MA 229/MA 235 - Lecture 27

IISc

- Definition of integration of

Recap

- Definition of integration of compactly supported smooth forms

Recap

- Definition of integration of compactly supported smooth forms over oriented smooth manifolds (with or without boundary), and

Recap

- Definition of integration of compactly supported smooth forms over oriented smooth manifolds (with or without boundary), and its properties.
- Definition of integration of compactly supported smooth forms over oriented smooth manifolds (with or without boundary), and its properties.
- Saw that

Recap

- Definition of integration of compactly supported smooth forms over oriented smooth manifolds (with or without boundary), and its properties.
- Saw that even integrating $x^{2} d x \wedge d y$ over \bar{D} is a tricky affair.

Practically speaking...

Practically speaking...

- To relate these two,

Practically speaking...

- To relate these two, here is a proposition:

Practically speaking...

- To relate these two, here is a proposition: Let ω be a compactly supported top form on M.

Practically speaking...

- To relate these two, here is a proposition: Let ω be a compactly supported top form on M. Let D_{1}, \ldots, D_{k} be domains of integration in \mathbb{R}^{n} and

Practically speaking...

- To relate these two, here is a proposition: Let ω be a compactly supported top form on M. Let D_{1}, \ldots, D_{k} be domains of integration in \mathbb{R}^{n} and $F_{i}: \bar{D}_{i} \rightarrow M$ be smooth maps

Practically speaking...

- To relate these two, here is a proposition: Let ω be a compactly supported top form on M. Let D_{1}, \ldots, D_{k} be domains of integration in \mathbb{R}^{n} and $F_{i}: \bar{D}_{i} \rightarrow M$ be smooth maps that restrict to orientation-preserving diffeos on D_{i},

Practically speaking...

- To relate these two, here is a proposition: Let ω be a compactly supported top form on M. Let D_{1}, \ldots, D_{k} be domains of integration in \mathbb{R}^{n} and $F_{i}: \bar{D}_{i} \rightarrow M$ be smooth maps that restrict to orientation-preserving diffeos on D_{i}, $F\left(D_{i}\right) \cap F\left(D_{j}\right)=\phi$,

Practically speaking...

- To relate these two, here is a proposition: Let ω be a compactly supported top form on M. Let D_{1}, \ldots, D_{k} be domains of integration in \mathbb{R}^{n} and $F_{i}: \bar{D}_{i} \rightarrow M$ be smooth maps that restrict to orientation-preserving diffeos on D_{i}, $F\left(D_{i}\right) \cap F\left(D_{j}\right)=\phi, \operatorname{supp}(\omega) \subset F\left(\bar{D}_{1}\right) \cup F\left(\bar{D}_{2}\right) \ldots$
- To relate these two, here is a proposition: Let ω be a compactly supported top form on M. Let D_{1}, \ldots, D_{k} be domains of integration in \mathbb{R}^{n} and $F_{i}: \bar{D}_{i} \rightarrow M$ be smooth maps that restrict to orientation-preserving diffeos on D_{i}, $F\left(D_{i}\right) \cap F\left(D_{j}\right)=\phi, \operatorname{supp}(\omega) \subset F\left(\bar{D}_{1}\right) \cup F\left(\bar{D}_{2}\right) \ldots$ Then $\int_{M} \omega=\sum_{i} \int_{D_{i}} F_{i}^{*} \omega$.

Practically speaking...

Practically speaking...

- Before proving it,

Practically speaking...

- Before proving it, note that the identity map

Practically speaking...

- Before proving it, note that the identity map does the trick for $D \subset \mathbb{R}^{2}$ above.

Practically speaking...

- Before proving it, note that the identity map does the trick for $D \subset \mathbb{R}^{2}$ above. Thus $\int_{D} \omega=\int_{x^{2}+y^{2}<1} x^{2} d x d y$.

Practically speaking...

- Before proving it, note that the identity map does the trick for $D \subset \mathbb{R}^{2}$ above. Thus $\int_{D} \omega=\int_{x^{2}+y^{2}<1} x^{2} d x d y$.
- Proof:

Practically speaking...

- Before proving it, note that the identity map does the trick for $D \subset \mathbb{R}^{2}$ above. Thus $\int_{D} \omega=\int_{x^{2}+y^{2}<1} x^{2} d x d y$.
- Proof:As above,

Practically speaking...

- Before proving it, note that the identity map does the trick for $D \subset \mathbb{R}^{2}$ above. Thus $\int_{D} \omega=\int_{x^{2}+y^{2}<1} x^{2} d x d y$.
- Proof:As above, assume WLOG that ω is supported in a

Practically speaking...

