MA 229/MA 235 - Lecture 19

IISc

Lie bracket, Forms

1/9

э

Recap

2/9

æ

ヘロア 人間 アメヨア 人口 ア

• Discussed canonical coordinates for vector fields.

B> B

- Discussed canonical coordinates for vector fields.
- Started motivating the Lie bracket.

Lie bracket, Forms

3/9

æ

• The expression $-\frac{\partial Y^{i}}{\partial x^{k}}(p)X^{k}(p) + \frac{\partial X^{i}}{\partial x^{k}}(p)Y^{k}(p)$ actually defines a vector field (why?)

- The expression $-\frac{\partial Y^{i}}{\partial x^{k}}(p)X^{k}(p) + \frac{\partial X^{i}}{\partial x^{k}}(p)Y^{k}(p)$ actually defines a vector field (why?)
- Is there an coordinate-invariant way

- The expression $-\frac{\partial Y^{i}}{\partial x^{k}}(p)X^{k}(p) + \frac{\partial X^{i}}{\partial x^{k}}(p)Y^{k}(p)$ actually defines a vector field (why?)
- Is there an coordinate-invariant way of defining this vector field?

- The expression $-\frac{\partial Y^{i}}{\partial x^{k}}(p)X^{k}(p) + \frac{\partial X^{i}}{\partial x^{k}}(p)Y^{k}(p)$ actually defines a vector field (why?)
- Is there an coordinate-invariant way of defining this vector field?
- Def:

- The expression $-\frac{\partial Y^{i}}{\partial x^{k}}(p)X^{k}(p) + \frac{\partial X^{i}}{\partial x^{k}}(p)Y^{k}(p)$ actually defines a vector field (why?)
- Is there an coordinate-invariant way of defining this vector field?
- Def: Let X, Y be smooth vector fields on a manifold M.

- The expression $-\frac{\partial Y^{i}}{\partial x^{k}}(p)X^{k}(p) + \frac{\partial X^{i}}{\partial x^{k}}(p)Y^{k}(p)$ actually defines a vector field (why?)
- Is there an coordinate-invariant way of defining this vector field?
- Def: Let X, Y be smooth vector fields on a manifold M. Then [X, Y]_p(f) = X_p(Y(f)) - Y_p(X(f)) is a vector field on M

- The expression $-\frac{\partial Y^{i}}{\partial x^{k}}(p)X^{k}(p) + \frac{\partial X^{i}}{\partial x^{k}}(p)Y^{k}(p)$ actually defines a vector field (why?)
- Is there an coordinate-invariant way of defining this vector field?
- Def: Let X, Y be smooth vector fields on a manifold M. Then [X, Y]_p(f) = X_p(Y(f)) - Y_p(X(f)) is a vector field on M called the Lie bracket of X and Y.

- The expression $-\frac{\partial Y^{i}}{\partial x^{k}}(p)X^{k}(p) + \frac{\partial X^{i}}{\partial x^{k}}(p)Y^{k}(p)$ actually defines a vector field (why?)
- Is there an coordinate-invariant way of defining this vector field?
- Def: Let X, Y be smooth vector fields on a manifold M. Then [X, Y]_p(f) = X_p(Y(f)) - Y_p(X(f)) is a vector field on M called the Lie bracket of X and Y.
- Lemma (proof by calculation):

- The expression $-\frac{\partial Y^{i}}{\partial x^{k}}(p)X^{k}(p) + \frac{\partial X^{i}}{\partial x^{k}}(p)Y^{k}(p)$ actually defines a vector field (why?)
- Is there an coordinate-invariant way of defining this vector field?
- Def: Let X, Y be smooth vector fields on a manifold M. Then [X, Y]_p(f) = X_p(Y(f)) - Y_p(X(f)) is a vector field on M called the Lie bracket of X and Y.
- Lemma (proof by calculation): The Lie bracket genuinely defines a vector field

- The expression $-\frac{\partial Y^{i}}{\partial x^{k}}(p)X^{k}(p) + \frac{\partial X^{i}}{\partial x^{k}}(p)Y^{k}(p)$ actually defines a vector field (why?)
- Is there an coordinate-invariant way of defining this vector field?
- Def: Let X, Y be smooth vector fields on a manifold M. Then [X, Y]_p(f) = X_p(Y(f)) - Y_p(X(f)) is a vector field on M called the Lie bracket of X and Y.
- Lemma (proof by calculation): The Lie bracket genuinely defines a vector field whose components are given above.

Lie bracket, Forms

4/9

æ

• [X, Y] = -[Y, X].

Lie bracket, Forms

4/9

≣ । ह

▶ ∢ ≣

- [X, Y] = -[Y, X].
- [X, Y] is multi-linear in X, Y.

- [X, Y] = -[Y, X].
- [X, Y] is multi-linear in X, Y.
- It is not associative! That is

- [X, Y] = -[Y, X].
- [X, Y] is multi-linear in X, Y.
- It is not associative! That is $[X, [Y, Z]] \neq [[X, Y], Z]!$

- [X, Y] = -[Y, X].
- [X, Y] is multi-linear in X, Y.
- It is not associative! That is $[X, [Y, Z]] \neq [[X, Y], Z]!$ Indeed, [X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0 (Jacobi's identity).

- [X, Y] = -[Y, X].
- [X, Y] is multi-linear in X, Y.
- It is not associative! That is $[X, [Y, Z]] \neq [[X, Y], Z]!$ Indeed, [X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0 (Jacobi's identity).
- Any vector space equipped with

- [X, Y] = -[Y, X].
- [X, Y] is multi-linear in X, Y.
- It is not associative! That is $[X, [Y, Z]] \neq [[X, Y], Z]!$ Indeed, [X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0 (Jacobi's identity).
- Any vector space equipped with such a "bracket"

- [X, Y] = -[Y, X].
- [X, Y] is multi-linear in X, Y.
- It is not associative! That is $[X, [Y, Z]] \neq [[X, Y], Z]!$ Indeed, [X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0 (Jacobi's identity).
- Any vector space equipped with such a "bracket" is called a Lie algebra.

