MA 229/MA 235 - Lecture 19

IISc

Recap

Recap

- Discussed canonical coordinates for vector fields.
- Discussed canonical coordinates for vector fields.
- Started motivating the Lie bracket.

Lie bracket: Definition

Lie bracket: Definition

- The expression $-\frac{\partial Y^{i}}{\partial x^{k}}(p) X^{k}(p)+\frac{\partial X^{i}}{\partial x^{k}}(p) Y^{k}(p)$ actually defines a vector field (why?)

Lie bracket: Definition

- The expression $-\frac{\partial Y^{i}}{\partial x^{k}}(p) X^{k}(p)+\frac{\partial X^{i}}{\partial x^{k}}(p) Y^{k}(p)$ actually defines a vector field (why?)
- Is there an coordinate-invariant way

Lie bracket: Definition

- The expression $-\frac{\partial Y^{i}}{\partial x^{k}}(p) X^{k}(p)+\frac{\partial X^{i}}{\partial x^{k}}(p) Y^{k}(p)$ actually defines a vector field (why?)
- Is there an coordinate-invariant way of defining this vector field?

Lie bracket: Definition

- The expression $-\frac{\partial Y^{i}}{\partial x^{k}}(p) X^{k}(p)+\frac{\partial X^{i}}{\partial x^{k}}(p) Y^{k}(p)$ actually defines a vector field (why?)
- Is there an coordinate-invariant way of defining this vector field?
- Def:

Lie bracket: Definition

- The expression $-\frac{\partial Y^{i}}{\partial x^{k}}(p) X^{k}(p)+\frac{\partial X^{i}}{\partial x^{k}}(p) Y^{k}(p)$ actually defines a vector field (why?)
- Is there an coordinate-invariant way of defining this vector field?
- Def: Let X, Y be smooth vector fields on a manifold M.

Lie bracket: Definition

- The expression $-\frac{\partial Y^{i}}{\partial x^{k}}(p) X^{k}(p)+\frac{\partial X^{i}}{\partial x^{k}}(p) Y^{k}(p)$ actually defines a vector field (why?)
- Is there an coordinate-invariant way of defining this vector field?
- Def: Let X, Y be smooth vector fields on a manifold M. Then $[X, Y]_{p}(f)=X_{p}(Y(f))-Y_{p}(X(f))$ is a vector field on M

Lie bracket: Definition

- The expression $-\frac{\partial Y^{i}}{\partial x^{k}}(p) X^{k}(p)+\frac{\partial X^{i}}{\partial x^{k}}(p) Y^{k}(p)$ actually defines a vector field (why?)
- Is there an coordinate-invariant way of defining this vector field?
- Def: Let X, Y be smooth vector fields on a manifold M. Then $[X, Y]_{p}(f)=X_{p}(Y(f))-Y_{p}(X(f))$ is a vector field on M called the Lie bracket of X and Y.

Lie bracket: Definition

- The expression $-\frac{\partial Y^{i}}{\partial x^{k}}(p) X^{k}(p)+\frac{\partial X^{i}}{\partial x^{k}}(p) Y^{k}(p)$ actually defines a vector field (why?)
- Is there an coordinate-invariant way of defining this vector field?
- Def: Let X, Y be smooth vector fields on a manifold M. Then $[X, Y]_{p}(f)=X_{p}(Y(f))-Y_{p}(X(f))$ is a vector field on M called the Lie bracket of X and Y.
- Lemma (proof by calculation):

Lie bracket: Definition

- The expression $-\frac{\partial Y^{i}}{\partial x^{k}}(p) X^{k}(p)+\frac{\partial X^{i}}{\partial x^{k}}(p) Y^{k}(p)$ actually defines a vector field (why?)
- Is there an coordinate-invariant way of defining this vector field?
- Def: Let X, Y be smooth vector fields on a manifold M. Then $[X, Y]_{p}(f)=X_{p}(Y(f))-Y_{p}(X(f))$ is a vector field on M called the Lie bracket of X and Y.
- Lemma (proof by calculation): The Lie bracket genuinely defines a vector field

Lie bracket: Definition

- The expression $-\frac{\partial Y^{i}}{\partial x^{k}}(p) X^{k}(p)+\frac{\partial X^{i}}{\partial x^{k}}(p) Y^{k}(p)$ actually defines a vector field (why?)
- Is there an coordinate-invariant way of defining this vector field?
- Def: Let X, Y be smooth vector fields on a manifold M. Then $[X, Y]_{p}(f)=X_{p}(Y(f))-Y_{p}(X(f))$ is a vector field on M called the Lie bracket of X and Y.
- Lemma (proof by calculation): The Lie bracket genuinely defines a vector field whose components are given above.

Lie bracket: Properties

Lie bracket: Properties

- $[X, Y]=-[Y, X]$.

Lie bracket: Properties

- $[X, Y]=-[Y, X]$.
- $[X, Y]$ is multi-linear in X, Y.

Lie bracket: Properties

- $[X, Y]=-[Y, X]$.
- $[X, Y]$ is multi-linear in X, Y.
- It is not associative! That is

Lie bracket: Properties

- $[X, Y]=-[Y, X]$.
- $[X, Y]$ is multi-linear in X, Y.
- It is not associative! That is $[X,[Y, Z]] \neq[[X, Y], Z]$!

Lie bracket: Properties

- $[X, Y]=-[Y, X]$.
- $[X, Y]$ is multi-linear in X, Y.
- It is not associative! That is $[X,[Y, Z]] \neq[[X, Y], Z]$! Indeed, $[X,[Y, Z]]+[Y,[Z, X]]+[Z,[X, Y]]=0$ (Jacobi's identity).

Lie bracket: Properties

- $[X, Y]=-[Y, X]$.
- $[X, Y]$ is multi-linear in X, Y.
- It is not associative! That is $[X,[Y, Z]] \neq[[X, Y], Z]$! Indeed, $[X,[Y, Z]]+[Y,[Z, X]]+[Z,[X, Y]]=0$ (Jacobi's identity).
- Any vector space equipped with

Lie bracket: Properties

- $[X, Y]=-[Y, X]$.
- $[X, Y]$ is multi-linear in X, Y.
- It is not associative! That is $[X,[Y, Z]] \neq[[X, Y], Z]$! Indeed, $[X,[Y, Z]]+[Y,[Z, X]]+[Z,[X, Y]]=0$ (Jacobi's identity).
- Any vector space equipped with such a "bracket"

Lie bracket: Properties

- $[X, Y]=-[Y, X]$.
- $[X, Y]$ is multi-linear in X, Y.
- It is not associative! That is $[X,[Y, Z]] \neq[[X, Y], Z]$! Indeed, $[X,[Y, Z]]+[Y,[Z, X]]+[Z,[X, Y]]=0$ (Jacobi's identity).
- Any vector space equipped with such a "bracket" is called a Lie algebra.

Lie bracket: Properties

- $[X, Y]=-[Y, X]$.
- $[X, Y]$ is multi-linear in X, Y.
- It is not associative! That is $[X,[Y, Z]] \neq[[X, Y], Z]$! Indeed, $[X,[Y, Z]]+[Y,[Z, X]]+[Z,[X, Y]]=0$ (Jacobi's identity).
- Any vector space equipped with such a "bracket" is called a Lie algebra. The space of smooth vector fields is an example.

Lie bracket: Characterisation of coordinate vector fields

- If X, Y are coordinate vector fields,

Lie bracket: Characterisation of coordinate vector fields

- If X, Y are coordinate vector fields, they Lie-commute (why?).