- Before proving it, note that the identity map does the trick for $D \subset \mathbb{R}^{2}$ above. Thus $\int_{D} \omega=\int_{x^{2}+y^{2}<1} x^{2} d x d y$.
- Proof:As above, assume WLOG that ω is supported in a single relatively compact chart (U, ϕ).
- Before proving it, note that the identity map does the trick for $D \subset \mathbb{R}^{2}$ above. Thus $\int_{D} \omega=\int_{x^{2}+y^{2}<1} x^{2} d x d y$.
- Proof:As above, assume WLOG that ω is supported in a single relatively compact chart (U, ϕ). Note that $\partial\left(U \cap F_{i}\left(D_{i}\right)\right) \subset F_{i}\left(\partial D_{i}\right)$ (why?)
- Before proving it, note that the identity map does the trick for $D \subset \mathbb{R}^{2}$ above. Thus $\int_{D} \omega=\int_{x^{2}+y^{2}<1} x^{2} d x d y$.
- Proof:As above, assume WLOG that ω is supported in a single relatively compact chart (U, ϕ). Note that $\partial\left(U \cap F_{i}\left(D_{i}\right)\right) \subset F_{i}\left(\partial D_{i}\right)\left(\right.$ why?) and hence $\phi\left(\partial\left(U \cap F_{i}\left(D_{i}\right)\right)\right)$ has measure zero in \mathbb{R}^{n} :
- Before proving it, note that the identity map does the trick for $D \subset \mathbb{R}^{2}$ above. Thus $\int_{D} \omega=\int_{x^{2}+y^{2}<1} x^{2} d x d y$.
- Proof:As above, assume WLOG that ω is supported in a single relatively compact chart (U, ϕ). Note that $\partial\left(U \cap F_{i}\left(D_{i}\right)\right) \subset F_{i}\left(\partial D_{i}\right)\left(\right.$ why?) and hence $\phi\left(\partial\left(U \cap F_{i}\left(D_{i}\right)\right)\right)$ has measure zero in \mathbb{R}^{n} : Indeed, smooth maps between \mathbb{R}^{n} and itself take measure zero sets to measure zero sets (why?).
- Before proving it, note that the identity map does the trick for $D \subset \mathbb{R}^{2}$ above. Thus $\int_{D} \omega=\int_{x^{2}+y^{2}<1} x^{2} d x d y$.
- Proof:As above, assume WLOG that ω is supported in a single relatively compact chart (U, ϕ). Note that $\partial\left(U \cap F_{i}\left(D_{i}\right)\right) \subset F_{i}\left(\partial D_{i}\right)\left(\right.$ why?) and hence $\phi\left(\partial\left(U \cap F_{i}\left(D_{i}\right)\right)\right)$ has measure zero in \mathbb{R}^{n} : Indeed, smooth maps between \mathbb{R}^{n} and itself take measure zero sets to measure zero sets (why?). Moreover, $\phi\left(U \cap F_{i}\left(D_{i}\right)\right)$ cover
- Before proving it, note that the identity map does the trick for $D \subset \mathbb{R}^{2}$ above. Thus $\int_{D} \omega=\int_{x^{2}+y^{2}<1} x^{2} d x d y$.
- Proof:As above, assume WLOG that ω is supported in a single relatively compact chart (U, ϕ). Note that $\partial\left(U \cap F_{i}\left(D_{i}\right)\right) \subset F_{i}\left(\partial D_{i}\right)\left(\right.$ why?) and hence $\phi\left(\partial\left(U \cap F_{i}\left(D_{i}\right)\right)\right)$ has measure zero in \mathbb{R}^{n} : Indeed, smooth maps between \mathbb{R}^{n} and itself take measure zero sets to measure zero sets (why?). Moreover, $\phi\left(U \cap F_{i}\left(D_{i}\right)\right)$ cover $\phi(\operatorname{supp}(\omega))$ upto measure zero sets
- Before proving it, note that the identity map does the trick for $D \subset \mathbb{R}^{2}$ above. Thus $\int_{D} \omega=\int_{x^{2}+y^{2}<1} x^{2} d x d y$.
- Proof:As above, assume WLOG that ω is supported in a single relatively compact chart (U, ϕ). Note that $\partial\left(U \cap F_{i}\left(D_{i}\right)\right) \subset F_{i}\left(\partial D_{i}\right)\left(\right.$ why?) and hence $\phi\left(\partial\left(U \cap F_{i}\left(D_{i}\right)\right)\right)$ has measure zero in \mathbb{R}^{n} : Indeed, smooth maps between \mathbb{R}^{n} and itself take measure zero sets to measure zero sets (why?). Moreover, $\phi\left(U \cap F_{i}\left(D_{i}\right)\right)$ cover $\phi(\operatorname{supp}(\omega))$ upto measure zero sets and are pairwise disjoint.
- Before proving it, note that the identity map does the trick for $D \subset \mathbb{R}^{2}$ above. Thus $\int_{D} \omega=\int_{x^{2}+y^{2}<1} x^{2} d x d y$.
- Proof:As above, assume WLOG that ω is supported in a single relatively compact chart (U, ϕ). Note that $\partial\left(U \cap F_{i}\left(D_{i}\right)\right) \subset F_{i}\left(\partial D_{i}\right)\left(\right.$ why?) and hence $\phi\left(\partial\left(U \cap F_{i}\left(D_{i}\right)\right)\right)$ has measure zero in \mathbb{R}^{n} : Indeed, smooth maps between \mathbb{R}^{n} and itself take measure zero sets to measure zero sets (why?). Moreover, $\phi\left(U \cap F_{i}\left(D_{i}\right)\right)$ cover $\phi(\operatorname{supp}(\omega))$ upto measure zero sets and are pairwise disjoint.
- Thus $\int_{M} \omega= \pm \int_{\phi(U)}\left(\phi^{-1}\right)^{*} \omega= \pm \sum_{i} \int_{\phi\left(U \cap F_{i}\left(D_{i}\right)\right)}\left(\phi^{-1}\right)^{*} \omega=$ $\sum_{i} \int_{D_{i}} F_{i}^{*} \omega$ (why?)
- Before proving it, note that the identity map does the trick for $D \subset \mathbb{R}^{2}$ above. Thus $\int_{D} \omega=\int_{x^{2}+y^{2}<1} x^{2} d x d y$.
- Proof:As above, assume WLOG that ω is supported in a single relatively compact chart (U, ϕ). Note that $\partial\left(U \cap F_{i}\left(D_{i}\right)\right) \subset F_{i}\left(\partial D_{i}\right)\left(\right.$ why?) and hence $\phi\left(\partial\left(U \cap F_{i}\left(D_{i}\right)\right)\right)$ has measure zero in \mathbb{R}^{n} : Indeed, smooth maps between \mathbb{R}^{n} and itself take measure zero sets to measure zero sets (why?). Moreover, $\phi\left(U \cap F_{i}\left(D_{i}\right)\right)$ cover $\phi(\operatorname{supp}(\omega))$ upto measure zero sets and are pairwise disjoint.
- Thus $\int_{M} \omega= \pm \int_{\phi(U)}\left(\phi^{-1}\right)^{*} \omega= \pm \sum_{i} \int_{\phi\left(U \cap F_{i}\left(D_{i}\right)\right)}\left(\phi^{-1}\right)^{*} \omega=$ $\sum_{i} \int_{D_{i}} F_{i}^{*} \omega$ (why?)
- Actually, one does not need
- Before proving it, note that the identity map does the trick for $D \subset \mathbb{R}^{2}$ above. Thus $\int_{D} \omega=\int_{x^{2}+y^{2}<1} x^{2} d x d y$.
- Proof:As above, assume WLOG that ω is supported in a single relatively compact chart (U, ϕ). Note that $\partial\left(U \cap F_{i}\left(D_{i}\right)\right) \subset F_{i}\left(\partial D_{i}\right)\left(\right.$ why?) and hence $\phi\left(\partial\left(U \cap F_{i}\left(D_{i}\right)\right)\right)$ has measure zero in \mathbb{R}^{n} : Indeed, smooth maps between \mathbb{R}^{n} and itself take measure zero sets to measure zero sets (why?). Moreover, $\phi\left(U \cap F_{i}\left(D_{i}\right)\right)$ cover $\phi(\operatorname{supp}(\omega))$ upto measure zero sets and are pairwise disjoint.
- Thus $\int_{M} \omega= \pm \int_{\phi(U)}\left(\phi^{-1}\right)^{*} \omega= \pm \sum_{i} \int_{\phi\left(U \cap F_{i}\left(D_{i}\right)\right)}\left(\phi^{-1}\right)^{*} \omega=$ $\sum_{i} \int_{D_{i}} F_{i}^{*} \omega$ (why?)
- Actually, one does not need F_{i} to extend smoothly to \bar{D}_{i}.
- Before proving it, note that the identity map does the trick for $D \subset \mathbb{R}^{2}$ above. Thus $\int_{D} \omega=\int_{x^{2}+y^{2}<1} x^{2} d x d y$.
- Proof:As above, assume WLOG that ω is supported in a single relatively compact chart (U, ϕ). Note that $\partial\left(U \cap F_{i}\left(D_{i}\right)\right) \subset F_{i}\left(\partial D_{i}\right)$ (why?) and hence $\phi\left(\partial\left(U \cap F_{i}\left(D_{i}\right)\right)\right)$ has measure zero in \mathbb{R}^{n} : Indeed, smooth maps between \mathbb{R}^{n} and itself take measure zero sets to measure zero sets (why?). Moreover, $\phi\left(U \cap F_{i}\left(D_{i}\right)\right)$ cover $\phi(\operatorname{supp}(\omega))$ upto measure zero sets and are pairwise disjoint.
- Thus $\int_{M} \omega= \pm \int_{\phi(U)}\left(\phi^{-1}\right)^{*} \omega= \pm \sum_{i} \int_{\phi\left(U \cap F_{i}\left(D_{i}\right)\right)}\left(\phi^{-1}\right)^{*} \omega=$ $\sum_{i} \int_{D_{i}} F_{i}^{*} \omega$ (why?)
- Actually, one does not need F_{i} to extend smoothly to \bar{D}_{i}. Lipschitz (or even weaker - Hölder) extensions are enough.

