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@ Discussed canonical coordinates for vector fields.

Lie bracket, Forms 2/9



@ Discussed canonical coordinates for vector fields.

@ Started motivating the Lie bracket.

Lie bracket, Forms 2/9



Lie bracket: Definition

Lie bracket, Forms 3/9



Lie bracket: Definition

o The expression —2Y(p)Xk(p) + 2 (p) Y*(p) actually

Oxk xk
defines a vector field (why?)
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@ Is there an coordinate-invariant way
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@ The expression —gTYki(p)Xk(p) + gTin(p) Y*(p) actually
defines a vector field (why?)

@ Is there an coordinate-invariant way of defining this vector
field?
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Lie bracket: Definition

@ The expression —gTYki(p)Xk(p) + gTin(p) Y*(p) actually
defines a vector field (why?)

@ Is there an coordinate-invariant way of defining this vector
field?

@ Def:
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Lie bracket: Definition

@ The expression —gTYki(p)Xk(p) + gTin(p) Y*(p) actually
defines a vector field (why?)

@ Is there an coordinate-invariant way of defining this vector
field?

@ Def: Let X, Y be smooth vector fields on a manifold M.
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Lie bracket: Definition

@ The expression —gTYki(p)Xk(p) + gTin(p) Y*(p) actually
defines a vector field (why?)

@ Is there an coordinate-invariant way of defining this vector
field?

@ Def: Let X, Y be smooth vector fields on a manifold M.
Then [X, Y]o(f) = Xp(Y(f)) — Yp(X(f)) is a vector field on
M
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Lie bracket: Definition

@ The expression —gTYki(p)Xk(p) + gTin(p) Y*(p) actually
defines a vector field (why?)

@ Is there an coordinate-invariant way of defining this vector
field?

@ Def: Let X, Y be smooth vector fields on a manifold M.
Then [X, Y]o(f) = Xp(Y(f)) — Yp(X(f)) is a vector field on
M called the Lie bracket of X and Y.
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Lie bracket: Definition

@ The expression —gTYki(p)Xk(p) + gTin(p) Y*(p) actually
defines a vector field (why?)

@ Is there an coordinate-invariant way of defining this vector
field?

@ Def: Let X, Y be smooth vector fields on a manifold M.
Then [X, Y]o(f) = Xp(Y(f)) — Yp(X(f)) is a vector field on
M called the Lie bracket of X and Y.

@ Lemma (proof by calculation):
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Lie bracket: Definition

@ The expression —gTYki(p)Xk(p) + gTin(p) Y*(p) actually
defines a vector field (why?)

@ Is there an coordinate-invariant way of defining this vector
field?

@ Def: Let X, Y be smooth vector fields on a manifold M.
Then [X, Y]o(f) = Xp(Y(f)) — Yp(X(f)) is a vector field on
M called the Lie bracket of X and Y.

@ Lemma (proof by calculation): The Lie bracket genuinely
defines a vector field
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Lie bracket: Definition

@ The expression —gTYki(p)Xk(p) + gTin(p) Y*(p) actually
defines a vector field (why?)

@ Is there an coordinate-invariant way of defining this vector
field?

@ Def: Let X, Y be smooth vector fields on a manifold M.
Then [X, Y]o(f) = Xp(Y(f)) — Yp(X(f)) is a vector field on
M called the Lie bracket of X and Y.

@ Lemma (proof by calculation): The Lie bracket genuinely
defines a vector field whose components are given above.
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o [X,Y] = —[Y,X]
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Lie bracket: Properties

e [X,Y]=-[Y,X]
e [X, Y] is multi-linear in X, Y.
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e [X,Y]=-[Y,X]
e [X, Y] is multi-linear in X, Y.

@ It is not associative! That is
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Lie bracket: Properties

o [X,Y]=-[Y,X].
e [X, Y] is multi-linear in X, Y.
@ It is not associative! Thatis [X,[Y, Z]] # [[X, Y], Z]!
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Lie bracket: Properties

o [X,Y]=-[Y,X].

e [X, Y] is multi-linear in X, Y.

@ It is not associative! Thatis [X,[Y, Z]] # [[X, Y], Z]! Indeed,
(X, 1Y, Z]]| +[Y.[Z,X]] +[Z,[X, Y]] =0 (Jacobi's identity).
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e [X, Y] is multi-linear in X, Y.

