, the general case is an easy inductive application of the chain rule to the formula for the derivative of F^{-1} .
- The proof of this theorem

- Let $U, V \subset \mathbb{R}^n$ be open sets. Suppose $F: U \to V$ is a C^k function (where $k \geq 1$ can be ∞). If DF_a is invertible at $a \in U$, then there exist connected neighbourhoods $a \in U_a \subset U$, $F(a) \in V_a \subset V$ such that $F: U_a \to V_a$ is a C^k -diffeomorphism. Moreover, $DF_{f(a)}^{-1} = (DF_a)^{-1}$.
- You might have seen the case when k=1. Given that case, the general case is an easy inductive application of the chain rule to the formula for the derivative of F^{-1} .
- The proof of this theorem involves the contraction mapping principle. (

- Let $U, V \subset \mathbb{R}^n$ be open sets. Suppose $F: U \to V$ is a C^k function (where $k \geq 1$ can be ∞). If DF_a is invertible at $a \in U$, then there exist connected neighbourhoods $a \in U_a \subset U$, $F(a) \in V_a \subset V$ such that $F: U_a \to V_a$ is a C^k -diffeomorphism. Moreover, $DF_{f(a)}^{-1} = (DF_a)^{-1}$.
- You might have seen the case when k=1. Given that case, the general case is an easy inductive application of the chain rule to the formula for the derivative of F^{-1} .
- The proof of this theorem involves the contraction mapping principle. (Optional fun fact:

- Let $U, V \subset \mathbb{R}^n$ be open sets. Suppose $F: U \to V$ is a C^k function (where $k \geq 1$ can be ∞). If DF_a is invertible at $a \in U$, then there exist connected neighbourhoods $a \in U_a \subset U$, $F(a) \in V_a \subset V$ such that $F: U_a \to V_a$ is a C^k -diffeomorphism. Moreover, $DF_{f(a)}^{-1} = (DF_a)^{-1}$.
- You might have seen the case when k=1. Given that case, the general case is an easy inductive application of the chain rule to the formula for the derivative of F^{-1} .
- The proof of this theorem involves the contraction mapping principle. (Optional fun fact: The proof shows that the same kind of a result

- Let $U, V \subset \mathbb{R}^n$ be open sets. Suppose $F: U \to V$ is a C^k function (where $k \geq 1$ can be ∞). If DF_a is invertible at $a \in U$, then there exist connected neighbourhoods $a \in U_a \subset U$, $F(a) \in V_a \subset V$ such that $F: U_a \to V_a$ is a C^k -diffeomorphism. Moreover, $DF_{f(a)}^{-1} = (DF_a)^{-1}$.
- You might have seen the case when k=1. Given that case, the general case is an easy inductive application of the chain rule to the formula for the derivative of F^{-1} .
- The proof of this theorem involves the contraction mapping principle. (Optional fun fact: The proof shows that the same kind of a result holds when U,V are open subsets

- Let $U, V \subset \mathbb{R}^n$ be open sets. Suppose $F: U \to V$ is a C^k function (where $k \geq 1$ can be ∞). If DF_a is invertible at $a \in U$, then there exist connected neighbourhoods $a \in U_a \subset U$, $F(a) \in V_a \subset V$ such that $F: U_a \to V_a$ is a C^k -diffeomorphism. Moreover, $DF_{f(a)}^{-1} = (DF_a)^{-1}$.
- You might have seen the case when k=1. Given that case, the general case is an easy inductive application of the chain rule to the formula for the derivative of F^{-1} .
- The proof of this theorem involves the contraction mapping principle. (Optional fun fact: The proof shows that the same kind of a result holds when U, V are open subsets of a Banach space.

- Let $U, V \subset \mathbb{R}^n$ be open sets. Suppose $F: U \to V$ is a C^k function (where $k \geq 1$ can be ∞). If DF_a is invertible at $a \in U$, then there exist connected neighbourhoods $a \in U_a \subset U$, $F(a) \in V_a \subset V$ such that $F: U_a \to V_a$ is a C^k -diffeomorphism. Moreover, $DF_{f(a)}^{-1} = (DF_a)^{-1}$.
- You might have seen the case when k=1. Given that case, the general case is an easy inductive application of the chain rule to the formula for the derivative of F^{-1} .
- The proof of this theorem involves the contraction mapping principle. (Optional fun fact: The proof shows that the same kind of a result holds when U, V are open subsets of a Banach space. While we won't need this fact,

- Let $U, V \subset \mathbb{R}^n$ be open sets. Suppose $F: U \to V$ is a C^k function (where $k \geq 1$ can be ∞). If DF_a is invertible at $a \in U$, then there exist connected neighbourhoods $a \in U_a \subset U$, $F(a) \in V_a \subset V$ such that $F: U_a \to V_a$ is a C^k -diffeomorphism. Moreover, $DF_{f(a)}^{-1} = (DF_a)^{-1}$.
- You might have seen the case when k=1. Given that case, the general case is an easy inductive application of the chain rule to the formula for the derivative of F^{-1} .
- The proof of this theorem involves the contraction mapping principle. (Optional fun fact: The proof shows that the same kind of a result holds when U, V are open subsets of a Banach space. While we won't need this fact, it is useful for PDE.)

