MA 229/MA 235 - Lecture 27

IISc

э

Recap

æ

<ロ> <同> <同> < 同> < 同>

• Definition of integration of

æ

• Definition of integration of compactly supported smooth forms

æ

• Definition of integration of compactly supported smooth forms over oriented smooth manifolds (with or without boundary), and

• Definition of integration of compactly supported smooth forms over oriented smooth manifolds (with or without boundary), and its properties.

- Definition of integration of compactly supported smooth forms over oriented smooth manifolds (with or without boundary), and its properties.
- Saw that

- Definition of integration of compactly supported smooth forms over oriented smooth manifolds (with or without boundary), and its properties.
- Saw that even integrating $x^2 dx \wedge dy$ over \overline{D} is a tricky affair.

æ

• To relate these two,

• To relate these two, here is a proposition:

• To relate these two, here is a proposition: Let ω be a compactly supported top form on M.

To relate these two, here is a proposition: Let ω be a compactly supported top form on M. Let D₁,..., D_k be domains of integration in ℝⁿ and

To relate these two, here is a proposition: Let ω be a compactly supported top form on M. Let D₁,..., D_k be domains of integration in ℝⁿ and F_i : D
_i → M be smooth maps

To relate these two, here is a proposition: Let ω be a compactly supported top form on M. Let D₁,..., D_k be domains of integration in ℝⁿ and F_i: D
 *D*_i → M be smooth maps that restrict to orientation-preserving diffeos on D_i,

To relate these two, here is a proposition: Let ω be a compactly supported top form on M. Let D₁,..., D_k be domains of integration in ℝⁿ and F_i : D
 *D*_i → M be smooth maps that restrict to orientation-preserving diffeos on D_i, F(D_i) ∩ F(D_j) = φ,

To relate these two, here is a proposition: Let ω be a compactly supported top form on M. Let D₁,..., D_k be domains of integration in ℝⁿ and F_i: D
 *D*_i → M be smooth maps that restrict to orientation-preserving diffeos on D_i, F(D_i) ∩ F(D_j) = φ, supp(ω) ⊂ F(D
 *D*₁) ∪ F(D
 *D*₂)....

To relate these two, here is a proposition: Let ω be a compactly supported top form on M. Let D₁,..., D_k be domains of integration in ℝⁿ and F_i: D
 *D*_i → M be smooth maps that restrict to orientation-preserving diffeos on D_i, F(D_i) ∩ F(D_j) = φ, supp(ω) ⊂ F(D
 *D*₁) ∪ F(D
 *D*₂).... Then ∫_M ω = ∑_i ∫_{D_i} F_i^{*}ω.

æ

• Before proving it,

æ

• Before proving it, note that the identity map

• Before proving it, note that the identity map does the trick for $D \subset \mathbb{R}^2$ above.

• Before proving it, note that the identity map does the trick for $D \subset \mathbb{R}^2$ above. Thus $\int_D \omega = \int_{x^2+y^2<1} x^2 dx dy$.

- Before proving it, note that the identity map does the trick for $D \subset \mathbb{R}^2$ above. Thus $\int_D \omega = \int_{x^2+v^2<1} x^2 dx dy$.
- Proof:

- Before proving it, note that the identity map does the trick for $D \subset \mathbb{R}^2$ above. Thus $\int_D \omega = \int_{x^2+y^2<1} x^2 dx dy$.
- Proof:As above,

- Before proving it, note that the identity map does the trick for $D \subset \mathbb{R}^2$ above. Thus $\int_D \omega = \int_{x^2+v^2<1} x^2 dx dy$.
- Proof:As above, assume WLOG that ω is supported in a

- Before proving it, note that the identity map does the trick for $D \subset \mathbb{R}^2$ above. Thus $\int_D \omega = \int_{x^2+v^2<1} x^2 dx dy$.
- Proof:As above, assume WLOG that ω is supported in a single relatively compact chart (U, φ).

- Before proving it, note that the identity map does the trick for $D \subset \mathbb{R}^2$ above. Thus $\int_D \omega = \int_{x^2+y^2<1} x^2 dx dy$.
- Proof:As above, assume WLOG that ω is supported in a single relatively compact chart (U, φ). Note that ∂(U ∩ F_i(D_i)) ⊂ F_i(∂D_i) (why?)

- Before proving it, note that the identity map does the trick for $D \subset \mathbb{R}^2$ above. Thus $\int_D \omega = \int_{x^2+y^2<1} x^2 dx dy$.
- Proof:As above, assume WLOG that ω is supported in a single relatively compact chart (U, ϕ) . Note that $\partial(U \cap F_i(D_i)) \subset F_i(\partial D_i)$ (why?) and hence $\phi(\partial(U \cap F_i(D_i)))$ has measure zero in \mathbb{R}^n :

- Before proving it, note that the identity map does the trick for $D \subset \mathbb{R}^2$ above. Thus $\int_D \omega = \int_{x^2+v^2<1} x^2 dx dy$.
- Proof:As above, assume WLOG that ω is supported in a single relatively compact chart (U, φ). Note that ∂(U ∩ F_i(D_i)) ⊂ F_i(∂D_i) (why?) and hence φ(∂(U ∩ F_i(D_i))) has measure zero in ℝⁿ: Indeed, smooth maps between ℝⁿ and itself take measure zero sets to measure zero sets (why?).

- Before proving it, note that the identity map does the trick for $D \subset \mathbb{R}^2$ above. Thus $\int_D \omega = \int_{x^2+v^2<1} x^2 dx dy$.
- Proof:As above, assume WLOG that ω is supported in a single relatively compact chart (U, φ). Note that ∂(U ∩ F_i(D_i)) ⊂ F_i(∂D_i) (why?) and hence φ(∂(U ∩ F_i(D_i))) has measure zero in ℝⁿ: Indeed, smooth maps between ℝⁿ and itself take measure zero sets to measure zero sets (why?). Moreover, φ(U ∩ F_i(D_i)) cover

- Before proving it, note that the identity map does the trick for $D \subset \mathbb{R}^2$ above. Thus $\int_D \omega = \int_{x^2+v^2<1} x^2 dx dy$.
- Proof:As above, assume WLOG that ω is supported in a single relatively compact chart (U, ϕ) . Note that $\partial(U \cap F_i(D_i)) \subset F_i(\partial D_i)$ (why?) and hence $\phi(\partial(U \cap F_i(D_i)))$ has measure zero in \mathbb{R}^n : Indeed, smooth maps between \mathbb{R}^n and itself take measure zero sets to measure zero sets (why?). Moreover, $\phi(U \cap F_i(D_i))$ cover $\phi(supp(\omega))$ upto measure zero sets

- Before proving it, note that the identity map does the trick for $D \subset \mathbb{R}^2$ above. Thus $\int_D \omega = \int_{x^2+v^2<1} x^2 dx dy$.
- Proof:As above, assume WLOG that ω is supported in a single relatively compact chart (U, ϕ) . Note that $\partial(U \cap F_i(D_i)) \subset F_i(\partial D_i)$ (why?) and hence $\phi(\partial(U \cap F_i(D_i)))$ has measure zero in \mathbb{R}^n : Indeed, smooth maps between \mathbb{R}^n and itself take measure zero sets to measure zero sets (why?). Moreover, $\phi(U \cap F_i(D_i))$ cover $\phi(supp(\omega))$ upto measure zero sets and are pairwise disjoint.