@ It is not associative! Thatis [X,[Y, Z]] # [[X, Y], Z]! Indeed,
(X, 1Y, Z]]| +[Y.[Z,X]] +[Z,[X, Y]] =0 (Jacobi's identity).

@ Any vector space equipped with
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Lie bracket: Properties

o [X,Y]=-[Y,X].

e [X, Y] is multi-linear in X, Y.

@ It is not associative! Thatis [X,[Y, Z]] # [[X, Y], Z]! Indeed,
(X, 1Y, Z]]| +[Y.[Z,X]] +[Z,[X, Y]] =0 (Jacobi's identity).

@ Any vector space equipped with such a “bracket”
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Lie bracket: Properties

o [X,Y]=-[Y,X]

e [X, Y] is multi-linear in X, Y.

@ It is not associative! Thatis [X,[Y, Z]] # [[X, Y], Z]! Indeed,
(X, [Y,Z]]| +[Y,[Z,X]] +[Z,[X, Y]] = 0 (Jacobi's identity).

@ Any vector space equipped with such a “bracket” is called a
Lie algebra.
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Lie bracket: Properties

o [X,Y]=-[Y,X]

e [X, Y] is multi-linear in X, Y.

@ It is not associative! Thatis [X,[Y, Z]] # [[X, Y], Z]! Indeed,
(X, [Y,Z]]| +[Y,[Z,X]] +[Z,[X, Y]] = 0 (Jacobi's identity).

@ Any vector space equipped with such a “bracket” is called a
Lie algebra. The space of smooth vector fields is an example.
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e If X, Y are coordinate vector fields,
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Lie bracket: Characterisation of coordinate vector fields

e If X, Y are coordinate vector fields, they Lie-commute (why?).
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Lie bracket: Characterisation of coordinate vector fields

e If X, Y are coordinate vector fields, they Lie-commute (why?).

e Conversely, Theorem (proof omitted):
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Lie bracket: Characterisation of coordinate vector fields

e If X, Y are coordinate vector fields, they Lie-commute (why?).

o Conversely, Theorem (proof omitted): If X!, X2 ..., Xk are
smooth Lie-commuting vector fields
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Lie bracket: Characterisation of coordinate vector fields

e If X, Y are coordinate vector fields, they Lie-commute (why?).

o Conversely, Theorem (proof omitted): If X!, X2 ..., Xk are
smooth Lie-commuting vector fields that are linearly

independent at p,
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Lie bracket: Characterisation of coordinate vector fields

e If X, Y are coordinate vector fields, they Lie-commute (why?).

o Conversely, Theorem (proof omitted): If X!, X2 ..., Xk are
smooth Lie-commuting vector fields that are linearly
independent at p, there is a neighbourhood
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Lie bracket: Characterisation of coordinate vector fields

e If X, Y are coordinate vector fields, they Lie-commute (why?).

o Conversely, Theorem (proof omitted): If X!, X2 ..., Xk are
smooth Lie-commuting vector fields that are linearly
independent at p, there is a neighbourhood and a coordinate

chart
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Lie bracket: Characterisation of coordinate vector fields

e If X, Y are coordinate vector fields, they Lie-commute (why?).

o Conversely, Theorem (proof omitted): If X!, X2 ..., Xk are
smooth Lie-commuting vector fields that are linearly
independent at p, there is a neighbourhood and a coordinate

chart such that X/ = %.
X
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Cotangent bundle and one-forms
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@ Recall that T*M
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Cotangent bundle and one-forms

o Recall that T*M is set theoretically, Uy T;M. T*M is a
vector bundle over M.
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o Recall that T*M is set theoretically, Uy T;M. T*M is a
vector bundle over M.

e Given a coordinate chart (U, x),
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Cotangent bundle and one-forms

o Recall that T*M is set theoretically, Uy T;M. T*M is a
vector bundle over M.

@ Given a coordinate chart (U, x), a local smoothly varying
basis for T*M
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Cotangent bundle and one-forms

o Recall that T*M is set theoretically, Uy T;M. T*M is a
vector bundle over M.

@ Given a coordinate chart (U, x), a local smoothly varying
basis for T*M is given by (82,-)*.
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Cotangent bundle and one-forms

o Recall that T*M is set theoretically, Uy T;M. T*M is a
vector bundle over M.

@ Given a coordinate chart (U, x), a local smoothly varying

basis for T*M is given by (82,-)*. A one-form is an element of

TiM.
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Cotangent bundle and one-forms

o Recall that T*M is set theoretically, Uy T;M. T*M is a
vector bundle over M.