Lie bracket: Characterisation of coordinate vector fields

- If X, Y are coordinate vector fields, they Lie-commute (why?).
- Conversely, Theorem (proof omitted):

Lie bracket: Characterisation of coordinate vector fields

- If X, Y are coordinate vector fields, they Lie-commute (why?).
- Conversely, Theorem (proof omitted): If $X^{1}, X^{2}, \ldots, X^{k}$ are smooth Lie-commuting vector fields

Lie bracket: Characterisation of coordinate vector fields

- If X, Y are coordinate vector fields, they Lie-commute (why?).
- Conversely, Theorem (proof omitted): If $X^{1}, X^{2}, \ldots, X^{k}$ are smooth Lie-commuting vector fields that are linearly independent at p,

Lie bracket: Characterisation of coordinate vector fields

- If X, Y are coordinate vector fields, they Lie-commute (why?).
- Conversely, Theorem (proof omitted): If $X^{1}, X^{2}, \ldots, X^{k}$ are smooth Lie-commuting vector fields that are linearly independent at p, there is a neighbourhood

Lie bracket: Characterisation of coordinate vector fields

- If X, Y are coordinate vector fields, they Lie-commute (why?).
- Conversely, Theorem (proof omitted): If $X^{1}, X^{2}, \ldots, X^{k}$ are smooth Lie-commuting vector fields that are linearly independent at p, there is a neighbourhood and a coordinate chart

Lie bracket: Characterisation of coordinate vector fields

- If X, Y are coordinate vector fields, they Lie-commute (why?).
- Conversely, Theorem (proof omitted): If $X^{1}, X^{2}, \ldots, X^{k}$ are smooth Lie-commuting vector fields that are linearly independent at p, there is a neighbourhood and a coordinate chart such that $X^{i}=\frac{\partial}{\partial x^{i}}$.

Cotangent bundle and one-forms

Cotangent bundle and one-forms

- Recall that $T^{*} M$

Cotangent bundle and one-forms

- Recall that $T^{*} M$ is set theoretically,

Cotangent bundle and one-forms

- Recall that $T^{*} M$ is set theoretically, $\cup_{p} T_{p}^{*} M$.

Cotangent bundle and one-forms

- Recall that $T^{*} M$ is set theoretically, $\cup_{p} T_{p}^{*} M . T^{*} M$ is a vector bundle over M.

Cotangent bundle and one-forms

- Recall that $T^{*} M$ is set theoretically, $\cup_{p} T_{p}^{*} M . T^{*} M$ is a vector bundle over M.
- Given a coordinate chart (U, x),

Cotangent bundle and one-forms

- Recall that $T^{*} M$ is set theoretically, $\cup_{p} T_{p}^{*} M . T^{*} M$ is a vector bundle over M.
- Given a coordinate chart (U, x), a local smoothly varying basis for $T^{*} M$

Cotangent bundle and one-forms

- Recall that $T^{*} M$ is set theoretically, $\cup_{p} T_{p}^{*} M . T^{*} M$ is a vector bundle over M.
- Given a coordinate chart (U, x), a local smoothly varying basis for $T^{*} M$ is given by $\left(\frac{\partial}{\partial x^{i}}\right)^{*}$.

Cotangent bundle and one-forms

- Recall that $T^{*} M$ is set theoretically, $\cup_{p} T_{p}^{*} M . T^{*} M$ is a vector bundle over M.
- Given a coordinate chart (U, x), a local smoothly varying basis for $T^{*} M$ is given by $\left(\frac{\partial}{\partial x^{i}}\right)^{*}$. A one-form is an element of $T_{p}^{*} M$.

Cotangent bundle and one-forms

- Recall that $T^{*} M$ is set theoretically, $\cup_{p} T_{p}^{*} M . T^{*} M$ is a vector bundle over M.
- Given a coordinate chart (U, x), a local smoothly varying basis for $T^{*} M$ is given by $\left(\frac{\partial}{\partial x^{i}}\right)^{*}$. A one-form is an element of $T_{p}^{*} M$. A one-form field

Cotangent bundle and one-forms

- Recall that $T^{*} M$ is set theoretically, $\cup_{p} T_{p}^{*} M . T^{*} M$ is a vector bundle over M.
- Given a coordinate chart (U, x), a local smoothly varying basis for $T^{*} M$ is given by $\left(\frac{\partial}{\partial x^{i}}\right)^{*}$. A one-form is an element of $T_{p}^{*} M$. A one-form field is a collection of smoothly varying one-forms (

Cotangent bundle and one-forms

- Recall that $T^{*} M$ is set theoretically, $\cup_{p} T_{p}^{*} M . T^{*} M$ is a vector bundle over M.
- Given a coordinate chart (U, x), a local smoothly varying basis for $T^{*} M$ is given by $\left(\frac{\partial}{\partial x^{i}}\right)^{*}$. A one-form is an element of $T_{p}^{*} M$. A one-form field is a collection of smoothly varying one-forms (a smooth section of $T^{*} M$), i.e.,

Cotangent bundle and one-forms

- Recall that $T^{*} M$ is set theoretically, $\cup_{p} T_{p}^{*} M . T^{*} M$ is a vector bundle over M.
- Given a coordinate chart (U, x), a local smoothly varying basis for $T^{*} M$ is given by $\left(\frac{\partial}{\partial x^{i}}\right)^{*}$. A one-form is an element of $T_{p}^{*} M$. A one-form field is a collection of smoothly varying one-forms (a smooth section of $T^{*} M$), i.e., $\omega: M \rightarrow T^{*} M$ such that

Cotangent bundle and one-forms

- Recall that $T^{*} M$ is set theoretically, $\cup_{p} T_{p}^{*} M . T^{*} M$ is a vector bundle over M.
- Given a coordinate chart (U, x), a local smoothly varying basis for $T^{*} M$ is given by $\left(\frac{\partial}{\partial x^{i}}\right)^{*}$. A one-form is an element of $T_{p}^{*} M$. A one-form field is a collection of smoothly varying one-forms (a smooth section of $T^{*} M$), i.e., $\omega: M \rightarrow T^{*} M$ such that $\omega(p) \in T_{p}^{*} M$ and

Cotangent bundle and one-forms

- Recall that $T^{*} M$ is set theoretically, $\cup_{p} T_{p}^{*} M . T^{*} M$ is a vector bundle over M.
- Given a coordinate chart (U, x), a local smoothly varying basis for $T^{*} M$ is given by $\left(\frac{\partial}{\partial x^{i}}\right)^{*}$. A one-form is an element of $T_{p}^{*} M$. A one-form field is a collection of smoothly varying one-forms (a smooth section of $T^{*} M$), i.e., $\omega: M \rightarrow T^{*} M$ such that $\omega(p) \in T_{p}^{*} M$ and around every point, there exists a coordinate chart (U, x)

Cotangent bundle and one-forms

- Recall that $T^{*} M$ is set theoretically, $\cup_{p} T_{p}^{*} M . T^{*} M$ is a vector bundle over M.
- Given a coordinate chart (U, x), a local smoothly varying basis for $T^{*} M$ is given by $\left(\frac{\partial}{\partial x^{i}}\right)^{*}$. A one-form is an element of $T_{p}^{*} M$. A one-form field is a collection of smoothly varying one-forms (a smooth section of $T^{*} M$), i.e., $\omega: M \rightarrow T^{*} M$ such that $\omega(p) \in T_{p}^{*} M$ and around every point, there exists a coordinate chart (U, x) such that $\omega=\sum_{i} \omega_{i}\left(\frac{\partial}{\partial x^{i}}\right)^{*}$ where the functions ω_{i} are smooth.