- [X, Y] = -[Y, X].
- [X, Y] is multi-linear in X, Y.
- It is not associative! That is $[X, [Y, Z]] \neq [[X, Y], Z]!$ Indeed, [X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0 (Jacobi's identity).
- Any vector space equipped with such a "bracket" is called a Lie algebra. The space of smooth vector fields is an example.

Lie bracket: Characterisation of coordinate vector fields

Lie bracket, Forms

5/9

Lie bracket: Characterisation of coordinate vector fields

• If X, Y are coordinate vector fields,

Lie bracket: Characterisation of coordinate vector fields

• If X, Y are coordinate vector fields, they Lie-commute (why?).

- If X, Y are coordinate vector fields, they Lie-commute (why?).
- Conversely, Theorem (proof omitted):

- If X, Y are coordinate vector fields, they Lie-commute (why?).
- Conversely, Theorem (proof omitted): If X¹, X²,..., X^k are smooth Lie-commuting vector fields

- If X, Y are coordinate vector fields, they Lie-commute (why?).
- Conversely, Theorem (proof omitted): If X¹, X²,..., X^k are smooth Lie-commuting vector fields that are linearly independent at p,

- If X, Y are coordinate vector fields, they Lie-commute (why?).
- Conversely, Theorem (proof omitted): If X¹, X²,..., X^k are smooth Lie-commuting vector fields that are linearly independent at p, there is a neighbourhood

- If X, Y are coordinate vector fields, they Lie-commute (why?).
- Conversely, Theorem (proof omitted): If X¹, X²,..., X^k are smooth Lie-commuting vector fields that are linearly independent at p, there is a neighbourhood and a coordinate chart

- If *X*, *Y* are coordinate vector fields, they Lie-commute (why?).
- Conversely, Theorem (proof omitted): If X¹, X²,..., X^k are smooth Lie-commuting vector fields that are linearly independent at p, there is a neighbourhood and a coordinate chart such that Xⁱ = ∂/∂xⁱ.

Cotangent bundle and one-forms

Lie bracket, Forms

6/9

æ

Cotangent bundle and one-forms

• Recall that T^*M

æ

• Recall that T^*M is set theoretically,

• Recall that T^*M is set theoretically, $\cup_p T^*_p M$.

• Recall that T^*M is set theoretically, $\cup_p T_p^*M$. T^*M is a vector bundle over M.

- Recall that T^{*}M is set theoretically, ∪_pT^{*}_pM. T^{*}M is a vector bundle over M.
- Given a coordinate chart (U, x),

- Recall that T^{*}M is set theoretically, ∪_pT^{*}_pM. T^{*}M is a vector bundle over M.
- Given a coordinate chart (U, x), a local smoothly varying basis for T*M

- Recall that T^{*}M is set theoretically, ∪_pT^{*}_pM. T^{*}M is a vector bundle over M.
- Given a coordinate chart (U, x), a local smoothly varying basis for T^{*}M is given by (∂/∂xⁱ)^{*}.

- Recall that T^{*}M is set theoretically, ∪_pT^{*}_pM. T^{*}M is a vector bundle over M.
- Given a coordinate chart (U, x), a local smoothly varying basis for T^*M is given by $(\frac{\partial}{\partial x^i})^*$. A one-form is an element of T^*_pM .

- Recall that T^{*}M is set theoretically, ∪_pT^{*}_pM. T^{*}M is a vector bundle over M.
- Given a coordinate chart (U, x), a local smoothly varying basis for T^{*}M is given by (∂/∂xⁱ)^{*}. A one-form is an element of T^{*}_pM. A one-form field

- Recall that T^{*}M is set theoretically, ∪_pT^{*}_pM. T^{*}M is a vector bundle over M.
- Given a coordinate chart (U, x), a local smoothly varying basis for T*M is given by ([∂]/_{∂xi})*. A one-form is an element of T^{*}_pM. A one-form field is a collection of smoothly varying one-forms (

- Recall that T^{*}M is set theoretically, ∪_pT^{*}_pM. T^{*}M is a vector bundle over M.
- Given a coordinate chart (U, x), a local smoothly varying basis for T*M is given by (∂/∂xi)*. A one-form is an element of T^{*}_pM. A one-form field is a collection of smoothly varying one-forms (a smooth section of T*M), i.e.,

- Recall that T^{*}M is set theoretically, ∪_pT^{*}_pM. T^{*}M is a vector bundle over M.
- Given a coordinate chart (U, x), a local smoothly varying basis for T^*M is given by $(\frac{\partial}{\partial x^i})^*$. A one-form is an element of T_p^*M . A one-form field is a collection of smoothly varying one-forms (a smooth section of T^*M), i.e., $\omega : M \to T^*M$ such that

- Recall that T^{*}M is set theoretically, ∪_pT^{*}_pM. T^{*}M is a vector bundle over M.
- Given a coordinate chart (U, x), a local smoothly varying basis for T^*M is given by $(\frac{\partial}{\partial x^i})^*$. A one-form is an element of T_p^*M . A one-form field is a collection of smoothly varying one-forms (a smooth section of T^*M), i.e., $\omega : M \to T^*M$ such that $\omega(p) \in T_p^*M$ and

- Recall that T^{*}M is set theoretically, ∪_pT^{*}_pM. T^{*}M is a vector bundle over M.
- Given a coordinate chart (U, x), a local smoothly varying basis for T^*M is given by $(\frac{\partial}{\partial x^i})^*$. A one-form is an element of T_p^*M . A one-form field is a collection of smoothly varying one-forms (a smooth section of T^*M), i.e., $\omega : M \to T^*M$ such that $\omega(p) \in T_p^*M$ and around every point, there exists a coordinate chart (U, x)

- Recall that T^{*}M is set theoretically, ∪_pT^{*}_pM. T^{*}M is a vector bundle over M.
- Given a coordinate chart (U, x), a local smoothly varying basis for T*M is given by (∂/∂xⁱ)*. A one-form is an element of T^{*}_pM. A one-form field is a collection of smoothly varying one-forms (a smooth section of T*M), i.e., ω : M → T*M such that ω(p) ∈ T^{*}_pM and around every point, there exists a coordinate chart (U, x) such that ω = ∑_i ω_i(∂/∂xⁱ)* where the functions ω_i are smooth.