Stokes' theorem

Stokes' theorem

- Theorem:

Stokes' theorem

- Theorem: Let M be a smooth oriented

Stokes' theorem

- Theorem: Let M be a smooth oriented n-manifold-with-boundary (where

Stokes' theorem

- Theorem: Let M be a smooth oriented n-manifold-with-boundary (where the boundary has the induced orientation from outward vector fields).

Stokes' theorem

- Theorem: Let M be a smooth oriented n-manifold-with-boundary (where the boundary has the induced orientation from outward vector fields). Let ω be a compactly supported $n-1$ form on M.

Stokes' theorem

- Theorem: Let M be a smooth oriented n-manifold-with-boundary (where the boundary has the induced orientation from outward vector fields). Let ω be a compactly supported $n-1$ form on M. Then $\int_{M} d \omega=\int_{\partial M} \omega$. (
- Theorem: Let M be a smooth oriented n-manifold-with-boundary (where the boundary has the induced orientation from outward vector fields). Let ω be a compactly supported $n-1$ form on M. Then $\int_{M} d \omega=\int_{\partial M} \omega$. (In particular, if $\partial M=\phi$,
- Theorem: Let M be a smooth oriented n-manifold-with-boundary (where the boundary has the induced orientation from outward vector fields). Let ω be a compactly supported $n-1$ form on M. Then $\int_{M} d \omega=\int_{\partial M} \omega$. (In particular, if $\partial M=\phi$, then $\int_{M} d \omega=0$.)
- Theorem: Let M be a smooth oriented n-manifold-with-boundary (where the boundary has the induced orientation from outward vector fields). Let ω be a compactly supported $n-1$ form on M. Then $\int_{M} d \omega=\int_{\partial M} \omega$. (In particular, if $\partial M=\phi$, then $\int_{M} d \omega=0$.)
- Before we proceed to the proof,
- Theorem: Let M be a smooth oriented n-manifold-with-boundary (where the boundary has the induced orientation from outward vector fields). Let ω be a compactly supported $n-1$ form on M. Then $\int_{M} d \omega=\int_{\partial M} \omega$. (In particular, if $\partial M=\phi$, then $\int_{M} d \omega=0$.)
- Before we proceed to the proof, suppose M is a domain in \mathbb{R}^{2},
- Theorem: Let M be a smooth oriented n-manifold-with-boundary (where the boundary has the induced orientation from outward vector fields). Let ω be a compactly supported $n-1$ form on M. Then $\int_{M} d \omega=\int_{\partial M} \omega$. (In particular, if $\partial M=\phi$, then $\int_{M} d \omega=0$.)
- Before we proceed to the proof, suppose M is a domain in \mathbb{R}^{2}, and $\omega=P d x+Q d y$,
- Theorem: Let M be a smooth oriented n-manifold-with-boundary (where the boundary has the induced orientation from outward vector fields). Let ω be a compactly supported $n-1$ form on M. Then $\int_{M} d \omega=\int_{\partial M} \omega$. (In particular, if $\partial M=\phi$, then $\int_{M} d \omega=0$.)
- Before we proceed to the proof, suppose M is a domain in \mathbb{R}^{2}, and $\omega=P d x+Q d y$, then $\int_{M} d \omega=\int_{M}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d V$ and
- Theorem: Let M be a smooth oriented n-manifold-with-boundary (where the boundary has the induced orientation from outward vector fields). Let ω be a compactly supported $n-1$ form on M. Then $\int_{M} d \omega=\int_{\partial M} \omega$. (In particular, if $\partial M=\phi$, then $\int_{M} d \omega=0$.)
- Before we proceed to the proof, suppose M is a domain in \mathbb{R}^{2}, and $\omega=P d x+Q d y$, then $\int_{M} d \omega=\int_{M}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d V$ and $\int_{\partial M} \omega=\int_{\partial M}(P d x+Q d y)$.
- Theorem: Let M be a smooth oriented n-manifold-with-boundary (where the boundary has the induced orientation from outward vector fields). Let ω be a compactly supported $n-1$ form on M. Then $\int_{M} d \omega=\int_{\partial M} \omega$. (In particular, if $\partial M=\phi$, then $\int_{M} d \omega=0$.)
- Before we proceed to the proof, suppose M is a domain in \mathbb{R}^{2}, and $\omega=P d x+Q d y$, then $\int_{M} d \omega=\int_{M}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d V$ and $\int_{\partial M} \omega=\int_{\partial M}(P d x+Q d y)$. If ∂M can be parametrised
- Theorem: Let M be a smooth oriented n-manifold-with-boundary (where the boundary has the induced orientation from outward vector fields). Let ω be a compactly supported $n-1$ form on M. Then $\int_{M} d \omega=\int_{\partial M} \omega$. (In particular, if $\partial M=\phi$, then $\int_{M} d \omega=0$.)
- Before we proceed to the proof, suppose M is a domain in \mathbb{R}^{2}, and $\omega=P d x+Q d y$, then $\int_{M} d \omega=\int_{M}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d V$ and $\int_{\partial M} \omega=\int_{\partial M}(P d x+Q d y)$. If ∂M can be parametrised as $\gamma:[0,1] \rightarrow \partial M$ where γ is a smooth simple closed curve
- Theorem: Let M be a smooth oriented n-manifold-with-boundary (where the boundary has the induced orientation from outward vector fields). Let ω be a compactly supported $n-1$ form on M. Then $\int_{M} d \omega=\int_{\partial M} \omega$. (In particular, if $\partial M=\phi$, then $\int_{M} d \omega=0$.)
- Before we proceed to the proof, suppose M is a domain in \mathbb{R}^{2}, and $\omega=P d x+Q d y$, then $\int_{M} d \omega=\int_{M}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d V$ and $\int_{\partial M} \omega=\int_{\partial M}(P d x+Q d y)$. If ∂M can be parametrised as $\gamma:[0,1] \rightarrow \partial M$ where γ is a smooth simple closed curve such that $\gamma^{\prime} \neq 0$,
- Theorem: Let M be a smooth oriented n-manifold-with-boundary (where the boundary has the induced orientation from outward vector fields). Let ω be a compactly supported $n-1$ form on M. Then $\int_{M} d \omega=\int_{\partial M} \omega$. (In particular, if $\partial M=\phi$, then $\int_{M} d \omega=0$.)
- Before we proceed to the proof, suppose M is a domain in \mathbb{R}^{2}, and $\omega=P d x+Q d y$, then $\int_{M} d \omega=\int_{M}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d V$ and $\int_{\partial M} \omega=\int_{\partial M}(P d x+Q d y)$. If ∂M can be parametrised as $\gamma:[0,1] \rightarrow \partial M$ where γ is a smooth simple closed curve such that $\gamma^{\prime} \neq 0$, then by the above result,
- Theorem: Let M be a smooth oriented n-manifold-with-boundary (where the boundary has the induced orientation from outward vector fields). Let ω be a compactly supported $n-1$ form on M. Then $\int_{M} d \omega=\int_{\partial M} \omega$. (In particular, if $\partial M=\phi$, then $\int_{M} d \omega=0$.)
- Before we proceed to the proof, suppose M is a domain in \mathbb{R}^{2}, and $\omega=P d x+Q d y$, then $\int_{M} d \omega=\int_{M}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d V$ and $\int_{\partial M} \omega=\int_{\partial M}(P d x+Q d y)$. If ∂M can be parametrised as $\gamma:[0,1] \rightarrow \partial M$ where γ is a smooth simple closed curve such that $\gamma^{\prime} \neq 0$, then by the above result,

$$
\int_{\partial M} \omega=\int_{(0,1)} \gamma^{*} \omega=\int_{0}^{1}\left(P \frac{d x}{d t}+Q \frac{d y}{d t}\right) d t
$$