- Before proving it, note that the identity map does the trick for $D \subset \mathbb{R}^2$ above. Thus $\int_D \omega = \int_{x^2+v^2<1} x^2 dx dy$.
- Proof:As above, assume WLOG that ω is supported in a single relatively compact chart (U, ϕ) . Note that $\partial(U \cap F_i(D_i)) \subset F_i(\partial D_i)$ (why?) and hence $\phi(\partial(U \cap F_i(D_i)))$ has measure zero in \mathbb{R}^n : Indeed, smooth maps between \mathbb{R}^n and itself take measure zero sets to measure zero sets (why?). Moreover, $\phi(U \cap F_i(D_i))$ cover $\phi(supp(\omega))$ upto measure zero sets and are pairwise disjoint.
- Thus $\int_{M} \omega = \pm \int_{\phi(U)} (\phi^{-1})^* \omega = \pm \sum_i \int_{\phi(U \cap F_i(D_i))} (\phi^{-1})^* \omega = \sum_i \int_{D_i} F_i^* \omega$ (why?)

- Before proving it, note that the identity map does the trick for $D \subset \mathbb{R}^2$ above. Thus $\int_D \omega = \int_{x^2+v^2<1} x^2 dx dy$.
- Proof:As above, assume WLOG that ω is supported in a single relatively compact chart (U, ϕ) . Note that $\partial(U \cap F_i(D_i)) \subset F_i(\partial D_i)$ (why?) and hence $\phi(\partial(U \cap F_i(D_i)))$ has measure zero in \mathbb{R}^n : Indeed, smooth maps between \mathbb{R}^n and itself take measure zero sets to measure zero sets (why?). Moreover, $\phi(U \cap F_i(D_i))$ cover $\phi(supp(\omega))$ upto measure zero sets and are pairwise disjoint.
- Thus $\int_{M} \omega = \pm \int_{\phi(U)} (\phi^{-1})^* \omega = \pm \sum_i \int_{\phi(U \cap F_i(D_i))} (\phi^{-1})^* \omega = \sum_i \int_{D_i} F_i^* \omega$ (why?)
- Actually, one does not need

- Before proving it, note that the identity map does the trick for $D \subset \mathbb{R}^2$ above. Thus $\int_D \omega = \int_{x^2+v^2<1} x^2 dx dy$.
- Proof:As above, assume WLOG that ω is supported in a single relatively compact chart (U, ϕ) . Note that $\partial(U \cap F_i(D_i)) \subset F_i(\partial D_i)$ (why?) and hence $\phi(\partial(U \cap F_i(D_i)))$ has measure zero in \mathbb{R}^n : Indeed, smooth maps between \mathbb{R}^n and itself take measure zero sets to measure zero sets (why?). Moreover, $\phi(U \cap F_i(D_i))$ cover $\phi(supp(\omega))$ upto measure zero sets and are pairwise disjoint.
- Thus $\int_{M} \omega = \pm \int_{\phi(U)} (\phi^{-1})^* \omega = \pm \sum_i \int_{\phi(U \cap F_i(D_i))} (\phi^{-1})^* \omega = \sum_i \int_{D_i} F_i^* \omega$ (why?)
- Actually, one does not need F_i to extend smoothly to \overline{D}_i .
Practically speaking...

- Before proving it, note that the identity map does the trick for $D \subset \mathbb{R}^2$ above. Thus $\int_D \omega = \int_{x^2+v^2<1} x^2 dx dy$.
- Proof:As above, assume WLOG that ω is supported in a single relatively compact chart (U, ϕ) . Note that $\partial(U \cap F_i(D_i)) \subset F_i(\partial D_i)$ (why?) and hence $\phi(\partial(U \cap F_i(D_i)))$ has measure zero in \mathbb{R}^n : Indeed, smooth maps between \mathbb{R}^n and itself take measure zero sets to measure zero sets (why?). Moreover, $\phi(U \cap F_i(D_i))$ cover $\phi(supp(\omega))$ upto measure zero sets and are pairwise disjoint.
- Thus $\int_{M} \omega = \pm \int_{\phi(U)} (\phi^{-1})^* \omega = \pm \sum_i \int_{\phi(U \cap F_i(D_i))} (\phi^{-1})^* \omega = \sum_i \int_{D_i} F_i^* \omega$ (why?)
- Actually, one does not need F_i to extend smoothly to D
 _i.
 Lipschitz (or even weaker Hölder) extensions are enough.

• Theorem:

⊸ ≣ ⊁

_ৰ ≣ ≯

• Theorem: Let M be a smooth oriented

_ र ≣ ≯

< ∃ >

• Theorem: Let *M* be a smooth oriented *n*-manifold-with-boundary (where

3

< ≣

• Theorem: Let *M* be a smooth oriented *n*-manifold-with-boundary (where the boundary has the induced orientation from outward vector fields).

• Theorem: Let M be a smooth oriented *n*-manifold-with-boundary (where the boundary has the induced orientation from outward vector fields). Let ω be a compactly supported n-1 form on M.

• Theorem: Let M be a smooth oriented n-manifold-with-boundary (where the boundary has the induced orientation from outward vector fields). Let ω be a compactly supported n-1 form on M. Then $\int_M d\omega = \int_{\partial M} \omega$. (

Theorem: Let *M* be a smooth oriented *n*-manifold-with-boundary (where the boundary has the induced orientation from outward vector fields). Let ω be a compactly supported *n*−1 form on *M*. Then ∫_M dω = ∫_{∂M} ω. (In particular, if ∂M = φ,

Theorem: Let *M* be a smooth oriented *n*-manifold-with-boundary (where the boundary has the induced orientation from outward vector fields). Let ω be a compactly supported *n*−1 form on *M*. Then ∫_M dω = ∫_{∂M} ω. (In particular, if ∂M = φ, then ∫_M dω = 0.)