Cotangent bundle and one-forms

- Recall that $T^{*} M$ is set theoretically, $\cup_{p} T_{p}^{*} M . T^{*} M$ is a vector bundle over M.
- Given a coordinate chart (U, x), a local smoothly varying basis for $T^{*} M$ is given by $\left(\frac{\partial}{\partial x^{i}}\right)^{*}$. A one-form is an element of $T_{p}^{*} M$. A one-form field is a collection of smoothly varying one-forms (a smooth section of $T^{*} M$), i.e., $\omega: M \rightarrow T^{*} M$ such that $\omega(p) \in T_{p}^{*} M$ and around every point, there exists a coordinate chart (U, x) such that $\omega=\sum_{i} \omega_{i}\left(\frac{\partial}{\partial x^{i}}\right)^{*}$ where the functions ω_{i} are smooth.
- As before,

Cotangent bundle and one-forms

- Recall that $T^{*} M$ is set theoretically, $\cup_{p} T_{p}^{*} M . T^{*} M$ is a vector bundle over M.
- Given a coordinate chart (U, x), a local smoothly varying basis for $T^{*} M$ is given by $\left(\frac{\partial}{\partial x^{i}}\right)^{*}$. A one-form is an element of $T_{p}^{*} M$. A one-form field is a collection of smoothly varying one-forms (a smooth section of $T^{*} M$), i.e., $\omega: M \rightarrow T^{*} M$ such that $\omega(p) \in T_{p}^{*} M$ and around every point, there exists a coordinate chart (U, x) such that $\omega=\sum_{i} \omega_{i}\left(\frac{\partial}{\partial x^{i}}\right)^{*}$ where the functions ω_{i} are smooth.
- As before, if ω is smooth in one chart,

Cotangent bundle and one-forms

- Recall that $T^{*} M$ is set theoretically, $\cup_{p} T_{p}^{*} M . T^{*} M$ is a vector bundle over M.
- Given a coordinate chart (U, x), a local smoothly varying basis for $T^{*} M$ is given by $\left(\frac{\partial}{\partial x^{i}}\right)^{*}$. A one-form is an element of $T_{p}^{*} M$. A one-form field is a collection of smoothly varying one-forms (a smooth section of $T^{*} M$), i.e., $\omega: M \rightarrow T^{*} M$ such that $\omega(p) \in T_{p}^{*} M$ and around every point, there exists a coordinate chart (U, x) such that $\omega=\sum_{i} \omega_{i}\left(\frac{\partial}{\partial x^{i}}\right)^{*}$ where the functions ω_{i} are smooth.
- As before, if ω is smooth in one chart, it is so in all charts:

Cotangent bundle and one-forms

- Recall that $T^{*} M$ is set theoretically, $\cup_{p} T_{p}^{*} M . T^{*} M$ is a vector bundle over M.
- Given a coordinate chart (U, x), a local smoothly varying basis for $T^{*} M$ is given by $\left(\frac{\partial}{\partial x^{i}}\right)^{*}$. A one-form is an element of $T_{p}^{*} M$. A one-form field is a collection of smoothly varying one-forms (a smooth section of $T^{*} M$), i.e., $\omega: M \rightarrow T^{*} M$ such that $\omega(p) \in T_{p}^{*} M$ and around every point, there exists a coordinate chart (U, x) such that $\omega=\sum_{i} \omega_{i}\left(\frac{\partial}{\partial x^{i}}\right)^{*}$ where the functions ω_{i} are smooth.
- As before, if ω is smooth in one chart, it is so in all charts: $\tilde{\omega}_{i}=\omega_{j} \frac{\partial x^{j}}{\partial \tilde{x}^{i}}$ (why?).

Cotangent bundle and one-forms

- Recall that $T^{*} M$ is set theoretically, $\cup_{p} T_{p}^{*} M . T^{*} M$ is a vector bundle over M.
- Given a coordinate chart (U, x), a local smoothly varying basis for $T^{*} M$ is given by $\left(\frac{\partial}{\partial x^{i}}\right)^{*}$. A one-form is an element of $T_{p}^{*} M$. A one-form field is a collection of smoothly varying one-forms (a smooth section of $T^{*} M$), i.e., $\omega: M \rightarrow T^{*} M$ such that $\omega(p) \in T_{p}^{*} M$ and around every point, there exists a coordinate chart (U, x) such that $\omega=\sum_{i} \omega_{i}\left(\frac{\partial}{\partial x^{i}}\right)^{*}$ where the functions ω_{i} are smooth.
- As before, if ω is smooth in one chart, it is so in all charts: $\tilde{\omega}_{i}=\omega_{j} \frac{\partial x^{j}}{\partial \tilde{x}^{i}}$ (why?).
- Moreover, given an atlas of U_{α} of M,

Cotangent bundle and one-forms

- Recall that $T^{*} M$ is set theoretically, $\cup_{p} T_{p}^{*} M . T^{*} M$ is a vector bundle over M.
- Given a coordinate chart (U, x), a local smoothly varying basis for $T^{*} M$ is given by $\left(\frac{\partial}{\partial x^{i}}\right)^{*}$. A one-form is an element of $T_{p}^{*} M$. A one-form field is a collection of smoothly varying one-forms (a smooth section of $T^{*} M$), i.e., $\omega: M \rightarrow T^{*} M$ such that $\omega(p) \in T_{p}^{*} M$ and around every point, there exists a coordinate chart (U, x) such that $\omega=\sum_{i} \omega_{i}\left(\frac{\partial}{\partial x^{i}}\right)^{*}$ where the functions ω_{i} are smooth.
- As before, if ω is smooth in one chart, it is so in all charts: $\tilde{\omega}_{i}=\omega_{j} \frac{\partial x^{j}}{\partial \tilde{x}^{i}}$ (why?).
- Moreover, given an atlas of U_{α} of M, and a collection of functions $\omega_{i, \alpha}$ such that

Cotangent bundle and one-forms

- Recall that $T^{*} M$ is set theoretically, $\cup_{p} T_{p}^{*} M . T^{*} M$ is a vector bundle over M.
- Given a coordinate chart (U, x), a local smoothly varying basis for $T^{*} M$ is given by $\left(\frac{\partial}{\partial x^{i}}\right)^{*}$. A one-form is an element of $T_{p}^{*} M$. A one-form field is a collection of smoothly varying one-forms (a smooth section of $T^{*} M$), i.e., $\omega: M \rightarrow T^{*} M$ such that $\omega(p) \in T_{p}^{*} M$ and around every point, there exists a coordinate chart (U, x) such that $\omega=\sum_{i} \omega_{i}\left(\frac{\partial}{\partial x^{i}}\right)^{*}$ where the functions ω_{i} are smooth.
- As before, if ω is smooth in one chart, it is so in all charts: $\tilde{\omega}_{i}=\omega_{j} \frac{\partial x^{j}}{\partial \tilde{x}^{i}}$ (why?).
- Moreover, given an atlas of U_{α} of M, and a collection of functions $\omega_{i, \alpha}$ such that on $U_{\alpha} \cap U_{\beta}$,