• Corollary:

ullet Corollary: Suppose $U\subset\mathbb{R}^n$ is open and $F:U o\mathbb{R}^n$ is C^k (

• Corollary: Suppose $U \subset \mathbb{R}^n$ is open and $F: U \to \mathbb{R}^n$ is C^k $(1 \le k \le \infty)$.

• Corollary: Suppose $U \subset \mathbb{R}^n$ is open and $F: U \to \mathbb{R}^n$ is C^k $(1 \le k \le \infty)$. Assume that $\det(DF_a) \ne 0 \ \forall \ a \in U$. Then F is an open map,

• Corollary: Suppose $U \subset \mathbb{R}^n$ is open and $F: U \to \mathbb{R}^n$ is C^k $(1 \le k \le \infty)$. Assume that $\det(DF_a) \ne 0 \ \forall \ a \in U$. Then F is an open map, and if F is 1-1,

• Corollary: Suppose $U \subset \mathbb{R}^n$ is open and $F: U \to \mathbb{R}^n$ is C^k $(1 \le k \le \infty)$. Assume that $\det(DF_a) \ne 0 \ \forall \ a \in U$. Then F is an open map, and if F is 1-1, $F: U \to F(U)$ is a C^k -diffeomorphism.

- Corollary: Suppose $U \subset \mathbb{R}^n$ is open and $F: U \to \mathbb{R}^n$ is C^k $(1 \le k \le \infty)$. Assume that $\det(DF_a) \ne 0 \ \forall \ a \in U$. Then F is an open map, and if F is 1-1, $F: U \to F(U)$ is a C^k -diffeomorphism.
- Proof:

- Corollary: Suppose $U \subset \mathbb{R}^n$ is open and $F: U \to \mathbb{R}^n$ is C^k $(1 \le k \le \infty)$. Assume that $\det(DF_a) \ne 0 \ \forall \ a \in U$. Then F is an open map, and if F is 1-1, $F: U \to F(U)$ is a C^k -diffeomorphism.
- Proof: Open map:

- Corollary: Suppose $U \subset \mathbb{R}^n$ is open and $F: U \to \mathbb{R}^n$ is C^k $(1 \le k \le \infty)$. Assume that $\det(DF_a) \ne 0 \ \forall \ a \in U$. Then F is an open map, and if F is 1-1, $F: U \to F(U)$ is a C^k -diffeomorphism.
- Proof: Open map: The IFT implies that

- Corollary: Suppose $U \subset \mathbb{R}^n$ is open and $F: U \to \mathbb{R}^n$ is C^k $(1 \le k \le \infty)$. Assume that $\det(DF_a) \ne 0 \ \forall \ a \in U$. Then F is an open map, and if F is 1-1, $F: U \to F(U)$ is a C^k -diffeomorphism.
- ullet Proof: Open map: The IFT implies that F is a local diffeo.

- Corollary: Suppose $U \subset \mathbb{R}^n$ is open and $F: U \to \mathbb{R}^n$ is C^k $(1 \le k \le \infty)$. Assume that $\det(DF_a) \ne 0 \ \forall \ a \in U$. Then F is an open map, and if F is 1-1, $F: U \to F(U)$ is a C^k -diffeomorphism.
- Proof: Open map: The IFT implies that F is a local diffeo. Thus, if $W \subset U$ is an open set,

- Corollary: Suppose $U \subset \mathbb{R}^n$ is open and $F: U \to \mathbb{R}^n$ is C^k $(1 \le k \le \infty)$. Assume that $\det(DF_a) \ne 0 \ \forall \ a \in U$. Then F is an open map, and if F is 1-1, $F: U \to F(U)$ is a C^k -diffeomorphism.
- Proof: Open map: The IFT implies that F is a local diffeo. Thus, if $W \subset U$ is an open set, then $W = \cup_a U_a$.

- Corollary: Suppose $U \subset \mathbb{R}^n$ is open and $F: U \to \mathbb{R}^n$ is C^k $(1 \le k \le \infty)$. Assume that $\det(DF_a) \ne 0 \ \forall \ a \in U$. Then F is an open map, and if F is 1-1, $F: U \to F(U)$ is a C^k -diffeomorphism.
- Proof: Open map: The IFT implies that F is a local diffeo. Thus, if $W \subset U$ is an open set, then $W = \cup_a U_a$. Since $F(U_a)$ is open and $F(W) = \cup_a F(U_a)$,

- Corollary: Suppose $U \subset \mathbb{R}^n$ is open and $F: U \to \mathbb{R}^n$ is C^k $(1 \le k \le \infty)$. Assume that $\det(DF_a) \ne 0 \ \forall \ a \in U$. Then F is an open map, and if F is 1-1, $F: U \to F(U)$ is a C^k -diffeomorphism.
- Proof: Open map: The IFT implies that F is a local diffeo. Thus, if $W \subset U$ is an open set, then $W = \bigcup_a U_a$. Since $F(U_a)$ is open and $F(W) = \bigcup_a F(U_a)$, we see that F(W) is open.