- Recall that T^{*}M is set theoretically, ∪_pT^{*}_pM. T^{*}M is a vector bundle over M.
- Given a coordinate chart (U, x), a local smoothly varying basis for T^*M is given by $(\frac{\partial}{\partial x^i})^*$. A one-form is an element of T_p^*M . A one-form field is a collection of smoothly varying one-forms (a smooth section of T^*M), i.e., $\omega : M \to T^*M$ such that $\omega(p) \in T_p^*M$ and around every point, there exists a coordinate chart (U, x) such that $\omega = \sum_i \omega_i (\frac{\partial}{\partial x^i})^*$ where the functions ω_i are smooth.
- As before,

- Recall that T^{*}M is set theoretically, ∪_pT^{*}_pM. T^{*}M is a vector bundle over M.
- Given a coordinate chart (U, x), a local smoothly varying basis for T^*M is given by $(\frac{\partial}{\partial x^i})^*$. A one-form is an element of T_p^*M . A one-form field is a collection of smoothly varying one-forms (a smooth section of T^*M), i.e., $\omega : M \to T^*M$ such that $\omega(p) \in T_p^*M$ and around every point, there exists a coordinate chart (U, x) such that $\omega = \sum_i \omega_i (\frac{\partial}{\partial x^i})^*$ where the functions ω_i are smooth.
- As before, if ω is smooth in one chart,

- Recall that T^{*}M is set theoretically, ∪_pT^{*}_pM. T^{*}M is a vector bundle over M.
- Given a coordinate chart (U, x), a local smoothly varying basis for T*M is given by (∂/∂xi)*. A one-form is an element of T^{*}_pM. A one-form field is a collection of smoothly varying one-forms (a smooth section of T*M), i.e., ω : M → T*M such that ω(p) ∈ T^{*}_pM and around every point, there exists a coordinate chart (U, x) such that ω = ∑_i ω_i(∂/∂xⁱ)* where the functions ω_i are smooth.
- As before, if ω is smooth in one chart, it is so in all charts:

- Recall that T^{*}M is set theoretically, ∪_pT^{*}_pM. T^{*}M is a vector bundle over M.
- Given a coordinate chart (U, x), a local smoothly varying basis for T^*M is given by $(\frac{\partial}{\partial x^i})^*$. A one-form is an element of T_p^*M . A one-form field is a collection of smoothly varying one-forms (a smooth section of T^*M), i.e., $\omega : M \to T^*M$ such that $\omega(p) \in T_p^*M$ and around every point, there exists a coordinate chart (U, x) such that $\omega = \sum_i \omega_i (\frac{\partial}{\partial x^i})^*$ where the functions ω_i are smooth.
- As before, if ω is smooth in one chart, it is so in all charts: $\tilde{\omega_i} = \omega_j \frac{\partial x^j}{\partial \tilde{x}^i}$ (why?).

- Recall that T^{*}M is set theoretically, ∪_pT^{*}_pM. T^{*}M is a vector bundle over M.
- Given a coordinate chart (U, x), a local smoothly varying basis for T^*M is given by $(\frac{\partial}{\partial x^i})^*$. A one-form is an element of T_p^*M . A one-form field is a collection of smoothly varying one-forms (a smooth section of T^*M), i.e., $\omega : M \to T^*M$ such that $\omega(p) \in T_p^*M$ and around every point, there exists a coordinate chart (U, x) such that $\omega = \sum_i \omega_i (\frac{\partial}{\partial x^i})^*$ where the functions ω_i are smooth.
- As before, if ω is smooth in one chart, it is so in all charts: $\tilde{\omega_i} = \omega_j \frac{\partial x^j}{\partial \tilde{x}^i}$ (why?).
- Moreover, given an atlas of U_{lpha} of M,

- Recall that T^{*}M is set theoretically, ∪_pT^{*}_pM. T^{*}M is a vector bundle over M.
- Given a coordinate chart (U, x), a local smoothly varying basis for T*M is given by (∂/∂xi)*. A one-form is an element of T^{*}_pM. A one-form field is a collection of smoothly varying one-forms (a smooth section of T*M), i.e., ω : M → T*M such that ω(p) ∈ T^{*}_pM and around every point, there exists a coordinate chart (U, x) such that ω = ∑_i ω_i(∂/∂xⁱ)* where the functions ω_i are smooth.
- As before, if ω is smooth in one chart, it is so in all charts: $\tilde{\omega_i} = \omega_j \frac{\partial x^j}{\partial \tilde{x}^i}$ (why?).
- Moreover, given an atlas of U_{α} of M, and a collection of functions $\omega_{i,\alpha}$ such that

- Recall that T^{*}M is set theoretically, ∪_pT^{*}_pM. T^{*}M is a vector bundle over M.
- Given a coordinate chart (U, x), a local smoothly varying basis for T^*M is given by $(\frac{\partial}{\partial x^i})^*$. A one-form is an element of T_p^*M . A one-form field is a collection of smoothly varying one-forms (a smooth section of T^*M), i.e., $\omega : M \to T^*M$ such that $\omega(p) \in T_p^*M$ and around every point, there exists a coordinate chart (U, x) such that $\omega = \sum_i \omega_i (\frac{\partial}{\partial x^i})^*$ where the functions ω_i are smooth.
- As before, if ω is smooth in one chart, it is so in all charts: $\tilde{\omega_i} = \omega_j \frac{\partial x^j}{\partial \tilde{x}^i}$ (why?).
- Moreover, given an atlas of U_{α} of M, and a collection of functions $\omega_{i,\alpha}$ such that on $U_{\alpha} \cap U_{\beta}$,