Cotangent bundle and one-forms

- Recall that $T^{*} M$ is set theoretically, $\cup_{p} T_{p}^{*} M . T^{*} M$ is a vector bundle over M.
- Given a coordinate chart (U, x), a local smoothly varying basis for $T^{*} M$ is given by $\left(\frac{\partial}{\partial x^{i}}\right)^{*}$. A one-form is an element of $T_{p}^{*} M$. A one-form field is a collection of smoothly varying one-forms (a smooth section of $T^{*} M$), i.e., $\omega: M \rightarrow T^{*} M$ such that $\omega(p) \in T_{p}^{*} M$ and around every point, there exists a coordinate chart (U, x) such that $\omega=\sum_{i} \omega_{i}\left(\frac{\partial}{\partial x^{i}}\right)^{*}$ where the functions ω_{i} are smooth.
- As before, if ω is smooth in one chart, it is so in all charts: $\tilde{\omega}_{i}=\omega_{j} \frac{\partial x^{j}}{\partial \tilde{x}^{i}}$ (why?).
- Moreover, given an atlas of U_{α} of M, and a collection of functions $\omega_{i, \alpha}$ such that on $U_{\alpha} \cap U_{\beta}, \omega_{i, \alpha}=\omega_{j, \beta} \frac{\partial x_{\beta}^{j}}{\partial x \alpha^{i}}$

Cotangent bundle and one-forms

- Recall that $T^{*} M$ is set theoretically, $\cup_{p} T_{p}^{*} M . T^{*} M$ is a vector bundle over M.
- Given a coordinate chart (U, x), a local smoothly varying basis for $T^{*} M$ is given by $\left(\frac{\partial}{\partial x^{i}}\right)^{*}$. A one-form is an element of $T_{p}^{*} M$. A one-form field is a collection of smoothly varying one-forms (a smooth section of $T^{*} M$), i.e., $\omega: M \rightarrow T^{*} M$ such that $\omega(p) \in T_{p}^{*} M$ and around every point, there exists a coordinate chart (U, x) such that $\omega=\sum_{i} \omega_{i}\left(\frac{\partial}{\partial x^{i}}\right)^{*}$ where the functions ω_{i} are smooth.
- As before, if ω is smooth in one chart, it is so in all charts: $\tilde{\omega}_{i}=\omega_{j} \frac{\partial x^{j}}{\partial \tilde{x}^{i}}$ (why?).
- Moreover, given an atlas of U_{α} of M, and a collection of functions $\omega_{i, \alpha}$ such that on $U_{\alpha} \cap U_{\beta}, \omega_{i, \alpha}=\omega_{j, \beta} \frac{\partial x_{\beta}^{j}}{\partial x \alpha^{i}}$ then there exists a smooth one-form field ω on M

Cotangent bundle and one-forms

- Recall that $T^{*} M$ is set theoretically, $\cup_{p} T_{p}^{*} M . T^{*} M$ is a vector bundle over M.
- Given a coordinate chart (U, x), a local smoothly varying basis for $T^{*} M$ is given by $\left(\frac{\partial}{\partial x^{i}}\right)^{*}$. A one-form is an element of $T_{p}^{*} M$. A one-form field is a collection of smoothly varying one-forms (a smooth section of $T^{*} M$), i.e., $\omega: M \rightarrow T^{*} M$ such that $\omega(p) \in T_{p}^{*} M$ and around every point, there exists a coordinate chart (U, x) such that $\omega=\sum_{i} \omega_{i}\left(\frac{\partial}{\partial x^{i}}\right)^{*}$ where the functions ω_{i} are smooth.
- As before, if ω is smooth in one chart, it is so in all charts: $\tilde{\omega}_{i}=\omega_{j} \frac{\partial x^{j}}{\partial \tilde{x}^{i}}$ (why?).
- Moreover, given an atlas of U_{α} of M, and a collection of functions $\omega_{i, \alpha}$ such that on $U_{\alpha} \cap U_{\beta}, \omega_{i, \alpha}=\omega_{j, \beta} \frac{\partial x_{\beta}^{j}}{\partial x \alpha^{i}}$ then there exists a smooth one-form field ω on M whose coordinate representations are given by $\omega_{i, \alpha}$ (why?)

Differential of a function

Differential of a function

- Given a smooth function $f: M \rightarrow \mathbb{R}$,

Differential of a function

- Given a smooth function $f: M \rightarrow \mathbb{R}$, what is its derivative?

Differential of a function

- Given a smooth function $f: M \rightarrow \mathbb{R}$, what is its derivative?
- Sure, one way to answer the question

Differential of a function

- Given a smooth function $f: M \rightarrow \mathbb{R}$, what is its derivative?
- Sure, one way to answer the question is to say it is f_{*}.

Differential of a function

- Given a smooth function $f: M \rightarrow \mathbb{R}$, what is its derivative?
- Sure, one way to answer the question is to say it is f_{*}. However, f_{*} can at best

Differential of a function

- Given a smooth function $f: M \rightarrow \mathbb{R}$, what is its derivative?
- Sure, one way to answer the question is to say it is f_{*}. However, f_{*} can at best be thought of as a function $f_{*}: T M \rightarrow T \mathbb{R}$.

Differential of a function

- Given a smooth function $f: M \rightarrow \mathbb{R}$, what is its derivative?
- Sure, one way to answer the question is to say it is f_{*}. However, f_{*} can at best be thought of as a function $f_{*}: T M \rightarrow T \mathbb{R}$. On the other hand,

Differential of a function

- Given a smooth function $f: M \rightarrow \mathbb{R}$, what is its derivative?
- Sure, one way to answer the question is to say it is f_{*}. However, f_{*} can at best be thought of as a function $f_{*}: T M \rightarrow T \mathbb{R}$. On the other hand, if $M=\mathbb{R}^{n}$,

Differential of a function

- Given a smooth function $f: M \rightarrow \mathbb{R}$, what is its derivative?
- Sure, one way to answer the question is to say it is f_{*}. However, f_{*} can at best be thought of as a function $f_{*}: T M \rightarrow T \mathbb{R}$. On the other hand, if $M=\mathbb{R}^{n}$, we can think of the derivative as $D f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$.

Differential of a function

- Given a smooth function $f: M \rightarrow \mathbb{R}$, what is its derivative?
- Sure, one way to answer the question is to say it is f_{*}. However, f_{*} can at best be thought of as a function $f_{*}: T M \rightarrow T \mathbb{R}$. On the other hand, if $M=\mathbb{R}^{n}$, we can think of the derivative as $D f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$.
- So is there a function $d f: M \rightarrow$ something ?

Differential of a function

- Given a smooth function $f: M \rightarrow \mathbb{R}$, what is its derivative?
- Sure, one way to answer the question is to say it is f_{*}. However, f_{*} can at best be thought of as a function $f_{*}: T M \rightarrow T \mathbb{R}$. On the other hand, if $M=\mathbb{R}^{n}$, we can think of the derivative as $D f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$.
- So is there a function $d f: M \rightarrow$ something ?
- The most naive way to define it is

Differential of a function

- Given a smooth function $f: M \rightarrow \mathbb{R}$, what is its derivative?
- Sure, one way to answer the question is to say it is f_{*}. However, f_{*} can at best be thought of as a function $f_{*}: T M \rightarrow T \mathbb{R}$. On the other hand, if $M=\mathbb{R}^{n}$, we can think of the derivative as $D f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$.
- So is there a function $d f: M \rightarrow$ something ?
- The most naive way to define it is take a chart (U, x) and take $\left(\frac{\partial f}{\partial x^{1}}, \ldots\right)$.