- Theorem: Let *M* be a smooth oriented *n*-manifold-with-boundary (where the boundary has the induced orientation from outward vector fields). Let ω be a compactly supported *n*−1 form on *M*. Then ∫_M dω = ∫_{∂M} ω. (In particular, if ∂M = φ, then ∫_M dω = 0.)
- Before we proceed to the proof,

- Theorem: Let *M* be a smooth oriented *n*-manifold-with-boundary (where the boundary has the induced orientation from outward vector fields). Let ω be a compactly supported *n*−1 form on *M*. Then ∫_M dω = ∫_{∂M} ω. (In particular, if ∂M = φ, then ∫_M dω = 0.)
- Before we proceed to the proof, suppose M is a domain in \mathbb{R}^2 ,

- Theorem: Let *M* be a smooth oriented *n*-manifold-with-boundary (where the boundary has the induced orientation from outward vector fields). Let ω be a compactly supported *n*−1 form on *M*. Then ∫_M dω = ∫_{∂M} ω. (In particular, if ∂M = φ, then ∫_M dω = 0.)
- Before we proceed to the proof, suppose M is a domain in R², and ω = Pdx + Qdy,

- Theorem: Let *M* be a smooth oriented *n*-manifold-with-boundary (where the boundary has the induced orientation from outward vector fields). Let ω be a compactly supported *n*−1 form on *M*. Then ∫_M dω = ∫_{∂M} ω. (In particular, if ∂M = φ, then ∫_M dω = 0.)
- Before we proceed to the proof, suppose M is a domain in \mathbb{R}^2 , and $\omega = Pdx + Qdy$, then $\int_M d\omega = \int_M (\frac{\partial Q}{\partial x} \frac{\partial P}{\partial y}) dV$ and

- Theorem: Let *M* be a smooth oriented *n*-manifold-with-boundary (where the boundary has the induced orientation from outward vector fields). Let ω be a compactly supported *n*−1 form on *M*. Then ∫_M dω = ∫_{∂M} ω. (In particular, if ∂M = φ, then ∫_M dω = 0.)
- Before we proceed to the proof, suppose M is a domain in \mathbb{R}^2 , and $\omega = Pdx + Qdy$, then $\int_M d\omega = \int_M (\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}) dV$ and $\int_{\partial M} \omega = \int_{\partial M} (Pdx + Qdy).$

- Theorem: Let *M* be a smooth oriented *n*-manifold-with-boundary (where the boundary has the induced orientation from outward vector fields). Let ω be a compactly supported *n*−1 form on *M*. Then ∫_M dω = ∫_{∂M} ω. (In particular, if ∂M = φ, then ∫_M dω = 0.)
- Before we proceed to the proof, suppose M is a domain in \mathbb{R}^2 , and $\omega = Pdx + Qdy$, then $\int_M d\omega = \int_M (\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}) dV$ and $\int_{\partial M} \omega = \int_{\partial M} (Pdx + Qdy)$. If ∂M can be parametrised

- Theorem: Let *M* be a smooth oriented *n*-manifold-with-boundary (where the boundary has the induced orientation from outward vector fields). Let ω be a compactly supported *n*−1 form on *M*. Then ∫_M dω = ∫_{∂M} ω. (In particular, if ∂M = φ, then ∫_M dω = 0.)
- Before we proceed to the proof, suppose M is a domain in \mathbb{R}^2 , and $\omega = Pdx + Qdy$, then $\int_M d\omega = \int_M (\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}) dV$ and $\int_{\partial M} \omega = \int_{\partial M} (Pdx + Qdy)$. If ∂M can be parametrised as $\gamma : [0, 1] \rightarrow \partial M$ where γ is a smooth simple closed curve

- Theorem: Let *M* be a smooth oriented *n*-manifold-with-boundary (where the boundary has the induced orientation from outward vector fields). Let ω be a compactly supported *n*−1 form on *M*. Then ∫_M dω = ∫_{∂M} ω. (In particular, if ∂M = φ, then ∫_M dω = 0.)
- Before we proceed to the proof, suppose M is a domain in \mathbb{R}^2 , and $\omega = Pdx + Qdy$, then $\int_M d\omega = \int_M (\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}) dV$ and $\int_{\partial M} \omega = \int_{\partial M} (Pdx + Qdy)$. If ∂M can be parametrised as $\gamma : [0, 1] \rightarrow \partial M$ where γ is a smooth simple closed curve such that $\gamma' \neq 0$,

- Theorem: Let *M* be a smooth oriented *n*-manifold-with-boundary (where the boundary has the induced orientation from outward vector fields). Let ω be a compactly supported *n*−1 form on *M*. Then ∫_M dω = ∫_{∂M} ω. (In particular, if ∂M = φ, then ∫_M dω = 0.)
- Before we proceed to the proof, suppose M is a domain in \mathbb{R}^2 , and $\omega = Pdx + Qdy$, then $\int_M d\omega = \int_M (\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}) dV$ and $\int_{\partial M} \omega = \int_{\partial M} (Pdx + Qdy)$. If ∂M can be parametrised as $\gamma : [0,1] \rightarrow \partial M$ where γ is a smooth simple closed curve such that $\gamma' \neq 0$, then by the above result,

- Theorem: Let *M* be a smooth oriented *n*-manifold-with-boundary (where the boundary has the induced orientation from outward vector fields). Let ω be a compactly supported *n*−1 form on *M*. Then ∫_M dω = ∫_{∂M} ω. (In particular, if ∂M = φ, then ∫_M dω = 0.)
- Before we proceed to the proof, suppose M is a domain in \mathbb{R}^2 , and $\omega = Pdx + Qdy$, then $\int_M d\omega = \int_M (\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}) dV$ and $\int_{\partial M} \omega = \int_{\partial M} (Pdx + Qdy)$. If ∂M can be parametrised as $\gamma : [0,1] \rightarrow \partial M$ where γ is a smooth simple closed curve such that $\gamma' \neq 0$, then by the above result, $\int_{\partial M} \omega = \int_{(0,1)} \gamma^* \omega = \int_0^1 (P\frac{dx}{dt} + Q\frac{dy}{dt}) dt$. (

- Theorem: Let *M* be a smooth oriented *n*-manifold-with-boundary (where the boundary has the induced orientation from outward vector fields). Let ω be a compactly supported *n*−1 form on *M*. Then ∫_M dω = ∫_{∂M} ω. (In particular, if ∂M = φ, then ∫_M dω = 0.)
- Before we proceed to the proof, suppose M is a domain in \mathbb{R}^2 , and $\omega = Pdx + Qdy$, then $\int_M d\omega = \int_M (\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}) dV$ and $\int_{\partial M} \omega = \int_{\partial M} (Pdx + Qdy)$. If ∂M can be parametrised as $\gamma : [0,1] \rightarrow \partial M$ where γ is a smooth simple closed curve such that $\gamma' \neq 0$, then by the above result, $\int_{\partial M} \omega = \int_{(0,1)} \gamma^* \omega = \int_0^1 (P \frac{dx}{dt} + Q \frac{dy}{dt}) dt$. (A small point:

- Theorem: Let *M* be a smooth oriented *n*-manifold-with-boundary (where the boundary has the induced orientation from outward vector fields). Let ω be a compactly supported *n*−1 form on *M*. Then ∫_M dω = ∫_{∂M} ω. (In particular, if ∂M = φ, then ∫_M dω = 0.)
- Before we proceed to the proof, suppose M is a domain in \mathbb{R}^2 , and $\omega = Pdx + Qdy$, then $\int_M d\omega = \int_M (\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}) dV$ and $\int_{\partial M} \omega = \int_{\partial M} (Pdx + Qdy)$. If ∂M can be parametrised as $\gamma : [0, 1] \rightarrow \partial M$ where γ is a smooth simple closed curve such that $\gamma' \neq 0$, then by the above result, $\int_{\partial M} \omega = \int_{(0,1)} \gamma^* \omega = \int_0^1 (P\frac{dx}{dt} + Q\frac{dy}{dt}) dt$. (A small point: the orientation of ∂M

- Theorem: Let *M* be a smooth oriented *n*-manifold-with-boundary (where the boundary has the induced orientation from outward vector fields). Let ω be a compactly supported *n*−1 form on *M*. Then ∫_M dω = ∫_{∂M} ω. (In particular, if ∂M = φ, then ∫_M dω = 0.)
- Before we proceed to the proof, suppose M is a domain in \mathbb{R}^2 , and $\omega = Pdx + Qdy$, then $\int_M d\omega = \int_M (\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}) dV$ and $\int_{\partial M} \omega = \int_{\partial M} (Pdx + Qdy)$. If ∂M can be parametrised as $\gamma : [0,1] \rightarrow \partial M$ where γ is a smooth simple closed curve such that $\gamma' \neq 0$, then by the above result, $\int_{\partial M} \omega = \int_{(0,1)} \gamma^* \omega = \int_0^1 (P\frac{dx}{dt} + Q\frac{dy}{dt}) dt$. (A small point: the orientation of ∂M corresponds to travelling anticlockwise (why?))

- Theorem: Let *M* be a smooth oriented *n*-manifold-with-boundary (where the boundary has the induced orientation from outward vector fields). Let ω be a compactly supported *n*−1 form on *M*. Then ∫_M dω = ∫_{∂M} ω. (In particular, if ∂M = φ, then ∫_M dω = 0.)
- Before we proceed to the proof, suppose M is a domain in ℝ², and ω = Pdx + Qdy, then ∫_M dω = ∫_M(∂Q/∂x ∂P/∂y)dV and ∫_{∂M} ω = ∫_{∂M}(Pdx + Qdy). If ∂M can be parametrised as γ : [0, 1] → ∂M where γ is a smooth simple closed curve such that γ' ≠ 0, then by the above result, ∫_{∂M} ω = ∫_(0,1) γ^{*}ω = ∫₀¹(P dx/dt + Q dy/dt)dt. (A small point: the orientation of ∂M corresponds to travelling anticlockwise (why?)) Thus we have proven Green's theorem. (

- Theorem: Let *M* be a smooth oriented *n*-manifold-with-boundary (where the boundary has the induced orientation from outward vector fields). Let ω be a compactly supported *n*−1 form on *M*. Then ∫_M dω = ∫_{∂M} ω. (In particular, if ∂M = φ, then ∫_M dω = 0.)
- Before we proceed to the proof, suppose M is a domain in ℝ², and ω = Pdx + Qdy, then ∫_M dω = ∫_M(∂Q/∂x ∂P/∂y)dV and ∫_{∂M} ω = ∫_{∂M}(Pdx + Qdy). If ∂M can be parametrised as γ : [0,1] → ∂M where γ is a smooth simple closed curve such that γ' ≠ 0, then by the above result, ∫_{∂M} ω = ∫_(0,1) γ^{*}ω = ∫₀¹(P dx/dt + Q dy/dt)dt. (A small point: the orientation of ∂M corresponds to travelling anticlockwise (why?)) Thus we have proven Green's theorem. (Extends to the

• • = • • = •

- Theorem: Let *M* be a smooth oriented *n*-manifold-with-boundary (where the boundary has the induced orientation from outward vector fields). Let ω be a compactly supported *n*−1 form on *M*. Then ∫_M dω = ∫_{∂M} ω. (In particular, if ∂M = φ, then ∫_M dω = 0.)
- Before we proceed to the proof, suppose M is a domain in ℝ², and ω = Pdx + Qdy, then ∫_M dω = ∫_M(∂Q/∂x ∂P/∂y)dV and ∫_{∂M} ω = ∫_{∂M}(Pdx + Qdy). If ∂M can be parametrised as γ : [0,1] → ∂M where γ is a smooth simple closed curve such that γ' ≠ 0, then by the above result, ∫_{∂M} ω = ∫_(0,1) γ^{*}ω = ∫₀¹(P dx/dt + Q dy/dt)dt. (A small point: the orientation of ∂M corresponds to travelling anticlockwise (why?)) Thus we have proven Green's theorem. (Extends to the multiply connected case.)

高 と く ヨ と く ヨ と

• Cover the support of

• Cover the support of ω by finitely many charts (interior or boundary)

 Cover the support of ω by finitely many charts (interior or boundary) U_i. Cover the support of ω by finitely many charts (interior or boundary) U_i. Let ρ_i be a partition-of-unity subordinate to this cover.

• Cover the support of ω by finitely many charts (interior or boundary) U_i . Let ρ_i be a partition-of-unity subordinate to this cover. Then $\int_M d\omega = \sum_i \int_M d(\rho_i \omega)$.