- Recall that T^{*}M is set theoretically, ∪_pT^{*}_pM. T^{*}M is a vector bundle over M.
- Given a coordinate chart (U, x), a local smoothly varying basis for T^*M is given by $(\frac{\partial}{\partial x^i})^*$. A one-form is an element of T_p^*M . A one-form field is a collection of smoothly varying one-forms (a smooth section of T^*M), i.e., $\omega : M \to T^*M$ such that $\omega(p) \in T_p^*M$ and around every point, there exists a coordinate chart (U, x) such that $\omega = \sum_i \omega_i (\frac{\partial}{\partial x^i})^*$ where the functions ω_i are smooth.
- As before, if ω is smooth in one chart, it is so in all charts: $\tilde{\omega_i} = \omega_j \frac{\partial x^j}{\partial \tilde{x}^i}$ (why?).
- Moreover, given an atlas of U_{α} of M, and a collection of functions $\omega_{i,\alpha}$ such that on $U_{\alpha} \cap U_{\beta}$, $\omega_{i,\alpha} = \omega_{j,\beta} \frac{\partial x_{\beta}^{j}}{\partial x \alpha^{i}}$

- Recall that T^{*}M is set theoretically, ∪_pT^{*}_pM. T^{*}M is a vector bundle over M.
- Given a coordinate chart (U, x), a local smoothly varying basis for T*M is given by (∂/∂xi)*. A one-form is an element of T^{*}_pM. A one-form field is a collection of smoothly varying one-forms (a smooth section of T*M), i.e., ω : M → T*M such that ω(p) ∈ T^{*}_pM and around every point, there exists a coordinate chart (U, x) such that ω = ∑_i ω_i(∂/∂xⁱ)* where the functions ω_i are smooth.
- As before, if ω is smooth in one chart, it is so in all charts: $\tilde{\omega_i} = \omega_j \frac{\partial x^j}{\partial \tilde{x}^i}$ (why?).
- Moreover, given an atlas of U_{α} of M, and a collection of functions $\omega_{i,\alpha}$ such that on $U_{\alpha} \cap U_{\beta}$, $\omega_{i,\alpha} = \omega_{j,\beta} \frac{\partial x_{\beta}^{j}}{\partial x \alpha^{i}}$ then there exists a smooth one-form field ω on M

- Recall that T^{*}M is set theoretically, ∪_pT^{*}_pM. T^{*}M is a vector bundle over M.
- Given a coordinate chart (U, x), a local smoothly varying basis for T^*M is given by $(\frac{\partial}{\partial x^i})^*$. A one-form is an element of T_p^*M . A one-form field is a collection of smoothly varying one-forms (a smooth section of T^*M), i.e., $\omega : M \to T^*M$ such that $\omega(p) \in T_p^*M$ and around every point, there exists a coordinate chart (U, x) such that $\omega = \sum_i \omega_i (\frac{\partial}{\partial x^i})^*$ where the functions ω_i are smooth.
- As before, if ω is smooth in one chart, it is so in all charts: $\tilde{\omega_i} = \omega_j \frac{\partial x^j}{\partial \tilde{x}^i}$ (why?).
- Moreover, given an atlas of U_{α} of M, and a collection of functions $\omega_{i,\alpha}$ such that on $U_{\alpha} \cap U_{\beta}$, $\omega_{i,\alpha} = \omega_{j,\beta} \frac{\partial x_{\beta}^{j}}{\partial x \alpha^{i}}$ then there exists a smooth one-form field ω on M whose coordinate representations are given by $\omega_{i,\alpha}$ (why?)

Lie bracket, Forms

7/9

æ

• Given a smooth function $f: M \to \mathbb{R}$,

• Given a smooth function $f: M \to \mathbb{R}$, what is its derivative?

- Given a smooth function $f: M \to \mathbb{R}$, what is its derivative?
- Sure, one way to answer the question

- Given a smooth function $f: M \to \mathbb{R}$, what is its derivative?
- Sure, one way to answer the question is to say it is f_* .

- Given a smooth function $f: M \to \mathbb{R}$, what is its derivative?
- Sure, one way to answer the question is to say it is f_* . However, f_* can at best

- Given a smooth function $f: M \to \mathbb{R}$, what is its derivative?
- Sure, one way to answer the question is to say it is f_{*}. However, f_{*} can at best be thought of as a function f_{*} : TM → Tℝ.

- Given a smooth function $f: M \to \mathbb{R}$, what is its derivative?
- Sure, one way to answer the question is to say it is f_* . However, f_* can at best be thought of as a function $f_* : TM \to T\mathbb{R}$. On the other hand,

- Given a smooth function $f: M \to \mathbb{R}$, what is its derivative?
- Sure, one way to answer the question is to say it is f_* . However, f_* can at best be thought of as a function $f_*: TM \to T\mathbb{R}$. On the other hand, if $M = \mathbb{R}^n$,

- Given a smooth function $f: M \to \mathbb{R}$, what is its derivative?
- Sure, one way to answer the question is to say it is f_{*}. However, f_{*} can at best be thought of as a function f_{*} : TM → Tℝ. On the other hand, if M = ℝⁿ, we can think of the derivative as Df : ℝⁿ → ℝⁿ.

- Given a smooth function $f: M \to \mathbb{R}$, what is its derivative?
- Sure, one way to answer the question is to say it is f_{*}. However, f_{*} can at best be thought of as a function f_{*} : TM → Tℝ. On the other hand, if M = ℝⁿ, we can think of the derivative as Df : ℝⁿ → ℝⁿ.
- So is there a function $df: M \rightarrow something$?