Differential of a function

- Given a smooth function $f: M \rightarrow \mathbb{R}$, what is its derivative?
- Sure, one way to answer the question is to say it is f_{*}. However, f_{*} can at best be thought of as a function $f_{*}: T M \rightarrow T \mathbb{R}$. On the other hand, if $M=\mathbb{R}^{n}$, we can think of the derivative as $D f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$.
- So is there a function $d f: M \rightarrow$ something ?
- The most naive way to define it is take a chart (U, x) and take $\left(\frac{\partial f}{\partial x^{1}}, \ldots\right)$. However, when we change charts,

Differential of a function

- Given a smooth function $f: M \rightarrow \mathbb{R}$, what is its derivative?
- Sure, one way to answer the question is to say it is f_{*}. However, f_{*} can at best be thought of as a function $f_{*}: T M \rightarrow T \mathbb{R}$. On the other hand, if $M=\mathbb{R}^{n}$, we can think of the derivative as $D f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$.
- So is there a function $d f: M \rightarrow$ something ?
- The most naive way to define it is take a chart (U, x) and take $\left(\frac{\partial f}{\partial x^{1}}, \ldots\right)$. However, when we change charts, these vectors change to

Differential of a function

- Given a smooth function $f: M \rightarrow \mathbb{R}$, what is its derivative?
- Sure, one way to answer the question is to say it is f_{*}. However, f_{*} can at best be thought of as a function $f_{*}: T M \rightarrow T \mathbb{R}$. On the other hand, if $M=\mathbb{R}^{n}$, we can think of the derivative as $D f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$.
- So is there a function $d f: M \rightarrow$ something ?
- The most naive way to define it is take a chart (U, x) and take $\left(\frac{\partial f}{\partial x^{1}}, \ldots\right)$. However, when we change charts, these vectors change to $\left(\frac{\partial f}{\partial x^{i}} \frac{\partial x^{i}}{\partial \tilde{x}^{1}}, \ldots\right)$ which is

Differential of a function

- Given a smooth function $f: M \rightarrow \mathbb{R}$, what is its derivative?
- Sure, one way to answer the question is to say it is f_{*}. However, f_{*} can at best be thought of as a function $f_{*}: T M \rightarrow T \mathbb{R}$. On the other hand, if $M=\mathbb{R}^{n}$, we can think of the derivative as $D f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$.
- So is there a function $d f: M \rightarrow$ something ?
- The most naive way to define it is take a chart (U, x) and take $\left(\frac{\partial f}{\partial x^{1}}, \ldots\right)$. However, when we change charts, these vectors change to ($\frac{\partial f}{\partial x^{i}} \frac{\partial x^{i}}{\partial \tilde{x}^{i}}, \ldots$) which is exactly the way one-form fields change!

Differential of a function

- Given a smooth function $f: M \rightarrow \mathbb{R}$, what is its derivative?
- Sure, one way to answer the question is to say it is f_{*}. However, f_{*} can at best be thought of as a function $f_{*}: T M \rightarrow T \mathbb{R}$. On the other hand, if $M=\mathbb{R}^{n}$, we can think of the derivative as $D f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$.
- So is there a function $d f: M \rightarrow$ something ?
- The most naive way to define it is take a chart (U, x) and take $\left(\frac{\partial f}{\partial x^{1}}, \ldots\right)$. However, when we change charts, these vectors change to ($\frac{\partial f}{\partial x^{i}} \frac{\partial x^{i}}{\partial \tilde{x}^{1}}, \ldots$) which is exactly the way one-form fields change!
- Thus $d f$ must be thought of as a one-form field!

Differential of a function

Differential of a function

- Invariantly speaking,

Differential of a function

- Invariantly speaking, $d f\left(X_{p}\right):=X_{p}(f)$.

Differential of a function

- Invariantly speaking, $d f\left(X_{p}\right):=X_{p}(f)$.
- Suppose x^{i} are coordinates,

Differential of a function

- Invariantly speaking, $d f\left(X_{p}\right):=X_{p}(f)$.
- Suppose x^{i} are coordinates, then $d x^{i}\left(\frac{\partial}{\partial x^{j}}\right)=\delta_{j}^{i}$, i.e., $d x^{i}=\left(\frac{\partial}{\partial x^{i}}\right)^{*}$.

Differential of a function

- Invariantly speaking, $d f\left(X_{p}\right):=X_{p}(f)$.
- Suppose x^{i} are coordinates, then $d x^{i}\left(\frac{\partial}{\partial x^{j}}\right)=\delta_{j}^{i}$, i.e., $d x^{i}=\left(\frac{\partial}{\partial x^{i}}\right)^{*}$. Thus any one-form field ω

Differential of a function

- Invariantly speaking, $d f\left(X_{p}\right):=X_{p}(f)$.
- Suppose x^{i} are coordinates, then $d x^{i}\left(\frac{\partial}{\partial x^{j}}\right)=\delta_{j}^{i}$, i.e., $d x^{i}=\left(\frac{\partial}{\partial x^{i}}\right)^{*}$. Thus any one-form field ω is $\omega=\omega_{i} d x^{i}$.

Differential of a function

- Invariantly speaking, $d f\left(X_{p}\right):=X_{p}(f)$.
- Suppose x^{i} are coordinates, then $d x^{i}\left(\frac{\partial}{\partial x^{j}}\right)=\delta_{j}^{i}$, i.e., $d x^{i}=\left(\frac{\partial}{\partial x^{i}}\right)^{*}$. Thus any one-form field ω is $\omega=\omega_{i} d x^{i}$.
- Suppose γ is a smooth path,

Differential of a function

- Invariantly speaking, $d f\left(X_{p}\right):=X_{p}(f)$.
- Suppose x^{i} are coordinates, then $d x^{i}\left(\frac{\partial}{\partial x^{j}}\right)=\delta_{j}^{i}$, i.e., $d x^{i}=\left(\frac{\partial}{\partial x^{i}}\right)^{*}$. Thus any one-form field ω is $\omega=\omega_{i} d x^{i}$.
- Suppose γ is a smooth path, then $d f\left(\gamma^{\prime}\right)=\gamma^{\prime}(f)=(f \circ \gamma)^{\prime}$.

Differential of a function

- Invariantly speaking, $d f\left(X_{p}\right):=X_{p}(f)$.
- Suppose x^{i} are coordinates, then $d x^{i}\left(\frac{\partial}{\partial x^{j}}\right)=\delta_{j}^{i}$, i.e., $d x^{i}=\left(\frac{\partial}{\partial x^{i}}\right)^{*}$. Thus any one-form field ω is $\omega=\omega_{i} d x^{i}$.
- Suppose γ is a smooth path, then $d f\left(\gamma^{\prime}\right)=\gamma^{\prime}(f)=(f \circ \gamma)^{\prime}$. Thus in some sense,

Differential of a function

- Invariantly speaking, $d f\left(X_{p}\right):=X_{p}(f)$.
- Suppose x^{i} are coordinates, then $d x^{i}\left(\frac{\partial}{\partial x^{j}}\right)=\delta_{j}^{i}$, i.e., $d x^{i}=\left(\frac{\partial}{\partial x^{i}}\right)^{*}$. Thus any one-form field ω is $\omega=\omega_{i} d x^{i}$.
- Suppose γ is a smooth path, then $d f\left(\gamma^{\prime}\right)=\gamma^{\prime}(f)=(f \circ \gamma)^{\prime}$. Thus in some sense, $d f$ is the "right" analogue of

Differential of a function

- Invariantly speaking, $d f\left(X_{p}\right):=X_{p}(f)$.
- Suppose x^{i} are coordinates, then $d x^{i}\left(\frac{\partial}{\partial x^{j}}\right)=\delta_{j}^{i}$, i.e., $d x^{i}=\left(\frac{\partial}{\partial x^{i}}\right)^{*}$. Thus any one-form field ω is $\omega=\omega_{i} d x^{i}$.
- Suppose γ is a smooth path, then $d f\left(\gamma^{\prime}\right)=\gamma^{\prime}(f)=(f \circ \gamma)^{\prime}$. Thus in some sense, $d f$ is the "right" analogue of Newton's infinitesimals.

