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Recap

Definition of integration of compactly supported smooth
forms over oriented smooth manifolds (with or without
boundary), and its properties.

Saw that even integrating x2dx ∧ dy over D̄ is a tricky affair.
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Practically speaking...

To relate these two, here is a proposition: Let ω be a
compactly supported top form on M. Let D1, . . . ,Dk be
domains of integration in Rn and Fi : D̄i → M be smooth
maps that restrict to orientation-preserving diffeos on Di ,
F (Di ) ∩ F (Dj) = φ, supp(ω) ⊂ F (D̄1) ∪ F (D̄2) . . .. Then∫
M ω =

∑
i

∫
Di

F ∗i ω.
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Practically speaking...

Before proving it, note that the identity map does the trick for
D ⊂ R2 above. Thus

∫
D ω =

∫
x2+y2<1 x

2dxdy .

Proof:As above, assume WLOG that ω is supported in a single
relatively compact chart (U, φ). Note that
∂(U ∩ Fi (Di )) ⊂ Fi (∂Di ) (why?) and hence φ(∂(U ∩ Fi (Di )))
has measure zero in Rn: Indeed, smooth maps between Rn

and itself take measure zero sets to measure zero sets (why?).
Moreover, φ(U ∩ Fi (Di )) cover φ(supp(ω)) upto measure zero
sets and are pairwise disjoint.

Thus
∫
M ω = ±

∫
φ(U)(φ

−1)∗ω = ±
∑

i

∫
φ(U∩Fi (Di ))

(φ−1)∗ω =∑
i

∫
Di

F ∗i ω (why?)

Actually, one does not need Fi to extend smoothly to D̄i .
Lipschitz (or even weaker - Hölder) extensions are enough.
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Stokes’ theorem

Theorem: Let M be a smooth oriented
n-manifold-with-boundary (where the boundary has the
induced orientation from outward vector fields). Let ω be a
compactly supported n− 1 form on M. Then

∫
M dω =

∫
∂M ω.

(In particular, if ∂M = φ, then
∫
M dω = 0.)

Before we proceed to the proof, suppose M is a domain in R2,
and ω = Pdx + Qdy , then

∫
M dω =

∫
M(∂Q∂x −

∂P
∂y )dV and∫

∂M ω =
∫
∂M(Pdx + Qdy). If ∂M can be parametrised as

γ : [0, 1]→ ∂M where γ is a smooth simple closed curve such
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Proof of Stokes’ theorem

Cover the support of ω by finitely many charts (interior or
boundary) Ui . Let ρi be a partition-of-unity subordinate to
this cover. Then

∫
M dω =

∑
i

∫
M d(ρiω). Thus, if we prove

Stokes for ρiω, i.e., for forms that are compactly supported in
a chart (interior or boundary), then we are done. (why?)

So assume wlog that ω is compactly supported in a chart
(U, φ). Wlog, φ is positively oriented (why?) Thus∫
M dω =

∫
φ(U) d(φ−1)∗ω. Therefore, it is enough to assume

that M is Hn or Rn.

We have two cases.
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Proof of Stokes’ theorem

M = Rn: Let ω = ωidx
1 . . . dx i−1 ∧ dx̂ i ∧ . . .. Now∫

Rn dω =
∫
Rn

∑
i
∂ωi

∂x i
(−1)i−1dx1 ∧ . . .. This latter expression

is 0. (Why?)

M = Hn: Assume that the support is in [−A,A]n−1 × [0,A].

Now
∫
Hn dω =

∫ A
−A . . .

∫ A
−A

∫ A
0

∑
i
∂ωi

∂x i
(−1)i−1dxn . . . =∫

Rn−1(−1)nωn(x , 0) + 0 (why?) Now the boundary Rn−1 has

orientation form dx1 ∧ dx2 . . . (− ∂
∂xn , . . .) = (−1)ndx1 ∧ . . ..

Thus the last integral equals
∫
∂Hn ω.