- Corollary: Suppose $U \subset \mathbb{R}^n$ is open and $F: U \to \mathbb{R}^n$ is C^k $(1 \le k \le \infty)$. Assume that $\det(DF_a) \ne 0 \ \forall \ a \in U$. Then F is an open map, and if F is 1-1, $F: U \to F(U)$ is a C^k -diffeomorphism.
- Proof: Open map: The IFT implies that F is a local diffeo. Thus, if $W \subset U$ is an open set, then $W = \bigcup_a U_a$. Since $F(U_a)$ is open and $F(W) = \bigcup_a F(U_a)$, we see that F(W) is open.
- Proof:

- Corollary: Suppose $U \subset \mathbb{R}^n$ is open and $F: U \to \mathbb{R}^n$ is C^k $(1 \le k \le \infty)$. Assume that $\det(DF_a) \ne 0 \ \forall \ a \in U$. Then F is an open map, and if F is 1-1, $F: U \to F(U)$ is a C^k -diffeomorphism.
- Proof: Open map: The IFT implies that F is a local diffeo. Thus, if $W \subset U$ is an open set, then $W = \bigcup_a U_a$. Since $F(U_a)$ is open and $F(W) = \bigcup_a F(U_a)$, we see that F(W) is open.
- Proof: Diffeomorphism:

- Corollary: Suppose $U \subset \mathbb{R}^n$ is open and $F: U \to \mathbb{R}^n$ is C^k $(1 \le k \le \infty)$. Assume that $\det(DF_a) \ne 0 \ \forall \ a \in U$. Then F is an open map, and if F is 1-1, $F: U \to F(U)$ is a C^k -diffeomorphism.
- Proof: Open map: The IFT implies that F is a local diffeo. Thus, if $W \subset U$ is an open set, then $W = \bigcup_a U_a$. Since $F(U_a)$ is open and $F(W) = \bigcup_a F(U_a)$, we see that F(W) is open.
- Proof: Diffeomorphism: *F* is invertible.

- Corollary: Suppose $U \subset \mathbb{R}^n$ is open and $F: U \to \mathbb{R}^n$ is C^k $(1 \le k \le \infty)$. Assume that $\det(DF_a) \ne 0 \ \forall \ a \in U$. Then F is an open map, and if F is 1-1, $F: U \to F(U)$ is a C^k -diffeomorphism.
- Proof: Open map: The IFT implies that F is a local diffeo. Thus, if $W \subset U$ is an open set, then $W = \bigcup_a U_a$. Since $F(U_a)$ is open and $F(W) = \bigcup_a F(U_a)$, we see that F(W) is open.
- Proof: Diffeomorphism: *F* is invertible. Thus, every local inverse coincide with

- Corollary: Suppose $U \subset \mathbb{R}^n$ is open and $F: U \to \mathbb{R}^n$ is C^k $(1 \le k \le \infty)$. Assume that $\det(DF_a) \ne 0 \ \forall \ a \in U$. Then F is an open map, and if F is 1-1, $F: U \to F(U)$ is a C^k -diffeomorphism.
- Proof: Open map: The IFT implies that F is a local diffeo. Thus, if $W \subset U$ is an open set, then $W = \bigcup_a U_a$. Since $F(U_a)$ is open and $F(W) = \bigcup_a F(U_a)$, we see that F(W) is open.
- Proof: Diffeomorphism: F is invertible. Thus, every local inverse coincide with F^{-1} and hence F^{-1} is a C^k -diffeo.

- Corollary: Suppose $U \subset \mathbb{R}^n$ is open and $F: U \to \mathbb{R}^n$ is C^k $(1 \le k \le \infty)$. Assume that $\det(DF_a) \ne 0 \ \forall \ a \in U$. Then F is an open map, and if F is 1-1, $F: U \to F(U)$ is a C^k -diffeomorphism.
- Proof: Open map: The IFT implies that F is a local diffeo. Thus, if $W \subset U$ is an open set, then $W = \bigcup_a U_a$. Since $F(U_a)$ is open and $F(W) = \bigcup_a F(U_a)$, we see that F(W) is open.
- Proof: Diffeomorphism: F is invertible. Thus, every local inverse coincide with F^{-1} and hence F^{-1} is a C^k -diffeo.
- Therefore,