- Given a smooth function $f: M \to \mathbb{R}$, what is its derivative?
- Sure, one way to answer the question is to say it is f_{*}. However, f_{*} can at best be thought of as a function f_{*} : TM → Tℝ. On the other hand, if M = ℝⁿ, we can think of the derivative as Df : ℝⁿ → ℝⁿ.
- So is there a function $df: M \rightarrow something$?
- The most naive way to define it is

- Given a smooth function $f: M \to \mathbb{R}$, what is its derivative?
- Sure, one way to answer the question is to say it is f_{*}. However, f_{*} can at best be thought of as a function f_{*} : TM → Tℝ. On the other hand, if M = ℝⁿ, we can think of the derivative as Df : ℝⁿ → ℝⁿ.
- So is there a function $df: M \rightarrow something$?
- The most naive way to define it is take a chart (U, x) and take $(\frac{\partial f}{\partial x^1}, \ldots)$.

- Given a smooth function $f: M \to \mathbb{R}$, what is its derivative?
- Sure, one way to answer the question is to say it is f_{*}. However, f_{*} can at best be thought of as a function f_{*} : TM → Tℝ. On the other hand, if M = ℝⁿ, we can think of the derivative as Df : ℝⁿ → ℝⁿ.
- So is there a function $df: M \rightarrow something$?
- The most naive way to define it is take a chart (U, x) and take (^{∂f}/_{∂x1},...). However, when we change charts,

- Given a smooth function $f: M \to \mathbb{R}$, what is its derivative?
- Sure, one way to answer the question is to say it is f_{*}. However, f_{*} can at best be thought of as a function f_{*} : TM → Tℝ. On the other hand, if M = ℝⁿ, we can think of the derivative as Df : ℝⁿ → ℝⁿ.
- So is there a function $df: M \rightarrow something$?
- The most naive way to define it is take a chart (U, x) and take $(\frac{\partial f}{\partial x^1}, \ldots)$. However, when we change charts, these vectors change to

- Given a smooth function $f: M \to \mathbb{R}$, what is its derivative?
- Sure, one way to answer the question is to say it is f_{*}. However, f_{*} can at best be thought of as a function f_{*} : TM → Tℝ. On the other hand, if M = ℝⁿ, we can think of the derivative as Df : ℝⁿ → ℝⁿ.
- So is there a function $df: M \rightarrow something$?
- The most naive way to define it is take a chart (U, x) and take (\frac{\partial f}{\partial x^1}, \ldots). However, when we change charts, these vectors change to (\frac{\partial f}{\partial x^i} \frac{\partial x^i}{\partial x^1}, \ldots) which is

- Given a smooth function $f: M \to \mathbb{R}$, what is its derivative?
- Sure, one way to answer the question is to say it is f_{*}. However, f_{*} can at best be thought of as a function f_{*} : TM → Tℝ. On the other hand, if M = ℝⁿ, we can think of the derivative as Df : ℝⁿ → ℝⁿ.
- So is there a function $df: M \rightarrow something$?
- The most naive way to define it is take a chart (U, x) and take (^{∂f}/_{∂x¹},...). However, when we change charts, these vectors change to (^{∂f}/_{∂xⁱ} ^{∂xⁱ}/_{∂xⁱ},...) which is exactly the way one-form fields change!

- Given a smooth function $f: M \to \mathbb{R}$, what is its derivative?
- Sure, one way to answer the question is to say it is f_{*}. However, f_{*} can at best be thought of as a function f_{*} : TM → Tℝ. On the other hand, if M = ℝⁿ, we can think of the derivative as Df : ℝⁿ → ℝⁿ.
- So is there a function $df: M \rightarrow something$?
- The most naive way to define it is take a chart (U, x) and take (^{∂f}/_{∂x¹},...). However, when we change charts, these vectors change to (^{∂f}/_{∂xⁱ} ^{∂xⁱ}/_{∂xⁱ},...) which is exactly the way one-form fields change!
- Thus *df* must be thought of as a one-form field!

Lie bracket, Forms

8/9

æ

• Invariantly speaking,

• Invariantly speaking, $df(X_p) := X_p(f)$.

문▶ 문

▶ < ≣ ▶</p>

- Invariantly speaking, $df(X_p) := X_p(f)$.
- Suppose xⁱ are coordinates,

- Invariantly speaking, $df(X_p) := X_p(f)$.
- Suppose x^i are coordinates, then $dx^i(\frac{\partial}{\partial x^j}) = \delta^i_j$, i.e.,

$$dx^i = (\frac{\partial}{\partial x^i})^*$$

- Invariantly speaking, $df(X_p) := X_p(f)$.
- Suppose x^i are coordinates, then $dx^i(\frac{\partial}{\partial x^j}) = \delta^i_j$, i.e., $dx^i = (\frac{\partial}{\partial x^i})^*$. Thus any one-form field ω

- Invariantly speaking, $df(X_p) := X_p(f)$.
- Suppose x^i are coordinates, then $dx^i(\frac{\partial}{\partial x^j}) = \delta^i_j$, i.e., $dx^i = (\frac{\partial}{\partial x^i})^*$. Thus any one-form field ω is $\omega = \omega_i dx^i$.

- Invariantly speaking, $df(X_p) := X_p(f)$.
- Suppose x^i are coordinates, then $dx^i(\frac{\partial}{\partial x^j}) = \delta^i_j$, i.e., $dx^i = (\frac{\partial}{\partial x^i})^*$. Thus any one-form field ω is $\omega = \omega_i dx^i$.
- Suppose γ is a smooth path,

- Invariantly speaking, $df(X_p) := X_p(f)$.
- Suppose x^i are coordinates, then $dx^i(\frac{\partial}{\partial x^j}) = \delta^i_j$, i.e., $dx^i = (\frac{\partial}{\partial x^i})^*$. Thus any one-form field ω is $\omega = \omega_i dx^i$.
- Suppose γ is a smooth path, then $df(\gamma') = \gamma'(f) = (f \circ \gamma)'$.