• Cover the support of ω by finitely many charts (interior or boundary) U_i . Let ρ_i be a partition-of-unity subordinate to this cover. Then $\int_M d\omega = \sum_i \int_M d(\rho_i \omega)$. Thus, if we prove Stokes

• Cover the support of ω by finitely many charts (interior or boundary) U_i . Let ρ_i be a partition-of-unity subordinate to this cover. Then $\int_M d\omega = \sum_i \int_M d(\rho_i \omega)$. Thus, if we prove Stokes for $\rho_i \omega$, i.e.,

• Cover the support of ω by finitely many charts (interior or boundary) U_i . Let ρ_i be a partition-of-unity subordinate to this cover. Then $\int_M d\omega = \sum_i \int_M d(\rho_i \omega)$. Thus, if we prove Stokes for $\rho_i \omega$, i.e., for forms that are

• Cover the support of ω by finitely many charts (interior or boundary) U_i . Let ρ_i be a partition-of-unity subordinate to this cover. Then $\int_M d\omega = \sum_i \int_M d(\rho_i \omega)$. Thus, if we prove Stokes for $\rho_i \omega$, i.e., for forms that are compactly supported in a chart (interior or boundary),
• Cover the support of ω by finitely many charts (interior or boundary) U_i . Let ρ_i be a partition-of-unity subordinate to this cover. Then $\int_M d\omega = \sum_i \int_M d(\rho_i \omega)$. Thus, if we prove Stokes for $\rho_i \omega$, i.e., for forms that are compactly supported in a chart (interior or boundary), then we are done. (why?)

- Cover the support of ω by finitely many charts (interior or boundary) U_i . Let ρ_i be a partition-of-unity subordinate to this cover. Then $\int_M d\omega = \sum_i \int_M d(\rho_i \omega)$. Thus, if we prove Stokes for $\rho_i \omega$, i.e., for forms that are compactly supported in a chart (interior or boundary), then we are done. (why?)
- So assume wlog that

- Cover the support of ω by finitely many charts (interior or boundary) U_i . Let ρ_i be a partition-of-unity subordinate to this cover. Then $\int_M d\omega = \sum_i \int_M d(\rho_i \omega)$. Thus, if we prove Stokes for $\rho_i \omega$, i.e., for forms that are compactly supported in a chart (interior or boundary), then we are done. (why?)
- So assume wlog that ω is compactly supported in a chart (U, φ).

- Cover the support of ω by finitely many charts (interior or boundary) U_i . Let ρ_i be a partition-of-unity subordinate to this cover. Then $\int_M d\omega = \sum_i \int_M d(\rho_i \omega)$. Thus, if we prove Stokes for $\rho_i \omega$, i.e., for forms that are compactly supported in a chart (interior or boundary), then we are done. (why?)
- So assume wlog that ω is compactly supported in a chart (U, φ). Wlog, φ is positively oriented (why?)

- Cover the support of ω by finitely many charts (interior or boundary) U_i . Let ρ_i be a partition-of-unity subordinate to this cover. Then $\int_M d\omega = \sum_i \int_M d(\rho_i \omega)$. Thus, if we prove Stokes for $\rho_i \omega$, i.e., for forms that are compactly supported in a chart (interior or boundary), then we are done. (why?)
- So assume wlog that ω is compactly supported in a chart (U, ϕ) . Wlog, ϕ is positively oriented (why?) Thus $\int_M d\omega = \int_{\phi(U)} d(\phi^{-1})^* \omega$.

- Cover the support of ω by finitely many charts (interior or boundary) U_i . Let ρ_i be a partition-of-unity subordinate to this cover. Then $\int_M d\omega = \sum_i \int_M d(\rho_i \omega)$. Thus, if we prove Stokes for $\rho_i \omega$, i.e., for forms that are compactly supported in a chart (interior or boundary), then we are done. (why?)
- So assume wlog that ω is compactly supported in a chart (U, ϕ) . Wlog, ϕ is positively oriented (why?) Thus $\int_M d\omega = \int_{\phi(U)} d(\phi^{-1})^* \omega$. Therefore, it is enough to assume that

- Cover the support of ω by finitely many charts (interior or boundary) U_i . Let ρ_i be a partition-of-unity subordinate to this cover. Then $\int_M d\omega = \sum_i \int_M d(\rho_i \omega)$. Thus, if we prove Stokes for $\rho_i \omega$, i.e., for forms that are compactly supported in a chart (interior or boundary), then we are done. (why?)
- So assume wlog that ω is compactly supported in a chart (U, φ). Wlog, φ is positively oriented (why?) Thus ∫_M dω = ∫_{φ(U)} d(φ⁻¹)^{*}ω. Therefore, it is enough to assume that M is ℍⁿ or ℝⁿ.

- Cover the support of ω by finitely many charts (interior or boundary) U_i . Let ρ_i be a partition-of-unity subordinate to this cover. Then $\int_M d\omega = \sum_i \int_M d(\rho_i \omega)$. Thus, if we prove Stokes for $\rho_i \omega$, i.e., for forms that are compactly supported in a chart (interior or boundary), then we are done. (why?)
- So assume wlog that ω is compactly supported in a chart (U, ϕ) . Wlog, ϕ is positively oriented (why?) Thus $\int_M d\omega = \int_{\phi(U)} d(\phi^{-1})^* \omega$. Therefore, it is enough to assume that M is \mathbb{H}^n or \mathbb{R}^n .
- We have two cases.

-

• $M = \mathbb{R}^n$:

< E > < E >

•
$$M = \mathbb{R}^n$$
: Let $\omega = \omega_i dx^1 \dots dx^{i-1} \wedge dx^i \wedge \dots$

▶ ★ 문 ▶ ★ 문

•
$$M = \mathbb{R}^n$$
: Let $\omega = \omega_i dx^1 \dots dx^{i-1} \wedge d\hat{x^i} \wedge \dots$ Now $\int_{\mathbb{R}^n} d\omega = \int_{\mathbb{R}^n} \sum_i \frac{\partial \omega_i}{\partial x^i} (-1)^{i-1} dx^1 \wedge \dots$

3

< Ξ

•
$$M = \mathbb{R}^n$$
: Let $\omega = \omega_i dx^1 \dots dx^{i-1} \wedge dx^i \wedge \dots$ Now $\int_{\mathbb{R}^n} d\omega = \int_{\mathbb{R}^n} \sum_i \frac{\partial \omega_i}{\partial x^i} (-1)^{i-1} dx^1 \wedge \dots$ This latter expression is 0. (Why?)

3

< Ξ

- $M = \mathbb{R}^n$: Let $\omega = \omega_i dx^1 \dots dx^{i-1} \wedge dx^i \wedge \dots$ Now $\int_{\mathbb{R}^n} d\omega = \int_{\mathbb{R}^n} \sum_i \frac{\partial \omega_i}{\partial x^i} (-1)^{i-1} dx^1 \wedge \dots$ This latter expression is 0. (Why?)
- $M = \mathbb{H}^n$:

- $M = \mathbb{R}^n$: Let $\omega = \omega_i dx^1 \dots dx^{i-1} \wedge d\hat{x^i} \wedge \dots$ Now $\int_{\mathbb{R}^n} d\omega = \int_{\mathbb{R}^n} \sum_i \frac{\partial \omega_i}{\partial x^i} (-1)^{i-1} dx^1 \wedge \dots$ This latter expression is 0. (Why?)
- $M = \mathbb{H}^n$: Assume that the support is in

- $M = \mathbb{R}^n$: Let $\omega = \omega_i dx^1 \dots dx^{i-1} \wedge dx^i \wedge \dots$ Now $\int_{\mathbb{R}^n} d\omega = \int_{\mathbb{R}^n} \sum_i \frac{\partial \omega_i}{\partial x^i} (-1)^{i-1} dx^1 \wedge \dots$ This latter expression is 0. (Why?)
- $M = \mathbb{H}^n$: Assume that the support is in $[-A, A]^{n-1} \times [0, A]$.