- Corollary: Suppose $U \subset \mathbb{R}^n$ is open and $F: U \to \mathbb{R}^n$ is C^k $(1 \le k \le \infty)$. Assume that $\det(DF_a) \ne 0 \ \forall \ a \in U$. Then F is an open map, and if F is 1-1, $F: U \to F(U)$ is a C^k -diffeomorphism.
- Proof: Open map: The IFT implies that F is a local diffeo. Thus, if $W \subset U$ is an open set, then $W = \bigcup_a U_a$. Since $F(U_a)$ is open and $F(W) = \bigcup_a F(U_a)$, we see that F(W) is open.
- Proof: Diffeomorphism: F is invertible. Thus, every local inverse coincide with F^{-1} and hence F^{-1} is a C^k -diffeo.
- Therefore, $x = r\cos(\theta), y = r\sin(\theta)$ is a

- Corollary: Suppose $U \subset \mathbb{R}^n$ is open and $F: U \to \mathbb{R}^n$ is C^k $(1 \le k \le \infty)$. Assume that $\det(DF_a) \ne 0 \ \forall \ a \in U$. Then F is an open map, and if F is 1-1, $F: U \to F(U)$ is a C^k -diffeomorphism.
- Proof: Open map: The IFT implies that F is a local diffeo. Thus, if $W \subset U$ is an open set, then $W = \bigcup_a U_a$. Since $F(U_a)$ is open and $F(W) = \bigcup_a F(U_a)$, we see that F(W) is open.
- Proof: Diffeomorphism: F is invertible. Thus, every local inverse coincide with F^{-1} and hence F^{-1} is a C^k -diffeo.
- Therefore, $x = r\cos(\theta), y = r\sin(\theta)$ is a diffeo on $(0, \infty) \times (0, 2\pi)$ (

- Corollary: Suppose $U \subset \mathbb{R}^n$ is open and $F: U \to \mathbb{R}^n$ is C^k $(1 \le k \le \infty)$. Assume that $\det(DF_a) \ne 0 \ \forall \ a \in U$. Then F is an open map, and if F is 1-1, $F: U \to F(U)$ is a C^k -diffeomorphism.
- Proof: Open map: The IFT implies that F is a local diffeo. Thus, if $W \subset U$ is an open set, then $W = \bigcup_a U_a$. Since $F(U_a)$ is open and $F(W) = \bigcup_a F(U_a)$, we see that F(W) is open.
- Proof: Diffeomorphism: F is invertible. Thus, every local inverse coincide with F^{-1} and hence F^{-1} is a C^k -diffeo.
- Therefore, $x = r\cos(\theta)$, $y = r\sin(\theta)$ is a diffeo on $(0,\infty)\times(0,2\pi)$ (more generally, on any open subset away from r=0

- Corollary: Suppose $U \subset \mathbb{R}^n$ is open and $F: U \to \mathbb{R}^n$ is C^k $(1 \le k \le \infty)$. Assume that $\det(DF_a) \ne 0 \ \forall \ a \in U$. Then F is an open map, and if F is 1-1, $F: U \to F(U)$ is a C^k -diffeomorphism.
- Proof: Open map: The IFT implies that F is a local diffeo. Thus, if $W \subset U$ is an open set, then $W = \bigcup_a U_a$. Since $F(U_a)$ is open and $F(W) = \bigcup_a F(U_a)$, we see that F(W) is open.
- Proof: Diffeomorphism: F is invertible. Thus, every local inverse coincide with F^{-1} and hence F^{-1} is a C^k -diffeo.
- Therefore, $x = r\cos(\theta)$, $y = r\sin(\theta)$ is a diffeo on $(0,\infty)\times(0,2\pi)$ (more generally, on any open subset away from r=0 where it is 1-1).

Implicit function theorem (ImFT)

• Let $U \subset \mathbb{R}^n \times \mathbb{R}^m$ be an open set

• Let $U \subset \mathbb{R}^n \times \mathbb{R}^m$ be an open set consisting of (x, y)

• Let $U \subset \mathbb{R}^n \times \mathbb{R}^m$ be an open set consisting of (x, y) where $x \in \mathbb{R}^n, y \in \mathbb{R}^m$.

• Let $U \subset \mathbb{R}^n \times \mathbb{R}^m$ be an open set consisting of (x, y) where $x \in \mathbb{R}^n, y \in \mathbb{R}^m$. Let $F : U \to \mathbb{R}^m$ be a C^k (

• Let $U \subset \mathbb{R}^n \times \mathbb{R}^m$ be an open set consisting of (x, y) where $x \in \mathbb{R}^n, y \in \mathbb{R}^m$. Let $F : U \to \mathbb{R}^m$ be a C^k $(1 \le k \le \infty)$ function.

• Let $U \subset \mathbb{R}^n \times \mathbb{R}^m$ be an open set consisting of (x, y) where $x \in \mathbb{R}^n, y \in \mathbb{R}^m$. Let $F : U \to \mathbb{R}^m$ be a C^k $(1 \le k \le \infty)$ function. Suppose F(a, b) = 0 and

• Let $U \subset \mathbb{R}^n \times \mathbb{R}^m$ be an open set consisting of (x, y) where $x \in \mathbb{R}^n, y \in \mathbb{R}^m$. Let $F: U \to \mathbb{R}^m$ be a C^k $(1 \le k \le \infty)$ function. Suppose F(a, b) = 0 and the matrix $\frac{\partial F^i}{\partial y^j}(a, b)$ is invertible.