- Invariantly speaking, $df(X_p) := X_p(f)$.
- Suppose x^i are coordinates, then $dx^i(\frac{\partial}{\partial x^j}) = \delta^i_j$, i.e., $dx^i = (\frac{\partial}{\partial x^i})^*$. Thus any one-form field ω is $\omega = \omega_i dx^i$.
- Suppose γ is a smooth path, then $df(\gamma') = \gamma'(f) = (f \circ \gamma)'$. Thus in some sense,

- Invariantly speaking, $df(X_p) := X_p(f)$.
- Suppose x^i are coordinates, then $dx^i(\frac{\partial}{\partial x^j}) = \delta^i_j$, i.e., $dx^i = (\frac{\partial}{\partial x^i})^*$. Thus any one-form field ω is $\omega = \omega_i dx^i$.
- Suppose γ is a smooth path, then $df(\gamma') = \gamma'(f) = (f \circ \gamma)'$. Thus in some sense, df is the "right" analogue of

- Invariantly speaking, $df(X_p) := X_p(f)$.
- Suppose x^i are coordinates, then $dx^i(\frac{\partial}{\partial x^j}) = \delta^i_j$, i.e., $dx^i = (\frac{\partial}{\partial x^i})^*$. Thus any one-form field ω is $\omega = \omega_i dx^i$.
- Suppose γ is a smooth path, then $df(\gamma') = \gamma'(f) = (f \circ \gamma)'$. Thus in some sense, df is the "right" analogue of Newton's infinitesimals.

- Invariantly speaking, $df(X_p) := X_p(f)$.
- Suppose x^i are coordinates, then $dx^i(\frac{\partial}{\partial x^j}) = \delta^i_j$, i.e., $dx^i = (\frac{\partial}{\partial x^i})^*$. Thus any one-form field ω is $\omega = \omega_i dx^i$.
- Suppose γ is a smooth path, then df(γ') = γ'(f) = (f ∘ γ)'. Thus in some sense, df is the "right" analogue of Newton's infinitesimals.

•
$$d(fg) = dfg + fdg, d(f + g) = df + dg, d(f/g) = \frac{dfg - fdg}{g^2}, d(c) = 0.$$

- Invariantly speaking, $df(X_p) := X_p(f)$.
- Suppose x^i are coordinates, then $dx^i(\frac{\partial}{\partial x^j}) = \delta^i_j$, i.e., $dx^i = (\frac{\partial}{\partial x^i})^*$. Thus any one-form field ω is $\omega = \omega_i dx^i$.
- Suppose γ is a smooth path, then df(γ') = γ'(f) = (f ∘ γ)'. Thus in some sense, df is the "right" analogue of Newton's infinitesimals.
- $d(fg) = dfg + fdg, d(f + g) = df + dg, d(f/g) = \frac{dfg fdg}{g^2}, d(c) = 0$. Moreover, if $df \equiv 0$ on a connected manifold,

- Invariantly speaking, $df(X_p) := X_p(f)$.
- Suppose x^i are coordinates, then $dx^i(\frac{\partial}{\partial x^j}) = \delta^i_j$, i.e., $dx^i = (\frac{\partial}{\partial x^i})^*$. Thus any one-form field ω is $\omega = \omega_i dx^i$.
- Suppose γ is a smooth path, then df(γ') = γ'(f) = (f ∘ γ)'. Thus in some sense, df is the "right" analogue of Newton's infinitesimals.
- $d(fg) = dfg + fdg, d(f + g) = df + dg, d(f/g) = \frac{dfg fdg}{g^2}, d(c) = 0$. Moreover, if $df \equiv 0$ on a connected manifold, f is constant on the manifold:

- Invariantly speaking, $df(X_p) := X_p(f)$.
- Suppose x^i are coordinates, then $dx^i(\frac{\partial}{\partial x^j}) = \delta^i_j$, i.e., $dx^i = (\frac{\partial}{\partial x^i})^*$. Thus any one-form field ω is $\omega = \omega_i dx^i$.
- Suppose γ is a smooth path, then $df(\gamma') = \gamma'(f) = (f \circ \gamma)'$. Thus in some sense, df is the "right" analogue of Newton's infinitesimals.
- $d(fg) = dfg + fdg, d(f + g) = df + dg, d(f/g) = \frac{dfg fdg}{g^2}, d(c) = 0$. Moreover, if $df \equiv 0$ on a connected manifold, f is constant on the manifold: Indeed, let f(p) = c for some p.

- Invariantly speaking, $df(X_p) := X_p(f)$.
- Suppose x^i are coordinates, then $dx^i(\frac{\partial}{\partial x^j}) = \delta^i_j$, i.e., $dx^i = (\frac{\partial}{\partial x^i})^*$. Thus any one-form field ω is $\omega = \omega_i dx^i$.
- Suppose γ is a smooth path, then $df(\gamma') = \gamma'(f) = (f \circ \gamma)'$. Thus in some sense, df is the "right" analogue of Newton's infinitesimals.
- $d(fg) = dfg + fdg, d(f + g) = df + dg, d(f/g) = \frac{dfg fdg}{g^2}, d(c) = 0$. Moreover, if $df \equiv 0$ on a connected manifold, f is constant on the manifold: Indeed, let f(p) = c for some p. Then the set of all $q \in M$ such that f(q) = p is non-empty and closed.