Differential of a function

- Invariantly speaking, $d f\left(X_{p}\right):=X_{p}(f)$.
- Suppose x^{i} are coordinates, then $d x^{i}\left(\frac{\partial}{\partial x^{j}}\right)=\delta_{j}^{i}$, i.e., $d x^{i}=\left(\frac{\partial}{\partial x^{i}}\right)^{*}$. Thus any one-form field ω is $\omega=\omega_{i} d x^{i}$.
- Suppose γ is a smooth path, then $d f\left(\gamma^{\prime}\right)=\gamma^{\prime}(f)=(f \circ \gamma)^{\prime}$. Thus in some sense, $d f$ is the "right" analogue of Newton's infinitesimals.
- $d(f g)=d f g+f d g, d(f+g)=d f+d g, d(f / g)=$ $\frac{d f g-f d g}{g^{2}}, d(c)=0$.

Differential of a function

- Invariantly speaking, $d f\left(X_{p}\right):=X_{p}(f)$.
- Suppose x^{i} are coordinates, then $d x^{i}\left(\frac{\partial}{\partial x^{j}}\right)=\delta_{j}^{i}$, i.e., $d x^{i}=\left(\frac{\partial}{\partial x^{i}}\right)^{*}$. Thus any one-form field ω is $\omega=\omega_{i} d x^{i}$.
- Suppose γ is a smooth path, then $d f\left(\gamma^{\prime}\right)=\gamma^{\prime}(f)=(f \circ \gamma)^{\prime}$. Thus in some sense, $d f$ is the "right" analogue of Newton's infinitesimals.
- $d(f g)=d f g+f d g, d(f+g)=d f+d g, d(f / g)=$ $\frac{d f g-f d g}{g^{2}}, d(c)=0$. Moreover, if $d f \equiv 0$ on a connected manifold,

Differential of a function

- Invariantly speaking, $d f\left(X_{p}\right):=X_{p}(f)$.
- Suppose x^{i} are coordinates, then $d x^{i}\left(\frac{\partial}{\partial x^{j}}\right)=\delta_{j}^{i}$, i.e., $d x^{i}=\left(\frac{\partial}{\partial x^{i}}\right)^{*}$. Thus any one-form field ω is $\omega=\omega_{i} d x^{i}$.
- Suppose γ is a smooth path, then $d f\left(\gamma^{\prime}\right)=\gamma^{\prime}(f)=(f \circ \gamma)^{\prime}$. Thus in some sense, $d f$ is the "right" analogue of Newton's infinitesimals.
- $d(f g)=d f g+f d g, d(f+g)=d f+d g, d(f / g)=$ $\frac{d f g-f d g}{g^{2}}, d(c)=0$. Moreover, if $d f \equiv 0$ on a connected manifold, f is constant on the manifold:

Differential of a function

- Invariantly speaking, $d f\left(X_{p}\right):=X_{p}(f)$.
- Suppose x^{i} are coordinates, then $d x^{i}\left(\frac{\partial}{\partial x^{j}}\right)=\delta_{j}^{i}$, i.e., $d x^{i}=\left(\frac{\partial}{\partial x^{i}}\right)^{*}$. Thus any one-form field ω is $\omega=\omega_{i} d x^{i}$.
- Suppose γ is a smooth path, then $d f\left(\gamma^{\prime}\right)=\gamma^{\prime}(f)=(f \circ \gamma)^{\prime}$. Thus in some sense, $d f$ is the "right" analogue of Newton's infinitesimals.
- $d(f g)=d f g+f d g, d(f+g)=d f+d g, d(f / g)=$ $\frac{d f g-f d g}{g^{2}}, d(c)=0$. Moreover, if $d f \equiv 0$ on a connected manifold, f is constant on the manifold: Indeed, let $f(p)=c$ for some p.

Differential of a function

- Invariantly speaking, $d f\left(X_{p}\right):=X_{p}(f)$.
- Suppose x^{i} are coordinates, then $d x^{i}\left(\frac{\partial}{\partial x^{j}}\right)=\delta_{j}^{i}$, i.e., $d x^{i}=\left(\frac{\partial}{\partial x^{i}}\right)^{*}$. Thus any one-form field ω is $\omega=\omega_{i} d x^{i}$.
- Suppose γ is a smooth path, then $d f\left(\gamma^{\prime}\right)=\gamma^{\prime}(f)=(f \circ \gamma)^{\prime}$. Thus in some sense, $d f$ is the "right" analogue of Newton's infinitesimals.
- $d(f g)=d f g+f d g, d(f+g)=d f+d g, d(f / g)=$ $\frac{d f g-f d g}{g^{2}}, d(c)=0$. Moreover, if $d f \equiv 0$ on a connected manifold, f is constant on the manifold: Indeed, let $f(p)=c$ for some p. Then the set of all $q \in M$ such that $f(q)=p$ is non-empty and closed.

Differential of a function

- Invariantly speaking, $d f\left(X_{p}\right):=X_{p}(f)$.
- Suppose x^{i} are coordinates, then $d x^{i}\left(\frac{\partial}{\partial x^{j}}\right)=\delta_{j}^{i}$, i.e., $d x^{i}=\left(\frac{\partial}{\partial x^{i}}\right)^{*}$. Thus any one-form field ω is $\omega=\omega_{i} d x^{i}$.
- Suppose γ is a smooth path, then $d f\left(\gamma^{\prime}\right)=\gamma^{\prime}(f)=(f \circ \gamma)^{\prime}$. Thus in some sense, $d f$ is the "right" analogue of Newton's infinitesimals.
- $d(f g)=d f g+f d g, d(f+g)=d f+d g, d(f / g)=$ $\frac{d f g-f d g}{g^{2}}, d(c)=0$. Moreover, if $d f \equiv 0$ on a connected manifold, f is constant on the manifold: Indeed, let $f(p)=c$ for some p. Then the set of all $q \in M$ such that $f(q)=p$ is non-empty and closed. It is also open:

Differential of a function

- Invariantly speaking, $d f\left(X_{p}\right):=X_{p}(f)$.
- Suppose x^{i} are coordinates, then $d x^{i}\left(\frac{\partial}{\partial x^{j}}\right)=\delta_{j}^{i}$, i.e., $d x^{i}=\left(\frac{\partial}{\partial x^{i}}\right)^{*}$. Thus any one-form field ω is $\omega=\omega_{i} d x^{i}$.
- Suppose γ is a smooth path, then $d f\left(\gamma^{\prime}\right)=\gamma^{\prime}(f)=(f \circ \gamma)^{\prime}$. Thus in some sense, $d f$ is the "right" analogue of Newton's infinitesimals.
- $d(f g)=d f g+f d g, d(f+g)=d f+d g, d(f / g)=$ $\frac{d f g-f d g}{g^{2}}, d(c)=0$. Moreover, if $d f \equiv 0$ on a connected manifold, f is constant on the manifold: Indeed, let $f(p)=c$ for some p. Then the set of all $q \in M$ such that $f(q)=p$ is non-empty and closed. It is also open: on a coordinate neighbourhood of $q, d f=0$ iff $\frac{\partial f}{\partial x^{i}}=0$ and hence $f=c$ on that neighbourhood.