- $M = \mathbb{R}^n$: Let $\omega = \omega_i dx^1 \dots dx^{i-1} \wedge d\hat{x^i} \wedge \dots$ Now $\int_{\mathbb{R}^n} d\omega = \int_{\mathbb{R}^n} \sum_i \frac{\partial \omega_i}{\partial x^i} (-1)^{i-1} dx^1 \wedge \dots$ This latter expression is 0. (Why?)
- $M = \mathbb{H}^n$: Assume that the support is in $[-A, A]^{n-1} \times [0, A]$. Now $\int_{\mathbb{H}^n} d\omega = \int_{-A}^A \dots \int_{-A}^A \int_0^A \sum_i \frac{\partial \omega_i}{\partial x^i} (-1)^{i-1} dx^n \dots = \int_{\mathbb{R}^{n-1}} (-1)^n \omega_n(x, 0) + 0$ (why?)

- $M = \mathbb{R}^n$: Let $\omega = \omega_i dx^1 \dots dx^{i-1} \wedge d\hat{x^i} \wedge \dots$ Now $\int_{\mathbb{R}^n} d\omega = \int_{\mathbb{R}^n} \sum_i \frac{\partial \omega_i}{\partial x^i} (-1)^{i-1} dx^1 \wedge \dots$ This latter expression is 0. (Why?)
- $M = \mathbb{H}^n$: Assume that the support is in $[-A, A]^{n-1} \times [0, A]$. Now $\int_{\mathbb{H}^n} d\omega = \int_{-A}^{A} \dots \int_{-A}^{A} \int_{0}^{A} \sum_{i} \frac{\partial \omega_i}{\partial x^i} (-1)^{i-1} dx^n \dots = \int_{\mathbb{R}^{n-1}} (-1)^n \omega_n(x, 0) + 0$ (why?) Now the boundary \mathbb{R}^{n-1} has orientation form

- $M = \mathbb{R}^n$: Let $\omega = \omega_i dx^1 \dots dx^{i-1} \wedge d\hat{x^i} \wedge \dots$ Now $\int_{\mathbb{R}^n} d\omega = \int_{\mathbb{R}^n} \sum_i \frac{\partial \omega_i}{\partial x^i} (-1)^{i-1} dx^1 \wedge \dots$ This latter expression is 0. (Why?)
- $M = \mathbb{H}^n$: Assume that the support is in $[-A, A]^{n-1} \times [0, A]$. Now $\int_{\mathbb{H}^n} d\omega = \int_{-A}^A \dots \int_{-A}^A \int_0^A \sum_i \frac{\partial \omega_i}{\partial x^i} (-1)^{i-1} dx^n \dots = \int_{\mathbb{R}^{n-1}} (-1)^n \omega_n(x, 0) + 0$ (why?) Now the boundary \mathbb{R}^{n-1} has orientation form $dx^1 \wedge dx^2 \dots (-\frac{\partial}{\partial x^n}, \dots) = (-1)^n dx^1 \wedge \dots$

- $M = \mathbb{R}^n$: Let $\omega = \omega_i dx^1 \dots dx^{i-1} \wedge dx^i \wedge \dots$ Now $\int_{\mathbb{R}^n} d\omega = \int_{\mathbb{R}^n} \sum_i \frac{\partial \omega_i}{\partial x^i} (-1)^{i-1} dx^1 \wedge \dots$ This latter expression is 0. (Why?)
- $M = \mathbb{H}^n$: Assume that the support is in $[-A, A]^{n-1} \times [0, A]$. Now $\int_{\mathbb{H}^n} d\omega = \int_{-A}^A \dots \int_{-A}^A \int_0^A \sum_i \frac{\partial \omega_i}{\partial x^i} (-1)^{i-1} dx^n \dots = \int_{\mathbb{R}^{n-1}} (-1)^n \omega_n(x, 0) + 0$ (why?) Now the boundary \mathbb{R}^{n-1} has orientation form $dx^1 \wedge dx^2 \dots (-\frac{\partial}{\partial x^n}, \dots) = (-1)^n dx^1 \wedge \dots$ Thus the last integral equals

- $M = \mathbb{R}^n$: Let $\omega = \omega_i dx^1 \dots dx^{i-1} \wedge dx^i \wedge \dots$ Now $\int_{\mathbb{R}^n} d\omega = \int_{\mathbb{R}^n} \sum_i \frac{\partial \omega_i}{\partial x^i} (-1)^{i-1} dx^1 \wedge \dots$ This latter expression is 0. (Why?)
- $M = \mathbb{H}^n$: Assume that the support is in $[-A, A]^{n-1} \times [0, A]$. Now $\int_{\mathbb{H}^n} d\omega = \int_{-A}^A \dots \int_{-A}^A \int_0^A \sum_i \frac{\partial \omega_i}{\partial x^i} (-1)^{i-1} dx^n \dots = \int_{\mathbb{R}^{n-1}} (-1)^n \omega_n(x, 0) + 0$ (why?) Now the boundary \mathbb{R}^{n-1} has orientation form $dx^1 \wedge dx^2 \dots (-\frac{\partial}{\partial x^n}, \dots) = (-1)^n dx^1 \wedge \dots$ Thus the last integral equals $\int_{\partial \mathbb{H}^n} \omega$.

• All the classical theorems (

• All the classical theorems (Divergence, Stokes, Green)

• All the classical theorems (Divergence, Stokes, Green) are special cases.

- All the classical theorems (Divergence, Stokes, Green) are special cases.
- If S is a compact oriented submanifold

- All the classical theorems (Divergence, Stokes, Green) are special cases.
- If S is a compact oriented submanifold of a smooth manifold M,

- All the classical theorems (Divergence, Stokes, Green) are special cases.
- If S is a compact oriented submanifold of a smooth manifold M, and ω is a closed k-form on M, such that

- All the classical theorems (Divergence, Stokes, Green) are special cases.
- If S is a compact oriented submanifold of a smooth manifold M, and ω is a closed k-form on M, such that $\int_{S} \omega \neq 0$,

- All the classical theorems (Divergence, Stokes, Green) are special cases.
- If S is a compact oriented submanifold of a smooth manifold M, and ω is a closed k-form on M, such that $\int_{S} \omega \neq 0$, then ω is NOT exact,

- All the classical theorems (Divergence, Stokes, Green) are special cases.
- If S is a compact oriented submanifold of a smooth manifold M, and ω is a closed k-form on M, such that $\int_{S} \omega \neq 0$, then ω is NOT exact, and S is NOT the boundary of a submanifold (why?)