- Invariantly speaking, $df(X_p) := X_p(f)$.
- Suppose x^i are coordinates, then $dx^i(\frac{\partial}{\partial x^j}) = \delta^i_j$, i.e., $dx^i = (\frac{\partial}{\partial x^i})^*$. Thus any one-form field ω is $\omega = \omega_i dx^i$.
- Suppose γ is a smooth path, then $df(\gamma') = \gamma'(f) = (f \circ \gamma)'$. Thus in some sense, df is the "right" analogue of Newton's infinitesimals.
- $d(fg) = dfg + fdg, d(f + g) = df + dg, d(f/g) = \frac{dfg fdg}{g^2}, d(c) = 0$. Moreover, if $df \equiv 0$ on a connected manifold, f is constant on the manifold: Indeed, let f(p) = c for some p. Then the set of all $q \in M$ such that f(q) = p is non-empty and closed. It is also open:

- Invariantly speaking, $df(X_p) := X_p(f)$.
- Suppose x^i are coordinates, then $dx^i(\frac{\partial}{\partial x^j}) = \delta^i_j$, i.e., $dx^i = (\frac{\partial}{\partial x^i})^*$. Thus any one-form field ω is $\omega = \omega_i dx^i$.
- Suppose γ is a smooth path, then $df(\gamma') = \gamma'(f) = (f \circ \gamma)'$. Thus in some sense, df is the "right" analogue of Newton's infinitesimals.
- d(fg) = dfg + fdg, d(f + g) = df + dg, $d(f/g) = \frac{dfg fdg}{g^2}$, d(c) = 0. Moreover, if $df \equiv 0$ on a connected manifold, f is constant on the manifold: Indeed, let f(p) = c for some p. Then the set of all $q \in M$ such that f(q) = p is non-empty and closed. It is also open: on a coordinate neighbourhood of q, df = 0 iff $\frac{\partial f}{\partial x^i} = 0$ and hence f = c on that neighbourhood.

- Invariantly speaking, $df(X_p) := X_p(f)$.
- Suppose x^i are coordinates, then $dx^i(\frac{\partial}{\partial x^j}) = \delta^i_j$, i.e., $dx^i = (\frac{\partial}{\partial x^i})^*$. Thus any one-form field ω is $\omega = \omega_i dx^i$.
- Suppose γ is a smooth path, then $df(\gamma') = \gamma'(f) = (f \circ \gamma)'$. Thus in some sense, df is the "right" analogue of Newton's infinitesimals.
- d(fg) = dfg + fdg, d(f + g) = df + dg, $d(f/g) = \frac{dfg fdg}{g^2}$, d(c) = 0. Moreover, if $df \equiv 0$ on a connected manifold, f is constant on the manifold: Indeed, let f(p) = c for some p. Then the set of all $q \in M$ such that f(q) = p is non-empty and closed. It is also open: on a coordinate neighbourhood of q, df = 0 iff $\frac{\partial f}{\partial x^i} = 0$ and hence f = c on that neighbourhood. By connectedness we are done.

Lie bracket, Forms

9/9

æ

・ロト ・四ト ・ヨト ・ヨト

• Just as we can pushforward tangent vectors $(F_*)_p : T_p M \to T_{F(p)} N$,

< ∃ >

æ

▷ ▲ 글 ▶

• Just as we can pushforward tangent vectors $(F_*)_p : T_p M \to T_{F(p)} N$, the dual map can be used to pullback cotangent vectors/one-forms:

 Just as we can pushforward tangent vectors
 (F_{*})_p : T_pM → T_{F(p)}N, the dual map can be used to pullback
 cotangent vectors/one-forms: (F^{*})_{F(p)} : T^{*}_{F(p)}N → T^{*}_pM
 given by

 Just as we can pushforward tangent vectors
 (F_{*})_p : T_pM → T_{F(p)}N, the dual map can be used to pullback
 cotangent vectors/one-forms: (F^{*})_{F(p)} : T^{*}_{F(p)}N → T^{*}_pM
 given by (F^{*})_{F(p)}(ω_{F(p)})(X_p) = ω_{F(p)}((F_{*})_pX_p).

- Just as we can pushforward tangent vectors $(F_*)_p: T_p M \to T_{F(p)} N$, the dual map can be used to pullback cotangent vectors/one-forms: $(F^*)_{F(p)}: T^*_{F(p)} N \to T^*_p M$ given by $(F^*)_{F(p)}(\omega_{F(p)})(X_p) = \omega_{F(p)}((F_*)_p X_p)$.
- In fact,

- Just as we can pushforward tangent vectors $(F_*)_p: T_pM \to T_{F(p)}N$, the dual map can be used to pullback cotangent vectors/one-forms: $(F^*)_{F(p)}: T^*_{F(p)}N \to T^*_pM$ given by $(F^*)_{F(p)}(\omega_{F(p)})(X_p) = \omega_{F(p)}((F_*)_pX_p)$.
- In fact, while we cannot pushforward vector fields,

- Just as we can pushforward tangent vectors $(F_*)_p : T_p M \to T_{F(p)} N$, the dual map can be used to pullback cotangent vectors/one-forms: $(F^*)_{F(p)} : T^*_{F(p)} N \to T^*_p M$ given by $(F^*)_{F(p)}(\omega_{F(p)})(X_p) = \omega_{F(p)}((F_*)_p X_p)$.
- In fact, while we cannot pushforward vector fields, we can always pullback one-form fields:

- Just as we can pushforward tangent vectors
 (F_{*})_p : T_pM → T_{F(p)}N, the dual map can be used to pullback
 cotangent vectors/one-forms: (F^{*})_{F(p)} : T^{*}_{F(p)}N → T^{*}_pM
 given by (F^{*})_{F(p)}(ω_{F(p)})(X_p) = ω_{F(p)}((F_{*})_pX_p).
- In fact, while we cannot pushforward vector fields, we can always pullback one-form fields:
 (F*)ω(p)(X_p) = ω_{F(p)}((F_{*})_pX_p).

- Just as we can pushforward tangent vectors
 (F_{*})_p : T_pM → T_{F(p)}N, the dual map can be used to pullback
 cotangent vectors/one-forms: (F^{*})_{F(p)} : T^{*}_{F(p)}N → T^{*}_pM
 given by (F^{*})_{F(p)}(ω_{F(p)})(X_p) = ω_{F(p)}((F_{*})_pX_p).
- In fact, while we cannot pushforward vector fields, we can always pullback one-form fields:
 (F*)ω(p)(X_p) = ω_{F(p)}((F_{*})_pX_p).
- In coordinates,

- Just as we can pushforward tangent vectors
 (F_{*})_p : T_pM → T_{F(p)}N, the dual map can be used to pullback
 cotangent vectors/one-forms: (F^{*})_{F(p)} : T^{*}_{F(p)}N → T^{*}_pM
 given by (F^{*})_{F(p)}(ω_{F(p)})(X_p) = ω_{F(p)}((F_{*})_pX_p).
- In fact, while we cannot pushforward vector fields, we can always pullback one-form fields: (F*)ω(p)(X_p) = ω_{F(p)}((F_{*})_pX_p).
- In coordinates, $F * (dx^i)(\frac{\partial}{\partial x^j}) = dx^i(\frac{\partial F^k}{\partial x^j}\frac{\partial}{\partial x^k}) = \frac{\partial F^i}{\partial x^j}$, i.e, $F^*(dx^i) = dF^i = dF^i$.