• Let $U \subset \mathbb{R}^n \times \mathbb{R}^m$ be an open set consisting of (x,y) where $x \in \mathbb{R}^n, y \in \mathbb{R}^m$. Let $F: U \to \mathbb{R}^m$ be a C^k $(1 \le k \le \infty)$ function. Suppose F(a,b) = 0 and the matrix $\frac{\partial F^i}{\partial y^j}(a,b)$ is invertible. Then there exist neighbourhoods $a \in V_a, b \in W_b$ such that

• Let $U \subset \mathbb{R}^n \times \mathbb{R}^m$ be an open set consisting of (x,y) where $x \in \mathbb{R}^n, y \in \mathbb{R}^m$. Let $F: U \to \mathbb{R}^m$ be a C^k $(1 \le k \le \infty)$ function. Suppose F(a,b) = 0 and the matrix $\frac{\partial F^i}{\partial y^j}(a,b)$ is invertible. Then there exist neighbourhoods $a \in V_a$, $b \in W_b$ such that $V_a \times W_b \subset U$

• Let $U \subset \mathbb{R}^n \times \mathbb{R}^m$ be an open set consisting of (x, y) where $x \in \mathbb{R}^n, y \in \mathbb{R}^m$. Let $F: U \to \mathbb{R}^m$ be a C^k $(1 \le k \le \infty)$ function. Suppose F(a, b) = 0 and the matrix $\frac{\partial F^i}{\partial y^j}(a, b)$ is invertible. Then there exist neighbourhoods $a \in V_a$, $b \in W_b$ such that $V_a \times W_b \subset U$ and whenever $(x, y) \in V_a \times W_b$,

• Let $U \subset \mathbb{R}^n \times \mathbb{R}^m$ be an open set consisting of (x,y) where $x \in \mathbb{R}^n, y \in \mathbb{R}^m$. Let $F: U \to \mathbb{R}^m$ be a C^k $(1 \le k \le \infty)$ function. Suppose F(a,b)=0 and the matrix $\frac{\partial F^i}{\partial y^j}(a,b)$ is invertible. Then there exist neighbourhoods $a \in V_a, b \in W_b$ such that $V_a \times W_b \subset U$ and whenever $(x,y) \in V_a \times W_b$, $F(x,y)=0 \Leftrightarrow y=g(x)$ where

• Let $U \subset \mathbb{R}^n \times \mathbb{R}^m$ be an open set consisting of (x,y) where $x \in \mathbb{R}^n, y \in \mathbb{R}^m$. Let $F: U \to \mathbb{R}^m$ be a C^k $(1 \le k \le \infty)$ function. Suppose F(a,b)=0 and the matrix $\frac{\partial F^i}{\partial y^j}(a,b)$ is invertible. Then there exist neighbourhoods $a \in V_a, b \in W_b$ such that $V_a \times W_b \subset U$ and whenever $(x,y) \in V_a \times W_b$, $F(x,y)=0 \Leftrightarrow y=g(x)$ where $g: V_a \to W_b$ is a C^k function.

• Let $U \subset \mathbb{R}^n \times \mathbb{R}^m$ be an open set consisting of (x,y) where $x \in \mathbb{R}^n, y \in \mathbb{R}^m$. Let $F: U \to \mathbb{R}^m$ be a C^k $(1 \le k \le \infty)$ function. Suppose F(a,b)=0 and the matrix $\frac{\partial F^i}{\partial y^j}(a,b)$ is invertible. Then there exist neighbourhoods $a \in V_a$, $b \in W_b$ such that $V_a \times W_b \subset U$ and whenever $(x,y) \in V_a \times W_b$, $F(x,y)=0 \Leftrightarrow y=g(x)$ where $g: V_a \to W_b$ is a C^k function. Moreover, $(D_xg)_{(a,b)}=-(D_yF)_{(a,b)}^{-1}(D_xF)_{(a,b)}$.

- Let $U \subset \mathbb{R}^n \times \mathbb{R}^m$ be an open set consisting of (x,y) where $x \in \mathbb{R}^n, y \in \mathbb{R}^m$. Let $F: U \to \mathbb{R}^m$ be a C^k $(1 \le k \le \infty)$ function. Suppose F(a,b)=0 and the matrix $\frac{\partial F^i}{\partial y^j}(a,b)$ is invertible. Then there exist neighbourhoods $a \in V_a, b \in W_b$ such that $V_a \times W_b \subset U$ and whenever $(x,y) \in V_a \times W_b$, $F(x,y)=0 \Leftrightarrow y=g(x)$ where $g: V_a \to W_b$ is a C^k function. Moreover, $(D_xg)_{(a,b)}=-(D_yF)_{(a,b)}^{-1}(D_xF)_{(a,b)}$.
- Proof:

- Let $U \subset \mathbb{R}^n \times \mathbb{R}^m$ be an open set consisting of (x,y) where $x \in \mathbb{R}^n, y \in \mathbb{R}^m$. Let $F: U \to \mathbb{R}^m$ be a C^k $(1 \le k \le \infty)$ function. Suppose F(a,b)=0 and the matrix $\frac{\partial F^i}{\partial y^j}(a,b)$ is invertible. Then there exist neighbourhoods $a \in V_a, b \in W_b$ such that $V_a \times W_b \subset U$ and whenever $(x,y) \in V_a \times W_b$, $F(x,y)=0 \Leftrightarrow y=g(x)$ where $g: V_a \to W_b$ is a C^k function. Moreover, $(D_xg)_{(a,b)}=-(D_yF)_{(a,b)}^{-1}(D_xF)_{(a,b)}$.
- Proof: Consider G(x, y) = (x, F(x, y)).

- Let $U \subset \mathbb{R}^n \times \mathbb{R}^m$ be an open set consisting of (x,y) where $x \in \mathbb{R}^n, y \in \mathbb{R}^m$. Let $F: U \to \mathbb{R}^m$ be a C^k $(1 \le k \le \infty)$ function. Suppose F(a,b)=0 and the matrix $\frac{\partial F^i}{\partial y^j}(a,b)$ is invertible. Then there exist neighbourhoods $a \in V_a, b \in W_b$ such that $V_a \times W_b \subset U$ and whenever $(x,y) \in V_a \times W_b$, $F(x,y)=0 \Leftrightarrow y=g(x)$ where $g: V_a \to W_b$ is a C^k function. Moreover, $(D_xg)_{(a,b)}=-(D_yF)_{(a,b)}^{-1}(D_xF)_{(a,b)}$.
- Proof: Consider G(x,y) = (x, F(x,y)). Then G is C^k .

- Let $U \subset \mathbb{R}^n \times \mathbb{R}^m$ be an open set consisting of (x,y) where $x \in \mathbb{R}^n, y \in \mathbb{R}^m$. Let $F: U \to \mathbb{R}^m$ be a C^k $(1 \le k \le \infty)$ function. Suppose F(a,b)=0 and the matrix $\frac{\partial F^i}{\partial y^j}(a,b)$ is invertible. Then there exist neighbourhoods $a \in V_a, b \in W_b$ such that $V_a \times W_b \subset U$ and whenever $(x,y) \in V_a \times W_b$, $F(x,y)=0 \Leftrightarrow y=g(x)$ where $g: V_a \to W_b$ is a C^k function. Moreover, $(D_xg)_{(a,b)}=-(D_yF)_{(a,b)}^{-1}(D_xF)_{(a,b)}$.
- Proof: Consider G(x, y) = (x, F(x, y)). Then G is C^k . Moreover, $\det(DG_{(a,b)}) = \det((D_yF)_{(a,b)}) \neq 0$.

- Let $U \subset \mathbb{R}^n \times \mathbb{R}^m$ be an open set consisting of (x,y) where $x \in \mathbb{R}^n, y \in \mathbb{R}^m$. Let $F: U \to \mathbb{R}^m$ be a C^k $(1 \le k \le \infty)$ function. Suppose F(a,b)=0 and the matrix $\frac{\partial F^i}{\partial y^j}(a,b)$ is invertible. Then there exist neighbourhoods $a \in V_a, b \in W_b$ such that $V_a \times W_b \subset U$ and whenever $(x,y) \in V_a \times W_b$, $F(x,y)=0 \Leftrightarrow y=g(x)$ where $g: V_a \to W_b$ is a C^k function. Moreover, $(D_xg)_{(a,b)}=-(D_yF)_{(a,b)}^{-1}(D_xF)_{(a,b)}$.
- Proof: Consider G(x,y)=(x,F(x,y)). Then G is C^k . Moreover, $\det(DG_{(a,b)})=\det((D_yF)_{(a,b)})\neq 0$. Thus by the IFT,

- Let $U \subset \mathbb{R}^n \times \mathbb{R}^m$ be an open set consisting of (x,y) where $x \in \mathbb{R}^n, y \in \mathbb{R}^m$. Let $F: U \to \mathbb{R}^m$ be a C^k $(1 \le k \le \infty)$ function. Suppose F(a,b)=0 and the matrix $\frac{\partial F^i}{\partial y^j}(a,b)$ is invertible. Then there exist neighbourhoods $a \in V_a, b \in W_b$ such that $V_a \times W_b \subset U$ and whenever $(x,y) \in V_a \times W_b$, $F(x,y)=0 \Leftrightarrow y=g(x)$ where $g: V_a \to W_b$ is a C^k function. Moreover, $(D_xg)_{(a,b)}=-(D_yF)_{(a,b)}^{-1}(D_xF)_{(a,b)}$.
- Proof: Consider G(x,y)=(x,F(x,y)). Then G is C^k . Moreover, $\det(DG_{(a,b)})=\det((D_yF)_{(a,b)})\neq 0$. Thus by the IFT, G is a local C^k -diffeo from