- Theorem: Let M be a smooth oriented n-manifold-with-boundary (where the boundary has the induced orientation from outward vector fields). Let ω be a compactly supported $n-1$ form on M. Then $\int_{M} d \omega=\int_{\partial M} \omega$. (In particular, if $\partial M=\phi$, then $\int_{M} d \omega=0$.)
- Before we proceed to the proof, suppose M is a domain in \mathbb{R}^{2}, and $\omega=P d x+Q d y$, then $\int_{M} d \omega=\int_{M}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d V$ and $\int_{\partial M} \omega=\int_{\partial M}(P d x+Q d y)$. If ∂M can be parametrised as $\gamma:[0,1] \rightarrow \partial M$ where γ is a smooth simple closed curve such that $\gamma^{\prime} \neq 0$, then by the above result, $\int_{\partial M} \omega=\int_{(0,1)} \gamma^{*} \omega=\int_{0}^{1}\left(P \frac{d x}{d t}+Q \frac{d y}{d t}\right) d t$. (A small point:
- Theorem: Let M be a smooth oriented n-manifold-with-boundary (where the boundary has the induced orientation from outward vector fields). Let ω be a compactly supported $n-1$ form on M. Then $\int_{M} d \omega=\int_{\partial M} \omega$. (In particular, if $\partial M=\phi$, then $\int_{M} d \omega=0$.)
- Before we proceed to the proof, suppose M is a domain in \mathbb{R}^{2}, and $\omega=P d x+Q d y$, then $\int_{M} d \omega=\int_{M}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d V$ and $\int_{\partial M} \omega=\int_{\partial M}(P d x+Q d y)$. If ∂M can be parametrised as $\gamma:[0,1] \rightarrow \partial M$ where γ is a smooth simple closed curve such that $\gamma^{\prime} \neq 0$, then by the above result, $\int_{\partial M} \omega=\int_{(0,1)} \gamma^{*} \omega=\int_{0}^{1}\left(P \frac{d x}{d t}+Q \frac{d y}{d t}\right) d t$. (A small point: the orientation of ∂M
- Theorem: Let M be a smooth oriented n-manifold-with-boundary (where the boundary has the induced orientation from outward vector fields). Let ω be a compactly supported $n-1$ form on M. Then $\int_{M} d \omega=\int_{\partial M} \omega$. (In particular, if $\partial M=\phi$, then $\int_{M} d \omega=0$.)
- Before we proceed to the proof, suppose M is a domain in \mathbb{R}^{2}, and $\omega=P d x+Q d y$, then $\int_{M} d \omega=\int_{M}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d V$ and $\int_{\partial M} \omega=\int_{\partial M}(P d x+Q d y)$. If ∂M can be parametrised as $\gamma:[0,1] \rightarrow \partial M$ where γ is a smooth simple closed curve such that $\gamma^{\prime} \neq 0$, then by the above result, $\int_{\partial M} \omega=\int_{(0,1)} \gamma^{*} \omega=\int_{0}^{1}\left(P \frac{d x}{d t}+Q \frac{d y}{d t}\right) d t$. (A small point: the orientation of ∂M corresponds to travelling anticlockwise (why?))
- Theorem: Let M be a smooth oriented n-manifold-with-boundary (where the boundary has the induced orientation from outward vector fields). Let ω be a compactly supported $n-1$ form on M. Then $\int_{M} d \omega=\int_{\partial M} \omega$. (In particular, if $\partial M=\phi$, then $\int_{M} d \omega=0$.)
- Before we proceed to the proof, suppose M is a domain in \mathbb{R}^{2}, and $\omega=P d x+Q d y$, then $\int_{M} d \omega=\int_{M}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d V$ and $\int_{\partial M} \omega=\int_{\partial M}(P d x+Q d y)$. If ∂M can be parametrised as $\gamma:[0,1] \rightarrow \partial M$ where γ is a smooth simple closed curve such that $\gamma^{\prime} \neq 0$, then by the above result, $\int_{\partial M} \omega=\int_{(0,1)} \gamma^{*} \omega=\int_{0}^{1}\left(P \frac{d x}{d t}+Q \frac{d y}{d t}\right) d t$. (A small point: the orientation of ∂M corresponds to travelling anticlockwise (why?)) Thus we have proven Green's theorem. (
- Theorem: Let M be a smooth oriented n-manifold-with-boundary (where the boundary has the induced orientation from outward vector fields). Let ω be a compactly supported $n-1$ form on M. Then $\int_{M} d \omega=\int_{\partial M} \omega$. (In particular, if $\partial M=\phi$, then $\int_{M} d \omega=0$.)
- Before we proceed to the proof, suppose M is a domain in \mathbb{R}^{2}, and $\omega=P d x+Q d y$, then $\int_{M} d \omega=\int_{M}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d V$ and $\int_{\partial M} \omega=\int_{\partial M}(P d x+Q d y)$. If ∂M can be parametrised as $\gamma:[0,1] \rightarrow \partial M$ where γ is a smooth simple closed curve such that $\gamma^{\prime} \neq 0$, then by the above result, $\int_{\partial M} \omega=\int_{(0,1)} \gamma^{*} \omega=\int_{0}^{1}\left(P \frac{d x}{d t}+Q \frac{d y}{d t}\right) d t$. (A small point: the orientation of ∂M corresponds to travelling anticlockwise (why?)) Thus we have proven Green's theorem. (Extends to the
- Theorem: Let M be a smooth oriented n-manifold-with-boundary (where the boundary has the induced orientation from outward vector fields). Let ω be a compactly supported $n-1$ form on M. Then $\int_{M} d \omega=\int_{\partial M} \omega$. (In particular, if $\partial M=\phi$, then $\int_{M} d \omega=0$.)
- Before we proceed to the proof, suppose M is a domain in \mathbb{R}^{2}, and $\omega=P d x+Q d y$, then $\int_{M} d \omega=\int_{M}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d V$ and $\int_{\partial M} \omega=\int_{\partial M}(P d x+Q d y)$. If ∂M can be parametrised as $\gamma:[0,1] \rightarrow \partial M$ where γ is a smooth simple closed curve such that $\gamma^{\prime} \neq 0$, then by the above result, $\int_{\partial M} \omega=\int_{(0,1)} \gamma^{*} \omega=\int_{0}^{1}\left(P \frac{d x}{d t}+Q \frac{d y}{d t}\right) d t$. (A small point: the orientation of ∂M corresponds to travelling anticlockwise (why?)) Thus we have proven Green's theorem. (Extends to the multiply connected case.)