Orientation and integration 7/9



Proof of Stokes’ theorem

M = Rn:

Let ω = ωidx
1 . . . dx i−1 ∧ dx̂ i ∧ . . .. Now∫

Rn dω =
∫
Rn

∑
i
∂ωi

∂x i
(−1)i−1dx1 ∧ . . .. This latter expression

is 0. (Why?)

M = Hn: Assume that the support is in [−A,A]n−1 × [0,A].

Now
∫
Hn dω =

∫ A
−A . . .

∫ A
−A

∫ A
0

∑
i
∂ωi

∂x i
(−1)i−1dxn . . . =∫

Rn−1(−1)nωn(x , 0) + 0 (why?) Now the boundary Rn−1 has

orientation form dx1 ∧ dx2 . . . (− ∂
∂xn , . . .) = (−1)ndx1 ∧ . . ..

Thus the last integral equals
∫
∂Hn ω.

Orientation and integration 7/9



Proof of Stokes’ theorem

M = Rn: Let ω = ωidx
1 . . . dx i−1 ∧ dx̂ i ∧ . . ..

Now∫
Rn dω =

∫
Rn

∑
i
∂ωi

∂x i
(−1)i−1dx1 ∧ . . .. This latter expression

is 0. (Why?)

M = Hn: Assume that the support is in [−A,A]n−1 × [0,A].

Now
∫
Hn dω =

∫ A
−A . . .

∫ A
−A

∫ A
0

∑
i
∂ωi

∂x i
(−1)i−1dxn . . . =∫

Rn−1(−1)nωn(x , 0) + 0 (why?) Now the boundary Rn−1 has

orientation form dx1 ∧ dx2 . . . (− ∂
∂xn , . . .) = (−1)ndx1 ∧ . . ..

Thus the last integral equals
∫
∂Hn ω.

Orientation and integration 7/9



Proof of Stokes’ theorem

M = Rn: Let ω = ωidx
1 . . . dx i−1 ∧ dx̂ i ∧ . . .. Now∫

Rn dω =
∫
Rn

∑
i
∂ωi

∂x i
(−1)i−1dx1 ∧ . . ..

This latter expression
is 0. (Why?)

M = Hn: Assume that the support is in [−A,A]n−1 × [0,A].

Now
∫
Hn dω =

∫ A
−A . . .

∫ A
−A

∫ A
0

∑
i
∂ωi

∂x i
(−1)i−1dxn . . . =∫

Rn−1(−1)nωn(x , 0) + 0 (why?) Now the boundary Rn−1 has

orientation form dx1 ∧ dx2 . . . (− ∂
∂xn , . . .) = (−1)ndx1 ∧ . . ..

Thus the last integral equals
∫
∂Hn ω.

Orientation and integration 7/9



Proof of Stokes’ theorem

M = Rn: Let ω = ωidx
1 . . . dx i−1 ∧ dx̂ i ∧ . . .. Now∫

Rn dω =
∫
Rn

∑
i
∂ωi

∂x i
(−1)i−1dx1 ∧ . . .. This latter expression

is 0. (Why?)

M = Hn: Assume that the support is in [−A,A]n−1 × [0,A].

Now
∫
Hn dω =

∫ A
−A . . .

∫ A
−A

∫ A
0

∑
i
∂ωi

∂x i
(−1)i−1dxn . . . =∫

Rn−1(−1)nωn(x , 0) + 0 (why?) Now the boundary Rn−1 has

orientation form dx1 ∧ dx2 . . . (− ∂
∂xn , . . .) = (−1)ndx1 ∧ . . ..

Thus the last integral equals
∫
∂Hn ω.

Orientation and integration 7/9



Proof of Stokes’ theorem

M = Rn: Let ω = ωidx
1 . . . dx i−1 ∧ dx̂ i ∧ . . .. Now∫

Rn dω =
∫
Rn

∑
i
∂ωi

∂x i
(−1)i−1dx1 ∧ . . .. This latter expression

is 0. (Why?)