- Let $U \subset \mathbb{R}^n \times \mathbb{R}^m$ be an open set consisting of (x,y) where $x \in \mathbb{R}^n, y \in \mathbb{R}^m$. Let $F: U \to \mathbb{R}^m$ be a C^k $(1 \le k \le \infty)$ function. Suppose F(a,b)=0 and the matrix $\frac{\partial F^i}{\partial y^j}(a,b)$ is invertible. Then there exist neighbourhoods $a \in V_a, b \in W_b$ such that $V_a \times W_b \subset U$ and whenever $(x,y) \in V_a \times W_b$, $F(x,y)=0 \Leftrightarrow y=g(x)$ where $g: V_a \to W_b$ is a C^k function. Moreover, $(D_xg)_{(a,b)}=-(D_yF)_{(a,b)}^{-1}(D_xF)_{(a,b)}$.
- Proof: Consider G(x,y) = (x,F(x,y)). Then G is C^k . Moreover, $\det(DG_{(a,b)}) = \det((D_yF)_{(a,b)}) \neq 0$. Thus by the IFT, G is a local C^k -diffeo from $V_a \times W_b$ to $G(V_a \times W_b)$.

- Let $U \subset \mathbb{R}^n \times \mathbb{R}^m$ be an open set consisting of (x,y) where $x \in \mathbb{R}^n, y \in \mathbb{R}^m$. Let $F: U \to \mathbb{R}^m$ be a C^k $(1 \le k \le \infty)$ function. Suppose F(a,b)=0 and the matrix $\frac{\partial F^i}{\partial y^j}(a,b)$ is invertible. Then there exist neighbourhoods $a \in V_a, b \in W_b$ such that $V_a \times W_b \subset U$ and whenever $(x,y) \in V_a \times W_b$, $F(x,y)=0 \Leftrightarrow y=g(x)$ where $g: V_a \to W_b$ is a C^k function. Moreover, $(D_xg)_{(a,b)}=-(D_yF)_{(a,b)}^{-1}(D_xF)_{(a,b)}$.
- Proof: Consider G(x,y) = (x,F(x,y)). Then G is C^k . Moreover, $\det(DG_{(a,b)}) = \det((D_yF)_{(a,b)}) \neq 0$. Thus by the IFT, G is a local C^k -diffeo from $V_a \times W_b$ to $G(V_a \times W_b)$. $G^{-1}(x,c) = (x,y)$ iff c = F(x,y).

- Let $U \subset \mathbb{R}^n \times \mathbb{R}^m$ be an open set consisting of (x,y) where $x \in \mathbb{R}^n, y \in \mathbb{R}^m$. Let $F: U \to \mathbb{R}^m$ be a C^k $(1 \le k \le \infty)$ function. Suppose F(a,b)=0 and the matrix $\frac{\partial F^i}{\partial y^j}(a,b)$ is invertible. Then there exist neighbourhoods $a \in V_a, b \in W_b$ such that $V_a \times W_b \subset U$ and whenever $(x,y) \in V_a \times W_b$, $F(x,y)=0 \Leftrightarrow y=g(x)$ where $g:V_a \to W_b$ is a C^k function. Moreover, $(D_xg)_{(a,b)}=-(D_yF)_{(a,b)}^{-1}(D_xF)_{(a,b)}$.
- Proof: Consider G(x,y)=(x,F(x,y)). Then G is C^k . Moreover, $\det(DG_{(a,b)})=\det((D_yF)_{(a,b)})\neq 0$. Thus by the IFT, G is a local C^k -diffeo from $V_a\times W_b$ to $G(V_a\times W_b)$. $G^{-1}(x,c)=(x,y)$ iff c=F(x,y). Thus, 0=F(x,y) iff $y=\pi_2\circ G^{-1}(x,0)$, i.e.,

- Let $U \subset \mathbb{R}^n \times \mathbb{R}^m$ be an open set consisting of (x,y) where $x \in \mathbb{R}^n, y \in \mathbb{R}^m$. Let $F: U \to \mathbb{R}^m$ be a C^k $(1 \le k \le \infty)$ function. Suppose F(a,b)=0 and the matrix $\frac{\partial F^i}{\partial y^j}(a,b)$ is invertible. Then there exist neighbourhoods $a \in V_a, b \in W_b$ such that $V_a \times W_b \subset U$ and whenever $(x,y) \in V_a \times W_b$, $F(x,y)=0 \Leftrightarrow y=g(x)$ where $g: V_a \to W_b$ is a C^k function. Moreover, $(D_xg)_{(a,b)}=-(D_yF)_{(a,b)}^{-1}(D_xF)_{(a,b)}$.
- Proof: Consider G(x,y)=(x,F(x,y)). Then G is C^k . Moreover, $\det(DG_{(a,b)})=\det((D_yF)_{(a,b)})\neq 0$. Thus by the IFT, G is a local C^k -diffeo from $V_a\times W_b$ to $G(V_a\times W_b)$. $G^{-1}(x,c)=(x,y)$ iff c=F(x,y). Thus, 0=F(x,y) iff $y=\pi_2\circ G^{-1}(x,0)$, i.e., y is a C^k function of x locally.