- All the classical theorems (Divergence, Stokes, Green) are special cases.
- If S is a compact oriented submanifold of a smooth manifold M, and ω is a closed k-form on M, such that $\int_{S} \omega \neq 0$, then ω is NOT exact, and S is NOT the boundary of a submanifold (why?)

• Thus,
$$\omega = \frac{xdy-ydx}{x^2+y^2}$$
 is closed but not exact.

- All the classical theorems (Divergence, Stokes, Green) are special cases.
- If S is a compact oriented submanifold of a smooth manifold M, and ω is a closed k-form on M, such that $\int_{S} \omega \neq 0$, then ω is NOT exact, and S is NOT the boundary of a submanifold (why?)
- Thus, $\omega = \frac{xdy ydx}{x^2 + y^2}$ is closed but not exact.
- Suppose *M* is an oriented compact smooth manifold with boundary.

- All the classical theorems (Divergence, Stokes, Green) are special cases.
- If S is a compact oriented submanifold of a smooth manifold M, and ω is a closed k-form on M, such that $\int_{S} \omega \neq 0$, then ω is NOT exact, and S is NOT the boundary of a submanifold (why?)
- Thus, $\omega = \frac{xdy-ydx}{x^2+y^2}$ is closed but not exact.
- Suppose *M* is an oriented compact smooth manifold with boundary. There is *no* smooth retraction of *M* onto its boundary:

- All the classical theorems (Divergence, Stokes, Green) are special cases.
- If S is a compact oriented submanifold of a smooth manifold M, and ω is a closed k-form on M, such that $\int_{S} \omega \neq 0$, then ω is NOT exact, and S is NOT the boundary of a submanifold (why?)
- Thus, $\omega = \frac{xdy-ydx}{x^2+y^2}$ is closed but not exact.
- Suppose *M* is an oriented compact smooth manifold with boundary. There is *no* smooth retraction of *M* onto its boundary: Recall that $r: M \to \partial M$ is a retract if

- All the classical theorems (Divergence, Stokes, Green) are special cases.
- If S is a compact oriented submanifold of a smooth manifold M, and ω is a closed k-form on M, such that $\int_{S} \omega \neq 0$, then ω is NOT exact, and S is NOT the boundary of a submanifold (why?)
- Thus, $\omega = \frac{xdy-ydx}{x^2+y^2}$ is closed but not exact.
- Suppose *M* is an oriented compact smooth manifold with boundary. There is *no* smooth retraction of *M* onto its boundary: Recall that $r: M \to \partial M$ is a retract if *r* is identity on ∂M .
- All the classical theorems (Divergence, Stokes, Green) are special cases.
- If S is a compact oriented submanifold of a smooth manifold M, and ω is a closed k-form on M, such that $\int_{S} \omega \neq 0$, then ω is NOT exact, and S is NOT the boundary of a submanifold (why?)
- Thus, $\omega = \frac{xdy-ydx}{x^2+y^2}$ is closed but not exact.
- Suppose M is an oriented compact smooth manifold with boundary. There is *no* smooth retraction of M onto its boundary: Recall that $r: M \to \partial M$ is a retract if r is identity on ∂M . If there is a retract,

- All the classical theorems (Divergence, Stokes, Green) are special cases.
- If S is a compact oriented submanifold of a smooth manifold M, and ω is a closed k-form on M, such that $\int_{S} \omega \neq 0$, then ω is NOT exact, and S is NOT the boundary of a submanifold (why?)
- Thus, $\omega = \frac{xdy-ydx}{x^2+y^2}$ is closed but not exact.
- Suppose *M* is an oriented compact smooth manifold with boundary. There is *no* smooth retraction of *M* onto its boundary: Recall that *r* : *M* → ∂*M* is a retract if *r* is identity on ∂*M*. If there is a retract, then suppose ω is an orientation form on ∂*M*.

- All the classical theorems (Divergence, Stokes, Green) are special cases.
- If S is a compact oriented submanifold of a smooth manifold M, and ω is a closed k-form on M, such that $\int_{S} \omega \neq 0$, then ω is NOT exact, and S is NOT the boundary of a submanifold (why?)
- Thus, $\omega = \frac{xdy-ydx}{x^2+y^2}$ is closed but not exact.
- Suppose *M* is an oriented compact smooth manifold with boundary. There is *no* smooth retraction of *M* onto its boundary: Recall that *r* : *M* → ∂*M* is a retract if *r* is identity on ∂*M*. If there is a retract, then suppose ω is an orientation form on ∂*M*. Then *r*^{*}ω is a smooth *n* − 1 form on *M*

- All the classical theorems (Divergence, Stokes, Green) are special cases.
- If S is a compact oriented submanifold of a smooth manifold M, and ω is a closed k-form on M, such that $\int_{S} \omega \neq 0$, then ω is NOT exact, and S is NOT the boundary of a submanifold (why?)
- Thus, $\omega = \frac{xdy-ydx}{x^2+y^2}$ is closed but not exact.
- Suppose *M* is an oriented compact smooth manifold with boundary. There is *no* smooth retraction of *M* onto its boundary: Recall that *r* : *M* → ∂*M* is a retract if *r* is identity on ∂*M*. If there is a retract, then suppose ω is an orientation form on ∂*M*. Then *r*^{*}ω is a smooth *n* − 1 form on *M* that restricts to ω on ∂*M*.

- All the classical theorems (Divergence, Stokes, Green) are special cases.
- If S is a compact oriented submanifold of a smooth manifold M, and ω is a closed k-form on M, such that $\int_{S} \omega \neq 0$, then ω is NOT exact, and S is NOT the boundary of a submanifold (why?)
- Thus, $\omega = \frac{xdy-ydx}{x^2+y^2}$ is closed but not exact.
- Suppose *M* is an oriented compact smooth manifold with boundary. There is *no* smooth retraction of *M* onto its boundary: Recall that *r* : *M* → ∂*M* is a retract if *r* is identity on ∂*M*. If there is a retract, then suppose ω is an orientation form on ∂*M*. Then *r*^{*}ω is a smooth *n* − 1 form on *M* that restricts to ω on ∂*M*. Now ∫_M d*r*^{*}ω = ∫_{∂M} ω > 0.