M = Hn:

Assume that the support is in [−A,A]n−1 × [0,A].

Now
∫
Hn dω =

∫ A
−A . . .

∫ A
−A

∫ A
0

∑
i
∂ωi

∂x i
(−1)i−1dxn . . . =∫

Rn−1(−1)nωn(x , 0) + 0 (why?) Now the boundary Rn−1 has

orientation form dx1 ∧ dx2 . . . (− ∂
∂xn , . . .) = (−1)ndx1 ∧ . . ..

Thus the last integral equals
∫
∂Hn ω.

Orientation and integration 7/9



Proof of Stokes’ theorem

M = Rn: Let ω = ωidx
1 . . . dx i−1 ∧ dx̂ i ∧ . . .. Now∫

Rn dω =
∫
Rn

∑
i
∂ωi

∂x i
(−1)i−1dx1 ∧ . . .. This latter expression

is 0. (Why?)

M = Hn: Assume that the support is in

[−A,A]n−1 × [0,A].

Now
∫
Hn dω =

∫ A
−A . . .

∫ A
−A

∫ A
0

∑
i
∂ωi

∂x i
(−1)i−1dxn . . . =∫

Rn−1(−1)nωn(x , 0) + 0 (why?) Now the boundary Rn−1 has

orientation form dx1 ∧ dx2 . . . (− ∂
∂xn , . . .) = (−1)ndx1 ∧ . . ..

Thus the last integral equals
∫
∂Hn ω.

Orientation and integration 7/9



Proof of Stokes’ theorem

M = Rn: Let ω = ωidx
1 . . . dx i−1 ∧ dx̂ i ∧ . . .. Now∫

Rn dω =
∫
Rn

∑
i
∂ωi

∂x i
(−1)i−1dx1 ∧ . . .. This latter expression

is 0. (Why?)

M = Hn: Assume that the support is in [−A,A]n−1 × [0,A].

Now
∫
Hn dω =

∫ A
−A . . .

∫ A
−A

∫ A
0

∑
i
∂ωi

∂x i
(−1)i−1dxn . . . =∫

Rn−1(−1)nωn(x , 0) + 0 (why?) Now the boundary Rn−1 has

orientation form dx1 ∧ dx2 . . . (− ∂
∂xn , . . .) = (−1)ndx1 ∧ . . ..

Thus the last integral equals
∫
∂Hn ω.

Orientation and integration 7/9



Proof of Stokes’ theorem

M = Rn: Let ω = ωidx
1 . . . dx i−1 ∧ dx̂ i ∧ . . .. Now∫

Rn dω =
∫
Rn

∑
i
∂ωi

∂x i
(−1)i−1dx1 ∧ . . .. This latter expression

is 0. (Why?)

M = Hn: Assume that the support is in [−A,A]n−1 × [0,A].

Now
∫
Hn dω =

∫ A
−A . . .

∫ A
−A

∫ A
0

∑
i
∂ωi

∂x i
(−1)i−1dxn . . . =∫

Rn−1(−1)nωn(x , 0) + 0 (why?)

Now the boundary Rn−1 has

orientation form dx1 ∧ dx2 . . . (− ∂
∂xn , . . .) = (−1)ndx1 ∧ . . ..

Thus the last integral equals
∫
∂Hn ω.

Orientation and integration 7/9



Proof of Stokes’ theorem

M = Rn: Let ω = ωidx
1 . . . dx i−1 ∧ dx̂ i ∧ . . .. Now∫

Rn dω =
∫
Rn

∑
i
∂ωi

∂x i
(−1)i−1dx1 ∧ . . .. This latter expression

is 0. (Why?)

M = Hn: Assume that the support is in [−A,A]n−1 × [0,A].

Now
∫
Hn dω =

∫ A
−A . . .