- Let $U \subset \mathbb{R}^n \times \mathbb{R}^m$ be an open set consisting of (x,y) where $x \in \mathbb{R}^n, y \in \mathbb{R}^m$. Let $F: U \to \mathbb{R}^m$ be a C^k $(1 \le k \le \infty)$ function. Suppose F(a,b)=0 and the matrix $\frac{\partial F^i}{\partial y^j}(a,b)$ is invertible. Then there exist neighbourhoods $a \in V_a$, $b \in W_b$ such that $V_a \times W_b \subset U$ and whenever $(x,y) \in V_a \times W_b$, $F(x,y)=0 \Leftrightarrow y=g(x)$ where $g: V_a \to W_b$ is a C^k function. Moreover, $(D_xg)_{(a,b)}=-(D_yF)_{(a,b)}^{-1}(D_xF)_{(a,b)}$.
- Proof: Consider G(x,y)=(x,F(x,y)). Then G is C^k . Moreover, $\det(DG_{(a,b)})=\det((D_yF)_{(a,b)})\neq 0$. Thus by the IFT, G is a local C^k -diffeo from $V_a\times W_b$ to $G(V_a\times W_b)$. $G^{-1}(x,c)=(x,y)$ iff c=F(x,y). Thus, 0=F(x,y) iff $y=\pi_2\circ G^{-1}(x,0)$, i.e., y is a C^k function of x locally. The derivative formula

- Let $U \subset \mathbb{R}^n \times \mathbb{R}^m$ be an open set consisting of (x,y) where $x \in \mathbb{R}^n, y \in \mathbb{R}^m$. Let $F: U \to \mathbb{R}^m$ be a C^k $(1 \le k \le \infty)$ function. Suppose F(a,b)=0 and the matrix $\frac{\partial F^i}{\partial y^j}(a,b)$ is invertible. Then there exist neighbourhoods $a \in V_a, b \in W_b$ such that $V_a \times W_b \subset U$ and whenever $(x,y) \in V_a \times W_b$, $F(x,y)=0 \Leftrightarrow y=g(x)$ where $g:V_a \to W_b$ is a C^k function. Moreover, $(D_xg)_{(a,b)}=-(D_yF)_{(a,b)}^{-1}(D_xF)_{(a,b)}$.
- Proof: Consider G(x,y) = (x, F(x,y)). Then G is C^k . Moreover, $\det(DG_{(a,b)}) = \det((D_yF)_{(a,b)}) \neq 0$. Thus by the IFT, G is a local C^k -diffeo from $V_a \times W_b$ to $G(V_a \times W_b)$. $G^{-1}(x,c) = (x,y)$ iff c = F(x,y). Thus, 0 = F(x,y) iff $y = \pi_2 \circ G^{-1}(x,0)$, i.e., y is a C^k function of x locally. The derivative formula follows from the chain rule.

• The proof shows that

• The proof shows that in fact,

• The proof shows that in fact, locally, F(x,y) = c iff y = G(x,c) where G is a C^k function. (

• The proof shows that in fact, locally, F(x,y) = c iff y = G(x,c) where G is a C^k function. (So in a sense,

• The proof shows that in fact, locally, F(x,y) = c iff y = G(x,c) where G is a C^k function. (So in a sense, we can "change coordinates"

• The proof shows that in fact, locally, F(x,y) = c iff y = G(x,c) where G is a C^k function. (So in a sense, we can "change coordinates" in a C^k manner from

• The proof shows that in fact, locally, F(x,y) = c iff y = G(x,c) where G is a C^k function. (So in a sense, we can "change coordinates" in a C^k manner from (x,y) to (x,c).

• The proof shows that in fact, locally, F(x,y) = c iff y = G(x,c) where G is a C^k function. (So in a sense, we can "change coordinates" in a C^k manner from (x,y) to (x,c). In these new "coordinates",

• The proof shows that in fact, locally, F(x,y) = c iff y = G(x,c) where G is a C^k function. (So in a sense, we can "change coordinates" in a C^k manner from (x,y) to (x,c). In these new "coordinates", the level set F(x,y) = a, looks like

• The proof shows that in fact, locally, F(x,y) = c iff y = G(x,c) where G is a C^k function. (So in a sense, we can "change coordinates" in a C^k manner from (x,y) to (x,c). In these new "coordinates", the level set F(x,y) = a, looks like c = a, i.e.,

• The proof shows that in fact, locally, F(x,y) = c iff y = G(x,c) where G is a C^k function. (So in a sense, we can "change coordinates" in a C^k manner from (x,y) to (x,c). In these new "coordinates", the level set F(x,y) = a, looks like c = a, i.e., we "flatten" the level sets.)