- Just as we can pushforward tangent vectors
 (F_{*})_p : T_pM → T_{F(p)}N, the dual map can be used to pullback
 cotangent vectors/one-forms: (F^{*})_{F(p)} : T^{*}_{F(p)}N → T^{*}_pM
 given by (F^{*})_{F(p)}(ω_{F(p)})(X_p) = ω_{F(p)}((F_{*})_pX_p).
- In fact, while we cannot pushforward vector fields, we can always pullback one-form fields:
 (F*)ω(p)(X_p) = ω_{F(p)}((F_{*})_pX_p).
- In coordinates, $F * (dx^i)(\frac{\partial}{\partial x^j}) = dx^i(\frac{\partial F^k}{\partial x^j}\frac{\partial}{\partial x^k}) = \frac{\partial F^i}{\partial x^j}$, i.e, $F^*(dx^i) = dF^i = dF^i$.
- For ease of notation,

- Just as we can pushforward tangent vectors
 (F_{*})_p : T_pM → T_{F(p)}N, the dual map can be used to pullback
 cotangent vectors/one-forms: (F^{*})_{F(p)} : T^{*}_{F(p)}N → T^{*}_pM
 given by (F^{*})_{F(p)}(ω_{F(p)})(X_p) = ω_{F(p)}((F_{*})_pX_p).
- In fact, while we cannot pushforward vector fields, we can always pullback one-form fields: (F*)ω(p)(X_p) = ω_{F(p)}((F_{*})_pX_p).
- In coordinates, $F * (dx^i)(\frac{\partial}{\partial x^j}) = dx^i(\frac{\partial F^k}{\partial x^j}\frac{\partial}{\partial x^k}) = \frac{\partial F^i}{\partial x^j}$, i.e, $F^*(dx^i) = dF^i = dF^i$.
- For ease of notation, if we denote $F^*f = f \circ F$,

- Just as we can pushforward tangent vectors
 (F_{*})_p : T_pM → T_{F(p)}N, the dual map can be used to pullback
 cotangent vectors/one-forms: (F^{*})_{F(p)} : T^{*}_{F(p)}N → T^{*}_pM
 given by (F^{*})_{F(p)}(ω_{F(p)})(X_p) = ω_{F(p)}((F_{*})_pX_p).
- In fact, while we cannot pushforward vector fields, we can always pullback one-form fields:
 (F*)ω(p)(X_p) = ω_{F(p)}((F_{*})_pX_p).
- In coordinates, $F * (dx^i)(\frac{\partial}{\partial x^j}) = dx^i(\frac{\partial F^k}{\partial x^j}\frac{\partial}{\partial x^k}) = \frac{\partial F^i}{\partial x^j}$, i.e, $F^*(dx^i) = dF^i = dF^i$.
- For ease of notation, if we denote $F^*f = f \circ F$, then $F^*(\omega_i dx^i) = \omega_i \circ F dF^i = F^* \omega_i dF^* x^i$.

► < ∃ ►</p>

- Just as we can pushforward tangent vectors
 (F_{*})_p : T_pM → T_{F(p)}N, the dual map can be used to pullback
 cotangent vectors/one-forms: (F^{*})_{F(p)} : T^{*}_{F(p)}N → T^{*}_pM
 given by (F^{*})_{F(p)}(ω_{F(p)})(X_p) = ω_{F(p)}((F_{*})_pX_p).
- In fact, while we cannot pushforward vector fields, we can always pullback one-form fields:
 (F*)ω(p)(X_p) = ω_{F(p)}((F_{*})_pX_p).
- In coordinates, $F * (dx^i)(\frac{\partial}{\partial x^j}) = dx^i(\frac{\partial F^k}{\partial x^j}\frac{\partial}{\partial x^k}) = \frac{\partial F^i}{\partial x^j}$, i.e, $F^*(dx^i) = dF^i = dF^i$.
- For ease of notation, if we denote $F^*f = f \circ F$, then $F^*(\omega_i dx^i) = \omega_i \circ F dF^i = F^* \omega_i dF^* x^i$.
- As an example,

▶ < ≣ ▶</p>

- Just as we can pushforward tangent vectors
 (F_{*})_p : T_pM → T_{F(p)}N, the dual map can be used to pullback
 cotangent vectors/one-forms: (F^{*})_{F(p)} : T^{*}_{F(p)}N → T^{*}_pM
 given by (F^{*})_{F(p)}(ω_{F(p)})(X_p) = ω_{F(p)}((F_{*})_pX_p).
- In fact, while we cannot pushforward vector fields, we can always pullback one-form fields:
 (F*)ω(p)(X_p) = ω_{F(p)}((F_{*})_pX_p).
- In coordinates, $F * (dx^i)(\frac{\partial}{\partial x^j}) = dx^i(\frac{\partial F^k}{\partial x^j}\frac{\partial}{\partial x^k}) = \frac{\partial F^i}{\partial x^j}$, i.e, $F^*(dx^i) = dF^i = dF^i$.
- For ease of notation, if we denote $F^*f = f \circ F$, then $F^*(\omega_i dx^i) = \omega_i \circ F dF^i = F^* \omega_i dF^* x^i$.
- As an example, if $y = F(x) = x^2$ and $\omega = 3y^4 dy$, then $F * \omega = 3(x^2)^4 2x dx$.