Proof of Stokes' theorem

Proof of Stokes' theorem

- Cover the support of

Proof of Stokes' theorem

- Cover the support of ω by finitely many charts (interior or boundary)

Proof of Stokes' theorem

- Cover the support of ω by finitely many charts (interior or boundary) U_{i}.
- Cover the support of ω by finitely many charts (interior or boundary) U_{i}. Let ρ_{i} be a partition-of-unity subordinate to this cover.
- Cover the support of ω by finitely many charts (interior or boundary) U_{i}. Let ρ_{i} be a partition-of-unity subordinate to this cover. Then $\int_{M} d \omega=\sum_{i} \int_{M} d\left(\rho_{i} \omega\right)$.
- Cover the support of ω by finitely many charts (interior or boundary) U_{i}. Let ρ_{i} be a partition-of-unity subordinate to this cover. Then $\int_{M} d \omega=\sum_{i} \int_{M} d\left(\rho_{i} \omega\right)$. Thus, if we prove Stokes
- Cover the support of ω by finitely many charts (interior or boundary) U_{i}. Let ρ_{i} be a partition-of-unity subordinate to this cover. Then $\int_{M} d \omega=\sum_{i} \int_{M} d\left(\rho_{i} \omega\right)$. Thus, if we prove Stokes for $\rho_{i} \omega$, i.e.,
- Cover the support of ω by finitely many charts (interior or boundary) U_{i}. Let ρ_{i} be a partition-of-unity subordinate to this cover. Then $\int_{M} d \omega=\sum_{i} \int_{M} d\left(\rho_{i} \omega\right)$. Thus, if we prove Stokes for $\rho_{i} \omega$, i.e., for forms that are
- Cover the support of ω by finitely many charts (interior or boundary) U_{i}. Let ρ_{i} be a partition-of-unity subordinate to this cover. Then $\int_{M} d \omega=\sum_{i} \int_{M} d\left(\rho_{i} \omega\right)$. Thus, if we prove Stokes for $\rho_{i} \omega$, i.e., for forms that are compactly supported in a chart (interior or boundary),
- Cover the support of ω by finitely many charts (interior or boundary) U_{i}. Let ρ_{i} be a partition-of-unity subordinate to this cover. Then $\int_{M} d \omega=\sum_{i} \int_{M} d\left(\rho_{i} \omega\right)$. Thus, if we prove Stokes for $\rho_{i} \omega$, i.e., for forms that are compactly supported in a chart (interior or boundary), then we are done. (why?)
- Cover the support of ω by finitely many charts (interior or boundary) U_{i}. Let ρ_{i} be a partition-of-unity subordinate to this cover. Then $\int_{M} d \omega=\sum_{i} \int_{M} d\left(\rho_{i} \omega\right)$. Thus, if we prove Stokes for $\rho_{i} \omega$, i.e., for forms that are compactly supported in a chart (interior or boundary), then we are done. (why?)
- So assume wlog that
- Cover the support of ω by finitely many charts (interior or boundary) U_{i}. Let ρ_{i} be a partition-of-unity subordinate to this cover. Then $\int_{M} d \omega=\sum_{i} \int_{M} d\left(\rho_{i} \omega\right)$. Thus, if we prove Stokes for $\rho_{i} \omega$, i.e., for forms that are compactly supported in a chart (interior or boundary), then we are done. (why?)
- So assume wlog that ω is compactly supported in a chart (U, ϕ).
- Cover the support of ω by finitely many charts (interior or boundary) U_{i}. Let ρ_{i} be a partition-of-unity subordinate to this cover. Then $\int_{M} d \omega=\sum_{i} \int_{M} d\left(\rho_{i} \omega\right)$. Thus, if we prove Stokes for $\rho_{i} \omega$, i.e., for forms that are compactly supported in a chart (interior or boundary), then we are done. (why?)
- So assume wlog that ω is compactly supported in a chart (U, ϕ). Wlog, ϕ is positively oriented (why?)
- Cover the support of ω by finitely many charts (interior or boundary) U_{i}. Let ρ_{i} be a partition-of-unity subordinate to this cover. Then $\int_{M} d \omega=\sum_{i} \int_{M} d\left(\rho_{i} \omega\right)$. Thus, if we prove Stokes for $\rho_{i} \omega$, i.e., for forms that are compactly supported in a chart (interior or boundary), then we are done. (why?)
- So assume wlog that ω is compactly supported in a chart (U, ϕ). Wlog, ϕ is positively oriented (why?) Thus $\int_{M} d \omega=\int_{\phi(U)} d\left(\phi^{-1}\right)^{*} \omega$.
- Cover the support of ω by finitely many charts (interior or boundary) U_{i}. Let ρ_{i} be a partition-of-unity subordinate to this cover. Then $\int_{M} d \omega=\sum_{i} \int_{M} d\left(\rho_{i} \omega\right)$. Thus, if we prove Stokes for $\rho_{i} \omega$, i.e., for forms that are compactly supported in a chart (interior or boundary), then we are done. (why?)
- So assume wlog that ω is compactly supported in a chart (U, ϕ). Wlog, ϕ is positively oriented (why?) Thus $\int_{M} d \omega=\int_{\phi(U)} d\left(\phi^{-1}\right)^{*} \omega$. Therefore, it is enough to assume that
- Cover the support of ω by finitely many charts (interior or boundary) U_{i}. Let ρ_{i} be a partition-of-unity subordinate to this cover. Then $\int_{M} d \omega=\sum_{i} \int_{M} d\left(\rho_{i} \omega\right)$. Thus, if we prove Stokes for $\rho_{i} \omega$, i.e., for forms that are compactly supported in a chart (interior or boundary), then we are done. (why?)
- So assume wlog that ω is compactly supported in a chart (U, ϕ). Wlog, ϕ is positively oriented (why?) Thus $\int_{M} d \omega=\int_{\phi(U)} d\left(\phi^{-1}\right)^{*} \omega$. Therefore, it is enough to assume that M is \mathbb{H}^{n} or \mathbb{R}^{n}.
- Cover the support of ω by finitely many charts (interior or boundary) U_{i}. Let ρ_{i} be a partition-of-unity subordinate to this cover. Then $\int_{M} d \omega=\sum_{i} \int_{M} d\left(\rho_{i} \omega\right)$. Thus, if we prove Stokes for $\rho_{i} \omega$, i.e., for forms that are compactly supported in a chart (interior or boundary), then we are done. (why?)
- So assume wlog that ω is compactly supported in a chart (U, ϕ). Wlog, ϕ is positively oriented (why?) Thus $\int_{M} d \omega=\int_{\phi(U)} d\left(\phi^{-1}\right)^{*} \omega$. Therefore, it is enough to assume that M is \mathbb{H}^{n} or \mathbb{R}^{n}.
- We have two cases.

Proof of Stokes' theorem

Proof of Stokes' theorem

- $M=\mathbb{R}^{n}$:

Proof of Stokes' theorem

- $M=\mathbb{R}^{n}$: Let $\omega=\omega_{i} d x^{1} \ldots d x^{i-1} \wedge d \hat{x}^{i} \wedge \ldots$

Proof of Stokes' theorem

- $M=\mathbb{R}^{n}$: Let $\omega=\omega_{i} d x^{1} \ldots d x^{i-1} \wedge d \hat{x}^{i} \wedge \ldots$. Now

$$
\int_{\mathbb{R}^{n}} d \omega=\int_{\mathbb{R}^{n}} \sum_{i} \frac{\partial \omega_{i}}{\partial x^{i}}(-1)^{i-1} d x^{1} \wedge \ldots
$$