Differential of a function

- Invariantly speaking, $d f\left(X_{p}\right):=X_{p}(f)$.
- Suppose x^{i} are coordinates, then $d x^{i}\left(\frac{\partial}{\partial x^{j}}\right)=\delta_{j}^{i}$, i.e., $d x^{i}=\left(\frac{\partial}{\partial x^{i}}\right)^{*}$. Thus any one-form field ω is $\omega=\omega_{i} d x^{i}$.
- Suppose γ is a smooth path, then $d f\left(\gamma^{\prime}\right)=\gamma^{\prime}(f)=(f \circ \gamma)^{\prime}$. Thus in some sense, $d f$ is the "right" analogue of Newton's infinitesimals.
- $d(f g)=d f g+f d g, d(f+g)=d f+d g, d(f / g)=$ $\frac{d f g-f d g}{g^{2}}, d(c)=0$. Moreover, if $d f \equiv 0$ on a connected manifold, f is constant on the manifold: Indeed, let $f(p)=c$ for some p. Then the set of all $q \in M$ such that $f(q)=p$ is non-empty and closed. It is also open: on a coordinate neighbourhood of $q, d f=0$ iff $\frac{\partial f}{\partial x^{i}}=0$ and hence $f=c$ on that neighbourhood. By connectedness we are done.

Pullback

Pullback

- Just as we can pushforward tangent vectors $\left(F_{*}\right)_{p}: T_{p} M \rightarrow T_{F(p)} N$,
- Just as we can pushforward tangent vectors
$\left(F_{*}\right)_{p}: T_{p} M \rightarrow T_{F(p)} N$, the dual map can be used to pullback cotangent vectors/one-forms:
- Just as we can pushforward tangent vectors
$\left(F_{*}\right)_{p}: T_{p} M \rightarrow T_{F(p)} N$, the dual map can be used to pullback cotangent vectors/one-forms: $\left(F^{*}\right)_{F(p)}: T_{F(p)}^{*} N \rightarrow T_{p}^{*} M$ given by
- Just as we can pushforward tangent vectors
$\left(F_{*}\right)_{p}: T_{p} M \rightarrow T_{F(p)} N$, the dual map can be used to pullback cotangent vectors/one-forms: $\left(F^{*}\right)_{F(p)}: T_{F(p)}^{*} N \rightarrow T_{p}^{*} M$ given by $\left(F^{*}\right)_{F(p)}\left(\omega_{F(p)}\right)\left(X_{p}\right)=\omega_{F(p)}\left(\left(F_{*}\right)_{p} X_{p}\right)$.
- Just as we can pushforward tangent vectors
$\left(F_{*}\right)_{p}: T_{p} M \rightarrow T_{F(p)} N$, the dual map can be used to pullback cotangent vectors/one-forms: $\left(F^{*}\right)_{F(p)}: T_{F(p)}^{*} N \rightarrow T_{p}^{*} M$ given by $\left(F^{*}\right)_{F(p)}\left(\omega_{F(p)}\right)\left(X_{p}\right)=\omega_{F(p)}\left(\left(F_{*}\right)_{p} X_{p}\right)$.
- In fact,
- Just as we can pushforward tangent vectors
$\left(F_{*}\right)_{p}: T_{p} M \rightarrow T_{F(p)} N$, the dual map can be used to pullback cotangent vectors/one-forms: $\left(F^{*}\right)_{F(p)}: T_{F(p)}^{*} N \rightarrow T_{p}^{*} M$ given by $\left(F^{*}\right)_{F(p)}\left(\omega_{F(p)}\right)\left(X_{p}\right)=\omega_{F(p)}\left(\left(F_{*}\right)_{p} X_{p}\right)$.
- In fact, while we cannot pushforward vector fields,
- Just as we can pushforward tangent vectors $\left(F_{*}\right)_{p}: T_{p} M \rightarrow T_{F(p)} N$, the dual map can be used to pullback cotangent vectors/one-forms: $\left(F^{*}\right)_{F(p)}: T_{F(p)}^{*} N \rightarrow T_{p}^{*} M$ given by $\left(F^{*}\right)_{F(p)}\left(\omega_{F(p)}\right)\left(X_{p}\right)=\omega_{F(p)}\left(\left(F_{*}\right)_{p} X_{p}\right)$.
- In fact, while we cannot pushforward vector fields, we can always pullback one-form fields:
- Just as we can pushforward tangent vectors
$\left(F_{*}\right)_{p}: T_{p} M \rightarrow T_{F(p)} N$, the dual map can be used to pullback cotangent vectors/one-forms: $\left(F^{*}\right)_{F(p)}: T_{F(p)}^{*} N \rightarrow T_{p}^{*} M$ given by $\left(F^{*}\right)_{F(p)}\left(\omega_{F(p)}\right)\left(X_{p}\right)=\omega_{F(p)}\left(\left(F_{*}\right)_{p} X_{p}\right)$.
- In fact, while we cannot pushforward vector fields, we can always pullback one-form fields:

$$
\left(F^{*}\right) \omega(p)\left(X_{p}\right)=\omega_{F(p)}\left(\left(F_{*}\right)_{p} X_{p}\right)
$$

- Just as we can pushforward tangent vectors
$\left(F_{*}\right)_{p}: T_{p} M \rightarrow T_{F(p)} N$, the dual map can be used to pullback cotangent vectors/one-forms: $\left(F^{*}\right)_{F(p)}: T_{F(p)}^{*} N \rightarrow T_{p}^{*} M$ given by $\left(F^{*}\right)_{F(p)}\left(\omega_{F(p)}\right)\left(X_{p}\right)=\omega_{F(p)}\left(\left(F_{*}\right)_{p} X_{p}\right)$.
- In fact, while we cannot pushforward vector fields, we can always pullback one-form fields:

$$
\left(F^{*}\right) \omega(p)\left(X_{p}\right)=\omega_{F(p)}\left(\left(F_{*}\right)_{p} X_{p}\right)
$$

- In coordinates,
- Just as we can pushforward tangent vectors
$\left(F_{*}\right)_{p}: T_{p} M \rightarrow T_{F(p)} N$, the dual map can be used to pullback cotangent vectors/one-forms: $\left(F^{*}\right)_{F(p)}: T_{F(p)}^{*} N \rightarrow T_{p}^{*} M$ given by $\left(F^{*}\right)_{F(p)}\left(\omega_{F(p)}\right)\left(X_{p}\right)=\omega_{F(p)}\left(\left(F_{*}\right)_{p} X_{p}\right)$.
- In fact, while we cannot pushforward vector fields, we can always pullback one-form fields:

$$
\left(F^{*}\right) \omega(p)\left(X_{p}\right)=\omega_{F(p)}\left(\left(F_{*}\right)_{p} X_{p}\right)
$$