- All the classical theorems (Divergence, Stokes, Green) are special cases.
- If S is a compact oriented submanifold of a smooth manifold M, and ω is a closed k-form on M, such that $\int_{S} \omega \neq 0$, then ω is NOT exact, and S is NOT the boundary of a submanifold (why?)
- Thus, $\omega = \frac{xdy-ydx}{x^2+y^2}$ is closed but not exact.
- Suppose *M* is an oriented compact smooth manifold with boundary. There is *no* smooth retraction of *M* onto its boundary: Recall that $r: M \to \partial M$ is a retract if *r* is identity on ∂M . If there is a retract, then suppose ω is an orientation form on ∂M . Then $r^*\omega$ is a smooth n-1 form on *M* that restricts to ω on ∂M . Now $\int_M dr^*\omega = \int_{\partial M} \omega > 0$. However, $d(r^*\omega) = r^*(d\omega) = 0!$

Looking beyond

-∢≣⇒

▲圖 ▶ ▲ 圖 ▶

æ

Looking beyond

• Differential topology (

< Ξ

æ

• Differential topology (When are two manifolds homeomorphic but not diffeomorphic?)

- Differential topology (When are two manifolds homeomorphic but not diffeomorphic?)
- Riemannian geometry (

- Differential topology (When are two manifolds homeomorphic but not diffeomorphic?)
- Riemannian geometry (distances, angles, curvature, congruence/isomorphism, finding the best metric, etc)

- Differential topology (When are two manifolds homeomorphic but not diffeomorphic?)
- Riemannian geometry (distances, angles, curvature, congruence/isomorphism, finding the best metric, etc)
- Geometric analysis (

- Differential topology (When are two manifolds homeomorphic but not diffeomorphic?)
- Riemannian geometry (distances, angles, curvature, congruence/isomorphism, finding the best metric, etc)
- Geometric analysis (PDE on manifolds)

- Differential topology (When are two manifolds homeomorphic but not diffeomorphic?)
- Riemannian geometry (distances, angles, curvature, congruence/isomorphism, finding the best metric, etc)
- Geometric analysis (PDE on manifolds)
- Symplectic geometry (

- Differential topology (When are two manifolds homeomorphic but not diffeomorphic?)
- Riemannian geometry (distances, angles, curvature, congruence/isomorphism, finding the best metric, etc)
- Geometric analysis (PDE on manifolds)
- Symplectic geometry (Classical mechanics on manifolds)

- Differential topology (When are two manifolds homeomorphic but not diffeomorphic?)
- Riemannian geometry (distances, angles, curvature, congruence/isomorphism, finding the best metric, etc)
- Geometric analysis (PDE on manifolds)
- Symplectic geometry (Classical mechanics on manifolds)
- Algebraic geometry (

- Differential topology (When are two manifolds homeomorphic but not diffeomorphic?)
- Riemannian geometry (distances, angles, curvature, congruence/isomorphism, finding the best metric, etc)
- Geometric analysis (PDE on manifolds)
- Symplectic geometry (Classical mechanics on manifolds)
- Algebraic geometry (Zeroes of polynomials)

- Differential topology (When are two manifolds homeomorphic but not diffeomorphic?)
- Riemannian geometry (distances, angles, curvature, congruence/isomorphism, finding the best metric, etc)
- Geometric analysis (PDE on manifolds)
- Symplectic geometry (Classical mechanics on manifolds)
- Algebraic geometry (Zeroes of polynomials)
- Arithmetic geometry and number theory (

- Differential topology (When are two manifolds homeomorphic but not diffeomorphic?)
- Riemannian geometry (distances, angles, curvature, congruence/isomorphism, finding the best metric, etc)
- Geometric analysis (PDE on manifolds)
- Symplectic geometry (Classical mechanics on manifolds)
- Algebraic geometry (Zeroes of polynomials)
- Arithmetic geometry and number theory (Modular forms and elliptic curves for instance)

- Differential topology (When are two manifolds homeomorphic but not diffeomorphic?)
- Riemannian geometry (distances, angles, curvature, congruence/isomorphism, finding the best metric, etc)
- Geometric analysis (PDE on manifolds)
- Symplectic geometry (Classical mechanics on manifolds)
- Algebraic geometry (Zeroes of polynomials)
- Arithmetic geometry and number theory (Modular forms and elliptic curves for instance)
- Applications (

- Differential topology (When are two manifolds homeomorphic but not diffeomorphic?)
- Riemannian geometry (distances, angles, curvature, congruence/isomorphism, finding the best metric, etc)
- Geometric analysis (PDE on manifolds)
- Symplectic geometry (Classical mechanics on manifolds)
- Algebraic geometry (Zeroes of polynomials)
- Arithmetic geometry and number theory (Modular forms and elliptic curves for instance)
- Applications (Protein folding,

- Differential topology (When are two manifolds homeomorphic but not diffeomorphic?)
- Riemannian geometry (distances, angles, curvature, congruence/isomorphism, finding the best metric, etc)
- Geometric analysis (PDE on manifolds)
- Symplectic geometry (Classical mechanics on manifolds)
- Algebraic geometry (Zeroes of polynomials)
- Arithmetic geometry and number theory (Modular forms and elliptic curves for instance)
- Applications (Protein folding, control theory,

- Differential topology (When are two manifolds homeomorphic but not diffeomorphic?)
- Riemannian geometry (distances, angles, curvature, congruence/isomorphism, finding the best metric, etc)
- Geometric analysis (PDE on manifolds)
- Symplectic geometry (Classical mechanics on manifolds)
- Algebraic geometry (Zeroes of polynomials)
- Arithmetic geometry and number theory (Modular forms and elliptic curves for instance)
- Applications (Protein folding, control theory, general relativity,

- Differential topology (When are two manifolds homeomorphic but not diffeomorphic?)
- Riemannian geometry (distances, angles, curvature, congruence/isomorphism, finding the best metric, etc)
- Geometric analysis (PDE on manifolds)
- Symplectic geometry (Classical mechanics on manifolds)
- Algebraic geometry (Zeroes of polynomials)
- Arithmetic geometry and number theory (Modular forms and elliptic curves for instance)
- Applications (Protein folding, control theory, general relativity, string theory,

- Differential topology (When are two manifolds homeomorphic but not diffeomorphic?)
- Riemannian geometry (distances, angles, curvature, congruence/isomorphism, finding the best metric, etc)
- Geometric analysis (PDE on manifolds)
- Symplectic geometry (Classical mechanics on manifolds)
- Algebraic geometry (Zeroes of polynomials)
- Arithmetic geometry and number theory (Modular forms and elliptic curves for instance)
- Applications (Protein folding, control theory, general relativity, string theory, statistical mechanics, etc)