Proof of Stokes' theorem

- $M=\mathbb{R}^{n}$: Let $\omega=\omega_{i} d x^{1} \ldots d x^{i-1} \wedge d \hat{x^{i}} \wedge \ldots$. Now
$\int_{\mathbb{R}^{n}} d \omega=\int_{\mathbb{R}^{n}} \sum_{i} \frac{\partial \omega_{i}}{\partial x^{i}}(-1)^{i-1} d x^{1} \wedge \ldots$ This latter expression is 0 . (Why?)
- $M=\mathbb{R}^{n}$: Let $\omega=\omega_{i} d x^{1} \ldots d x^{i-1} \wedge d \hat{x^{i}} \wedge \ldots$. Now
$\int_{\mathbb{R}^{n}} d \omega=\int_{\mathbb{R}^{n}} \sum_{i} \frac{\partial \omega_{i}}{\partial x^{i}}(-1)^{i-1} d x^{1} \wedge \ldots$ This latter expression is 0 . (Why?)
- $M=\mathbb{H}^{n}$:
- $M=\mathbb{R}^{n}$: Let $\omega=\omega_{i} d x^{1} \ldots d x^{i-1} \wedge d \hat{x^{i}} \wedge \ldots$. Now $\int_{\mathbb{R}^{n}} d \omega=\int_{\mathbb{R}^{n}} \sum_{i} \frac{\partial \omega_{i}}{\partial x^{i}}(-1)^{i-1} d x^{1} \wedge \ldots$ This latter expression is 0 . (Why?)
- $M=\mathbb{H}^{n}$: Assume that the support is in
- $M=\mathbb{R}^{n}$: Let $\omega=\omega_{i} d x^{1} \ldots d x^{i-1} \wedge d \hat{x^{i}} \wedge \ldots$. Now $\int_{\mathbb{R}^{n}} d \omega=\int_{\mathbb{R}^{n}} \sum_{i} \frac{\partial \omega_{i}}{\partial x^{i}}(-1)^{i-1} d x^{1} \wedge \ldots$ This latter expression is 0 . (Why?)
- $M=\mathbb{H}^{n}$: Assume that the support is in $[-A, A]^{n-1} \times[0, A]$.
- $M=\mathbb{R}^{n}$: Let $\omega=\omega_{i} d x^{1} \ldots d x^{i-1} \wedge d \hat{x^{i}} \wedge \ldots$. Now $\int_{\mathbb{R}^{n}} d \omega=\int_{\mathbb{R}^{n}} \sum_{i} \frac{\partial \omega_{i}}{\partial x^{i}}(-1)^{i-1} d x^{1} \wedge \ldots$ This latter expression is 0 . (Why?)
- $M=\mathbb{H}^{n}$: Assume that the support is in $[-A, A]^{n-1} \times[0, A]$.

Now $\int_{\mathbb{H}^{n}} d \omega=\int_{-A}^{A} \ldots \int_{-A}^{A} \int_{0}^{A} \sum_{i} \frac{\partial \omega_{i}}{\partial x^{i}}(-1)^{i-1} d x^{n} \ldots=$ $\int_{\mathbb{R}^{n-1}}(-1)^{n} \omega_{n}(x, 0)+0$ (why?)

- $M=\mathbb{R}^{n}$: Let $\omega=\omega_{i} d x^{1} \ldots d x^{i-1} \wedge d \hat{x^{i}} \wedge \ldots$. Now $\int_{\mathbb{R}^{n}} d \omega=\int_{\mathbb{R}^{n}} \sum_{i} \frac{\partial \omega_{i}}{\partial x^{(}}(-1)^{i-1} d x^{1} \wedge \ldots$ This latter expression is 0 . (Why?)
- $M=\mathbb{H}^{n}$: Assume that the support is in $[-A, A]^{n-1} \times[0, A]$.

Now $\int_{\mathbb{H}^{n}} d \omega=\int_{-A}^{A} \ldots \int_{-A}^{A} \int_{0}^{A} \sum_{i} \frac{\partial \omega_{i}}{\partial x^{i}}(-1)^{i-1} d x^{n} \ldots=$ $\int_{\mathbb{R}^{n-1}}(-1)^{n} \omega_{n}(x, 0)+0$ (why?) Now the boundary \mathbb{R}^{n-1} has orientation form

- $M=\mathbb{R}^{n}$: Let $\omega=\omega_{i} d x^{1} \ldots d x^{i-1} \wedge d \hat{x^{i}} \wedge \ldots$ Now $\int_{\mathbb{R}^{n}} d \omega=\int_{\mathbb{R}^{n}} \sum_{i} \frac{\partial \omega_{i}}{\partial x^{i}}(-1)^{i-1} d x^{1} \wedge \ldots$ This latter expression is 0 . (Why?)
- $M=\mathbb{H}^{n}$: Assume that the support is in $[-A, A]^{n-1} \times[0, A]$.

Now $\int_{\mathbb{H}^{n}} d \omega=\int_{-A}^{A} \ldots \int_{-A}^{A} \int_{0}^{A} \sum_{i} \frac{\partial \omega_{i}}{\partial x^{i}}(-1)^{i-1} d x^{n} \ldots=$ $\int_{\mathbb{R}^{n-1}}(-1)^{n} \omega_{n}(x, 0)+0$ (why?) Now the boundary \mathbb{R}^{n-1} has orientation form $d x^{1} \wedge d x^{2} \ldots\left(-\frac{\partial}{\partial x^{n}}, \ldots\right)=(-1)^{n} d x^{1} \wedge \ldots$.

- $M=\mathbb{R}^{n}$: Let $\omega=\omega_{i} d x^{1} \ldots d x^{i-1} \wedge d \hat{x^{i}} \wedge \ldots$ Now $\int_{\mathbb{R}^{n}} d \omega=\int_{\mathbb{R}^{n}} \sum_{i} \frac{\partial \omega_{i}}{\partial x^{i}}(-1)^{i-1} d x^{1} \wedge \ldots$ This latter expression is 0 . (Why?)
- $M=\mathbb{H}^{n}$: Assume that the support is in $[-A, A]^{n-1} \times[0, A]$.

Now $\int_{\mathbb{H}^{n}} d \omega=\int_{-A}^{A} \ldots \int_{-A}^{A} \int_{0}^{A} \sum_{i} \frac{\partial \omega_{i}}{\partial x^{i}}(-1)^{i-1} d x^{n} \ldots=$ $\int_{\mathbb{R}^{n-1}}(-1)^{n} \omega_{n}(x, 0)+0$ (why?) Now the boundary \mathbb{R}^{n-1} has orientation form $d x^{1} \wedge d x^{2} \ldots\left(-\frac{\partial}{\partial x^{n}}, \ldots\right)=(-1)^{n} d x^{1} \wedge \ldots$. Thus the last integral equals

- $M=\mathbb{R}^{n}$: Let $\omega=\omega_{i} d x^{1} \ldots d x^{i-1} \wedge d \hat{x^{i}} \wedge \ldots$ Now $\int_{\mathbb{R}^{n}} d \omega=\int_{\mathbb{R}^{n}} \sum_{i} \frac{\partial \omega_{i}}{\partial x^{i}}(-1)^{i-1} d x^{1} \wedge \ldots$ This latter expression is 0 . (Why?)
- $M=\mathbb{H}^{n}$: Assume that the support is in $[-A, A]^{n-1} \times[0, A]$. Now $\int_{\mathbb{H}^{n}} d \omega=\int_{-A}^{A} \ldots \int_{-A}^{A} \int_{0}^{A} \sum_{i} \frac{\partial \omega_{i}}{\partial x^{i}}(-1)^{i-1} d x^{n} \ldots=$ $\int_{\mathbb{R}^{n-1}}(-1)^{n} \omega_{n}(x, 0)+0$ (why?) Now the boundary \mathbb{R}^{n-1} has orientation form $d x^{1} \wedge d x^{2} \ldots\left(-\frac{\partial}{\partial x^{n}}, \ldots\right)=(-1)^{n} d x^{1} \wedge \ldots$. Thus the last integral equals $\int_{\partial \mathbb{H}^{n}} \omega$.