- In coordinates, $F *\left(d x^{i}\right)\left(\frac{\partial}{\partial x^{j}}\right)=d x^{i}\left(\frac{\partial F^{k}}{\partial x^{j}} \frac{\partial}{\partial x^{k}}\right)=\frac{\partial F^{i}}{\partial x^{j}}$, i.e, $F^{*}\left(d x^{i}\right)=d F^{i}=d F^{i}$.
- Just as we can pushforward tangent vectors
$\left(F_{*}\right)_{p}: T_{p} M \rightarrow T_{F(p)} N$, the dual map can be used to pullback cotangent vectors/one-forms: $\left(F^{*}\right)_{F(p)}: T_{F(p)}^{*} N \rightarrow T_{p}^{*} M$ given by $\left(F^{*}\right)_{F(p)}\left(\omega_{F(p)}\right)\left(X_{p}\right)=\omega_{F(p)}\left(\left(F_{*}\right)_{p} X_{p}\right)$.
- In fact, while we cannot pushforward vector fields, we can always pullback one-form fields:

$$
\left(F^{*}\right) \omega(p)\left(X_{p}\right)=\omega_{F(p)}\left(\left(F_{*}\right)_{p} X_{p}\right)
$$

- In coordinates, $F *\left(d x^{i}\right)\left(\frac{\partial}{\partial x^{j}}\right)=d x^{i}\left(\frac{\partial F^{k}}{\partial x^{j}} \frac{\partial}{\partial x^{k}}\right)=\frac{\partial F^{i}}{\partial x^{j}}$, i.e, $F^{*}\left(d x^{i}\right)=d F^{i}=d F^{i}$.
- For ease of notation,
- Just as we can pushforward tangent vectors
$\left(F_{*}\right)_{p}: T_{p} M \rightarrow T_{F(p)} N$, the dual map can be used to pullback cotangent vectors/one-forms: $\left(F^{*}\right)_{F(p)}: T_{F(p)}^{*} N \rightarrow T_{p}^{*} M$ given by $\left(F^{*}\right)_{F(p)}\left(\omega_{F(p)}\right)\left(X_{p}\right)=\omega_{F(p)}\left(\left(F_{*}\right)_{p} X_{p}\right)$.
- In fact, while we cannot pushforward vector fields, we can always pullback one-form fields:

$$
\left(F^{*}\right) \omega(p)\left(X_{p}\right)=\omega_{F(p)}\left(\left(F_{*}\right)_{p} X_{p}\right)
$$

- In coordinates, $F *\left(d x^{i}\right)\left(\frac{\partial}{\partial x^{j}}\right)=d x^{i}\left(\frac{\partial F^{k}}{\partial x^{j}} \frac{\partial}{\partial x^{k}}\right)=\frac{\partial F^{i}}{\partial x^{j}}$, i.e, $F^{*}\left(d x^{i}\right)=d F^{i}=d F^{i}$.
- For ease of notation, if we denote $F^{*} f=f \circ F$,
- Just as we can pushforward tangent vectors
$\left(F_{*}\right)_{p}: T_{p} M \rightarrow T_{F(p)} N$, the dual map can be used to pullback cotangent vectors/one-forms: $\left(F^{*}\right)_{F(p)}: T_{F(p)}^{*} N \rightarrow T_{p}^{*} M$ given by $\left(F^{*}\right)_{F(p)}\left(\omega_{F(p)}\right)\left(X_{p}\right)=\omega_{F(p)}\left(\left(F_{*}\right)_{p} X_{p}\right)$.
- In fact, while we cannot pushforward vector fields, we can always pullback one-form fields:

$$
\left(F^{*}\right) \omega(p)\left(X_{p}\right)=\omega_{F(p)}\left(\left(F_{*}\right)_{p} X_{p}\right)
$$

- In coordinates, $F *\left(d x^{i}\right)\left(\frac{\partial}{\partial x^{j}}\right)=d x^{i}\left(\frac{\partial F^{k}}{\partial x^{j}} \frac{\partial}{\partial x^{k}}\right)=\frac{\partial F^{i}}{\partial x^{j}}$, i.e, $F^{*}\left(d x^{i}\right)=d F^{i}=d F^{i}$.
- For ease of notation, if we denote $F^{*} f=f \circ F$, then $F^{*}\left(\omega_{i} d x^{i}\right)=\omega_{i} \circ F d F^{i}=F^{*} \omega_{i} d F^{*} x^{i}$.
- Just as we can pushforward tangent vectors
$\left(F_{*}\right)_{p}: T_{p} M \rightarrow T_{F(p)} N$, the dual map can be used to pullback cotangent vectors/one-forms: $\left(F^{*}\right)_{F(p)}: T_{F(p)}^{*} N \rightarrow T_{p}^{*} M$ given by $\left(F^{*}\right)_{F(p)}\left(\omega_{F(p)}\right)\left(X_{p}\right)=\omega_{F(p)}\left(\left(F_{*}\right)_{p} X_{p}\right)$.
- In fact, while we cannot pushforward vector fields, we can always pullback one-form fields:

$$
\left(F^{*}\right) \omega(p)\left(X_{p}\right)=\omega_{F(p)}\left(\left(F_{*}\right)_{p} X_{p}\right)
$$

- In coordinates, $F *\left(d x^{i}\right)\left(\frac{\partial}{\partial x^{j}}\right)=d x^{i}\left(\frac{\partial F^{k}}{\partial x^{j}} \frac{\partial}{\partial x^{k}}\right)=\frac{\partial F^{i}}{\partial x^{j}}$, i.e, $F^{*}\left(d x^{i}\right)=d F^{i}=d F^{i}$.
- For ease of notation, if we denote $F^{*} f=f \circ F$, then

$$
F^{*}\left(\omega_{i} d x^{i}\right)=\omega_{i} \circ F d F^{i}=F^{*} \omega_{i} d F^{*} x^{i}
$$

- As an example,
- Just as we can pushforward tangent vectors
$\left(F_{*}\right)_{p}: T_{p} M \rightarrow T_{F(p)} N$, the dual map can be used to pullback cotangent vectors/one-forms: $\left(F^{*}\right)_{F(p)}: T_{F(p)}^{*} N \rightarrow T_{p}^{*} M$ given by $\left(F^{*}\right)_{F(p)}\left(\omega_{F(p)}\right)\left(X_{p}\right)=\omega_{F(p)}\left(\left(F_{*}\right)_{p} X_{p}\right)$.
- In fact, while we cannot pushforward vector fields, we can always pullback one-form fields:

$$
\left(F^{*}\right) \omega(p)\left(X_{p}\right)=\omega_{F(p)}\left(\left(F_{*}\right)_{p} X_{p}\right)
$$

- In coordinates, $F *\left(d x^{i}\right)\left(\frac{\partial}{\partial x^{j}}\right)=d x^{i}\left(\frac{\partial F^{k}}{\partial x^{j}} \frac{\partial}{\partial x^{k}}\right)=\frac{\partial F^{i}}{\partial x^{j}}$, i.e, $F^{*}\left(d x^{i}\right)=d F^{i}=d F^{i}$.
- For ease of notation, if we denote $F^{*} f=f \circ F$, then $F^{*}\left(\omega_{i} d x^{i}\right)=\omega_{i} \circ F d F^{i}=F^{*} \omega_{i} d F^{*} x^{i}$.
- As an example, if $y=F(x)=x^{2}$ and $\omega=3 y^{4} d y$, then $F * \omega=3\left(x^{2}\right)^{4} 2 x d x$.