∫ A
−A

∫ A
0

∑
i
∂ωi

∂x i
(−1)i−1dxn . . . =∫

Rn−1(−1)nωn(x , 0) + 0 (why?) Now the boundary Rn−1 has

orientation form

dx1 ∧ dx2 . . . (− ∂
∂xn , . . .) = (−1)ndx1 ∧ . . ..

Thus the last integral equals
∫
∂Hn ω.

Orientation and integration 7/9



Proof of Stokes’ theorem

M = Rn: Let ω = ωidx
1 . . . dx i−1 ∧ dx̂ i ∧ . . .. Now∫

Rn dω =
∫
Rn

∑
i
∂ωi

∂x i
(−1)i−1dx1 ∧ . . .. This latter expression

is 0. (Why?)

M = Hn: Assume that the support is in [−A,A]n−1 × [0,A].

Now
∫
Hn dω =

∫ A
−A . . .

∫ A
−A

∫ A
0

∑
i
∂ωi

∂x i
(−1)i−1dxn . . . =∫

Rn−1(−1)nωn(x , 0) + 0 (why?) Now the boundary Rn−1 has

orientation form dx1 ∧ dx2 . . . (− ∂
∂xn , . . .) = (−1)ndx1 ∧ . . ..

Thus the last integral equals
∫
∂Hn ω.

Orientation and integration 7/9



Proof of Stokes’ theorem

M = Rn: Let ω = ωidx
1 . . . dx i−1 ∧ dx̂ i ∧ . . .. Now∫

Rn dω =
∫
Rn

∑
i
∂ωi

∂x i
(−1)i−1dx1 ∧ . . .. This latter expression

is 0. (Why?)

M = Hn: Assume that the support is in [−A,A]n−1 × [0,A].

Now
∫
Hn dω =

∫ A
−A . . .

∫ A
−A

∫ A
0

∑
i
∂ωi

∂x i
(−1)i−1dxn . . . =∫

Rn−1(−1)nωn(x , 0) + 0 (why?) Now the boundary Rn−1 has

orientation form dx1 ∧ dx2 . . . (− ∂
∂xn , . . .) = (−1)ndx1 ∧ . . ..

Thus the last integral equals

∫
∂Hn ω.

Orientation and integration 7/9



Proof of Stokes’ theorem

M = Rn: Let ω = ωidx
1 . . . dx i−1 ∧ dx̂ i ∧ . . .. Now∫

Rn dω =
∫
Rn

∑
i
∂ωi

∂x i
(−1)i−1dx1 ∧ . . .. This latter expression

is 0. (Why?)

M = Hn: Assume that the support is in [−A,A]n−1 × [0,A].

Now
∫
Hn dω =

∫ A
−A . . .

∫ A
−A

∫ A
0

∑
i
∂ωi

∂x i
(−1)i−1dxn . . . =∫

Rn−1(−1)nωn(x , 0) + 0 (why?) Now the boundary Rn−1 has

orientation form dx1 ∧ dx2 . . . (− ∂
∂xn , . . .) = (−1)ndx1 ∧ . . ..

Thus the last integral equals
∫
∂Hn ω.

Orientation and integration 7/9



Consequences of Stokes

All the classical theorems (Divergence, Stokes, Green) are
special cases.

If S is a compact oriented submanifold of a smooth manifold
M, and ω is a closed k-form on M, such that

∫
S ω 6= 0, then

ω is NOT exact, and S is NOT the boundary of a submanifold
(why?)

Thus, ω = xdy−ydx
x2+y2 is closed but not exact.

Suppose M is an oriented compact smooth manifold with
boundary. There is no smooth retraction of M onto its
boundary: Recall that r : M → ∂M is a retract if r is identity
on ∂M. If there is a retract, then suppose ω is an orientation
form on ∂M. Then r∗ω is a smooth n − 1 form on M that
restricts to ω on ∂M. Now

∫
M dr∗ω =

∫
∂M ω > 0. However,

d(r∗ω) = r∗(dω) = 0!
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