Consequences of Stokes

Consequences of Stokes

- All the classical theorems (

Consequences of Stokes

- All the classical theorems (Divergence, Stokes, Green)

Consequences of Stokes

- All the classical theorems (Divergence, Stokes, Green) are special cases.

Consequences of Stokes

- All the classical theorems (Divergence, Stokes, Green) are special cases.
- If S is a compact oriented submanifold

Consequences of Stokes

- All the classical theorems (Divergence, Stokes, Green) are special cases.
- If S is a compact oriented submanifold of a smooth manifold M,

Consequences of Stokes

- All the classical theorems (Divergence, Stokes, Green) are special cases.
- If S is a compact oriented submanifold of a smooth manifold M, and ω is a closed k-form on M, such that

Consequences of Stokes

- All the classical theorems (Divergence, Stokes, Green) are special cases.
- If S is a compact oriented submanifold of a smooth manifold M, and ω is a closed k-form on M, such that $\int_{S} \omega \neq 0$,

Consequences of Stokes

- All the classical theorems (Divergence, Stokes, Green) are special cases.
- If S is a compact oriented submanifold of a smooth manifold M, and ω is a closed k-form on M, such that $\int_{S} \omega \neq 0$, then ω is NOT exact,

Consequences of Stokes

- All the classical theorems (Divergence, Stokes, Green) are special cases.
- If S is a compact oriented submanifold of a smooth manifold M, and ω is a closed k-form on M, such that $\int_{S} \omega \neq 0$, then ω is NOT exact, and S is NOT the boundary of a submanifold (why?)

Consequences of Stokes

- All the classical theorems (Divergence, Stokes, Green) are special cases.
- If S is a compact oriented submanifold of a smooth manifold M, and ω is a closed k-form on M, such that $\int_{S} \omega \neq 0$, then ω is NOT exact, and S is NOT the boundary of a submanifold (why?)
- Thus, $\omega=\frac{x d y-y d x}{x^{2}+y^{2}}$ is closed but not exact.

Consequences of Stokes

- All the classical theorems (Divergence, Stokes, Green) are special cases.
- If S is a compact oriented submanifold of a smooth manifold M, and ω is a closed k-form on M, such that $\int_{S} \omega \neq 0$, then ω is NOT exact, and S is NOT the boundary of a submanifold (why?)
- Thus, $\omega=\frac{x d y-y d x}{x^{2}+y^{2}}$ is closed but not exact.
- Suppose M is an oriented compact smooth manifold with boundary.

Consequences of Stokes

- All the classical theorems (Divergence, Stokes, Green) are special cases.
- If S is a compact oriented submanifold of a smooth manifold M, and ω is a closed k-form on M, such that $\int_{S} \omega \neq 0$, then ω is NOT exact, and S is NOT the boundary of a submanifold (why?)
- Thus, $\omega=\frac{x d y-y d x}{x^{2}+y^{2}}$ is closed but not exact.
- Suppose M is an oriented compact smooth manifold with boundary. There is no smooth retraction of M onto its boundary:

Consequences of Stokes

- All the classical theorems (Divergence, Stokes, Green) are special cases.
- If S is a compact oriented submanifold of a smooth manifold M, and ω is a closed k-form on M, such that $\int_{S} \omega \neq 0$, then ω is NOT exact, and S is NOT the boundary of a submanifold (why?)
- Thus, $\omega=\frac{x d y-y d x}{x^{2}+y^{2}}$ is closed but not exact.
- Suppose M is an oriented compact smooth manifold with boundary. There is no smooth retraction of M onto its boundary: Recall that $r: M \rightarrow \partial M$ is a retract if

Consequences of Stokes

- All the classical theorems (Divergence, Stokes, Green) are special cases.
- If S is a compact oriented submanifold of a smooth manifold M, and ω is a closed k-form on M, such that $\int_{S} \omega \neq 0$, then ω is NOT exact, and S is NOT the boundary of a submanifold (why?)
- Thus, $\omega=\frac{x d y-y d x}{x^{2}+y^{2}}$ is closed but not exact.
- Suppose M is an oriented compact smooth manifold with boundary. There is no smooth retraction of M onto its boundary: Recall that $r: M \rightarrow \partial M$ is a retract if r is identity on ∂M.

Consequences of Stokes

- All the classical theorems (Divergence, Stokes, Green) are special cases.
- If S is a compact oriented submanifold of a smooth manifold M, and ω is a closed k-form on M, such that $\int_{S} \omega \neq 0$, then ω is NOT exact, and S is NOT the boundary of a submanifold (why?)
- Thus, $\omega=\frac{x d y-y d x}{x^{2}+y^{2}}$ is closed but not exact.
- Suppose M is an oriented compact smooth manifold with boundary. There is no smooth retraction of M onto its boundary: Recall that $r: M \rightarrow \partial M$ is a retract if r is identity on ∂M. If there is a retract,

Consequences of Stokes

- All the classical theorems (Divergence, Stokes, Green) are special cases.
- If S is a compact oriented submanifold of a smooth manifold M, and ω is a closed k-form on M, such that $\int_{S} \omega \neq 0$, then ω is NOT exact, and S is NOT the boundary of a submanifold (why?)
- Thus, $\omega=\frac{x d y-y d x}{x^{2}+y^{2}}$ is closed but not exact.
- Suppose M is an oriented compact smooth manifold with boundary. There is no smooth retraction of M onto its boundary: Recall that $r: M \rightarrow \partial M$ is a retract if r is identity on ∂M. If there is a retract, then suppose ω is an orientation form on ∂M.

Consequences of Stokes

- All the classical theorems (Divergence, Stokes, Green) are special cases.
- If S is a compact oriented submanifold of a smooth manifold M, and ω is a closed k-form on M, such that $\int_{S} \omega \neq 0$, then ω is NOT exact, and S is NOT the boundary of a submanifold (why?)
- Thus, $\omega=\frac{x d y-y d x}{x^{2}+y^{2}}$ is closed but not exact.
- Suppose M is an oriented compact smooth manifold with boundary. There is no smooth retraction of M onto its boundary: Recall that $r: M \rightarrow \partial M$ is a retract if r is identity on ∂M. If there is a retract, then suppose ω is an orientation form on ∂M. Then $r^{*} \omega$ is a smooth $n-1$ form on M

Consequences of Stokes

- All the classical theorems (Divergence, Stokes, Green) are special cases.
- If S is a compact oriented submanifold of a smooth manifold M, and ω is a closed k-form on M, such that $\int_{S} \omega \neq 0$, then ω is NOT exact, and S is NOT the boundary of a submanifold (why?)
- Thus, $\omega=\frac{x d y-y d x}{x^{2}+y^{2}}$ is closed but not exact.
- Suppose M is an oriented compact smooth manifold with boundary. There is no smooth retraction of M onto its boundary: Recall that $r: M \rightarrow \partial M$ is a retract if r is identity on ∂M. If there is a retract, then suppose ω is an orientation form on ∂M. Then $r^{*} \omega$ is a smooth $n-1$ form on M that restricts to ω on ∂M.

Consequences of Stokes

- All the classical theorems (Divergence, Stokes, Green) are special cases.
- If S is a compact oriented submanifold of a smooth manifold M, and ω is a closed k-form on M, such that $\int_{S} \omega \neq 0$, then ω is NOT exact, and S is NOT the boundary of a submanifold (why?)
- Thus, $\omega=\frac{x d y-y d x}{x^{2}+y^{2}}$ is closed but not exact.
- Suppose M is an oriented compact smooth manifold with boundary. There is no smooth retraction of M onto its boundary: Recall that $r: M \rightarrow \partial M$ is a retract if r is identity on ∂M. If there is a retract, then suppose ω is an orientation form on ∂M. Then $r^{*} \omega$ is a smooth $n-1$ form on M that restricts to ω on ∂M. Now $\int_{M} d r^{*} \omega=\int_{\partial M} \omega>0$.

Consequences of Stokes

- All the classical theorems (Divergence, Stokes, Green) are special cases.
- If S is a compact oriented submanifold of a smooth manifold M, and ω is a closed k-form on M, such that $\int_{S} \omega \neq 0$, then ω is NOT exact, and S is NOT the boundary of a submanifold (why?)
- Thus, $\omega=\frac{x d y-y d x}{x^{2}+y^{2}}$ is closed but not exact.
- Suppose M is an oriented compact smooth manifold with boundary. There is no smooth retraction of M onto its boundary: Recall that $r: M \rightarrow \partial M$ is a retract if r is identity on ∂M. If there is a retract, then suppose ω is an orientation form on ∂M. Then $r^{*} \omega$ is a smooth $n-1$ form on M that restricts to ω on ∂M. Now $\int_{M} d r^{*} \omega=\int_{\partial M} \omega>0$. However, $d\left(r^{*} \omega\right)=r^{*}(d \omega)=0$!

Looking beyond

Looking beyond

- Differential topology (

Looking beyond

- Differential topology (When are two manifolds homeomorphic but not diffeomorphic?)

Looking beyond

- Differential topology (When are two manifolds homeomorphic but not diffeomorphic?)
- Riemannian geometry (

Looking beyond

- Differential topology (When are two manifolds homeomorphic but not diffeomorphic?)
- Riemannian geometry (distances, angles, curvature, congruence/isomorphism, finding the best metric, etc)

Looking beyond

- Differential topology (When are two manifolds homeomorphic but not diffeomorphic?)
- Riemannian geometry (distances, angles, curvature, congruence/isomorphism, finding the best metric, etc)
- Geometric analysis (

Looking beyond

- Differential topology (When are two manifolds homeomorphic but not diffeomorphic?)
- Riemannian geometry (distances, angles, curvature, congruence/isomorphism, finding the best metric, etc)
- Geometric analysis (PDE on manifolds)

Looking beyond

- Differential topology (When are two manifolds homeomorphic but not diffeomorphic?)
- Riemannian geometry (distances, angles, curvature, congruence/isomorphism, finding the best metric, etc)
- Geometric analysis (PDE on manifolds)
- Symplectic geometry (

Looking beyond

- Differential topology (When are two manifolds homeomorphic but not diffeomorphic?)
- Riemannian geometry (distances, angles, curvature, congruence/isomorphism, finding the best metric, etc)
- Geometric analysis (PDE on manifolds)
- Symplectic geometry (Classical mechanics on manifolds)

Looking beyond

- Differential topology (When are two manifolds homeomorphic but not diffeomorphic?)
- Riemannian geometry (distances, angles, curvature, congruence/isomorphism, finding the best metric, etc)
- Geometric analysis (PDE on manifolds)
- Symplectic geometry (Classical mechanics on manifolds)
- Algebraic geometry (

Looking beyond

- Differential topology (When are two manifolds homeomorphic but not diffeomorphic?)
- Riemannian geometry (distances, angles, curvature, congruence/isomorphism, finding the best metric, etc)
- Geometric analysis (PDE on manifolds)
- Symplectic geometry (Classical mechanics on manifolds)
- Algebraic geometry (Zeroes of polynomials)

Looking beyond

- Differential topology (When are two manifolds homeomorphic but not diffeomorphic?)
- Riemannian geometry (distances, angles, curvature, congruence/isomorphism, finding the best metric, etc)
- Geometric analysis (PDE on manifolds)
- Symplectic geometry (Classical mechanics on manifolds)
- Algebraic geometry (Zeroes of polynomials)
- Arithmetic geometry and number theory (

Looking beyond

- Differential topology (When are two manifolds homeomorphic but not diffeomorphic?)
- Riemannian geometry (distances, angles, curvature, congruence/isomorphism, finding the best metric, etc)
- Geometric analysis (PDE on manifolds)
- Symplectic geometry (Classical mechanics on manifolds)
- Algebraic geometry (Zeroes of polynomials)
- Arithmetic geometry and number theory (Modular forms and elliptic curves for instance)

Looking beyond

- Differential topology (When are two manifolds homeomorphic but not diffeomorphic?)
- Riemannian geometry (distances, angles, curvature, congruence/isomorphism, finding the best metric, etc)
- Geometric analysis (PDE on manifolds)
- Symplectic geometry (Classical mechanics on manifolds)
- Algebraic geometry (Zeroes of polynomials)
- Arithmetic geometry and number theory (Modular forms and elliptic curves for instance)
- Applications (

Looking beyond

- Differential topology (When are two manifolds homeomorphic but not diffeomorphic?)
- Riemannian geometry (distances, angles, curvature, congruence/isomorphism, finding the best metric, etc)
- Geometric analysis (PDE on manifolds)
- Symplectic geometry (Classical mechanics on manifolds)
- Algebraic geometry (Zeroes of polynomials)
- Arithmetic geometry and number theory (Modular forms and elliptic curves for instance)
- Applications (Protein folding,

Looking beyond

- Differential topology (When are two manifolds homeomorphic but not diffeomorphic?)
- Riemannian geometry (distances, angles, curvature, congruence/isomorphism, finding the best metric, etc)
- Geometric analysis (PDE on manifolds)
- Symplectic geometry (Classical mechanics on manifolds)
- Algebraic geometry (Zeroes of polynomials)
- Arithmetic geometry and number theory (Modular forms and elliptic curves for instance)
- Applications (Protein folding, control theory,

Looking beyond

- Differential topology (When are two manifolds homeomorphic but not diffeomorphic?)
- Riemannian geometry (distances, angles, curvature, congruence/isomorphism, finding the best metric, etc)
- Geometric analysis (PDE on manifolds)
- Symplectic geometry (Classical mechanics on manifolds)
- Algebraic geometry (Zeroes of polynomials)
- Arithmetic geometry and number theory (Modular forms and elliptic curves for instance)
- Applications (Protein folding, control theory, general relativity,

Looking beyond

- Differential topology (When are two manifolds homeomorphic but not diffeomorphic?)
- Riemannian geometry (distances, angles, curvature, congruence/isomorphism, finding the best metric, etc)
- Geometric analysis (PDE on manifolds)
- Symplectic geometry (Classical mechanics on manifolds)
- Algebraic geometry (Zeroes of polynomials)
- Arithmetic geometry and number theory (Modular forms and elliptic curves for instance)
- Applications (Protein folding, control theory, general relativity, string theory,

Looking beyond

- Differential topology (When are two manifolds homeomorphic but not diffeomorphic?)
- Riemannian geometry (distances, angles, curvature, congruence/isomorphism, finding the best metric, etc)
- Geometric analysis (PDE on manifolds)
- Symplectic geometry (Classical mechanics on manifolds)
- Algebraic geometry (Zeroes of polynomials)
- Arithmetic geometry and number theory (Modular forms and elliptic curves for instance)
- Applications (Protein folding, control theory, general relativity, string theory, statistical mechanics, etc)