@ Given a coordinate chart (U, x), a local smoothly varying

basis for T*M is given by (82,-)*. A one-form is an element of

T;;I\/I. A one-form field
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Cotangent bundle and one-forms

o Recall that T*M is set theoretically, Uy T;M. T*M is a
vector bundle over M.

@ Given a coordinate chart (U, x), a local smoothly varying
basis for T*M is given by (82,-)*. A one-form is an element of
T,M. A one-form field is a collection of smoothly varying
one-forms (
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Cotangent bundle and one-forms

o Recall that T*M is set theoretically, Uy T;M. T*M is a
vector bundle over M.

@ Given a coordinate chart (U, x), a local smoothly varying
basis for T*M is given by (82,-)*. A one-form is an element of
T,M. A one-form field is a collection of smoothly varying
one-forms (a smooth section of T*M), i.e.,
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Cotangent bundle and one-forms

o Recall that T*M is set theoretically, Uy T;M. T*M is a
vector bundle over M.

@ Given a coordinate chart (U, x), a local smoothly varying
basis for T*M is given by (82,-)*. A one-form is an element of
T,M. A one-form field is a collection of smoothly varying
one-forms (a smooth section of T*M), i.e., w: M — T*M

such that
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Cotangent bundle and one-forms

o Recall that T*M is set theoretically, Uy T;M. T*M is a
vector bundle over M.

@ Given a coordinate chart (U, x), a local smoothly varying
basis for T*M is given by (82,-)*. A one-form is an element of
T,M. A one-form field is a collection of smoothly varying
one-forms (a smooth section of T*M), i.e., w: M — T*M

such that w(p) € T;M and
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Cotangent bundle and one-forms

o Recall that T*M is set theoretically, Uy T;M. T*M is a
vector bundle over M.

@ Given a coordinate chart (U, x), a local smoothly varying
basis for T*M is given by (82,-)*. A one-form is an element of
T,M. A one-form field is a collection of smoothly varying
one-forms (a smooth section of T*M), i.e., w: M — T*M
such that w(p) € T;M and around every point, there exists a
coordinate chart (U, x)
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Cotangent bundle and one-forms

o Recall that T*M is set theoretically, Uy T;M. T*M is a
vector bundle over M.

@ Given a coordinate chart (U, x), a local smoothly varying
basis for T*M is given by (82,-)*. A one-form is an element of
T,M. A one-form field is a collection of smoothly varying
one-forms (a smooth section of T*M), i.e., w: M — T*M

such that w(p) € T;M and around every point, there exists a

coordinate chart (U, x) such that w = Ziw;(%)* where the

functions w; are smooth.
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Cotangent bundle and one-forms

o Recall that T*M is set theoretically, Uy T;M. T*M is a
vector bundle over M.

@ Given a coordinate chart (U, x), a local smoothly varying
basis for T*M is given by (82,-)*. A one-form is an element of
T,M. A one-form field is a collection of smoothly varying
one-forms (a smooth section of T*M), i.e., w: M — T*M

such that w(p) € T;M and around every point, there exists a

coordinate chart (U, x) such that w = Ziw;(%)* where the

functions w; are smooth.

@ As before,
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Cotangent bundle and one-forms

o Recall that T*M is set theoretically, Uy T;M. T*M is a
vector bundle over M.

@ Given a coordinate chart (U, x), a local smoothly varying
basis for T*M is given by (82,-)*. A one-form is an element of
T,M. A one-form field is a collection of smoothly varying
one-forms (a smooth section of T*M), i.e., w: M — T*M

such that w(p) € T;M and around every point, there exists a

coordinate chart (U, x) such that w = Ziw;(%)* where the

functions w; are smooth.

@ As before, if w is smooth in one chart,
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Cotangent bundle and one-forms

o Recall that T*M is set theoretically, Uy T;M. T*M is a
vector bundle over M.

@ Given a coordinate chart (U, x), a local smoothly varying
basis for T*M is given by (82,-)*. A one-form is an element of
T,M. A one-form field is a collection of smoothly varying
one-forms (a smooth section of T*M), i.e., w: M — T*M

such that w(p) € T;M and around every point, there exists a

coordinate chart (U, x) such that w = Ziw;(%)* where the

functions w; are smooth.

@ As before, if w is smooth in one chart, it is so in all charts:
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Cotangent bundle and one-forms

o Recall that T*M is set theoretically, Uy T;M. T*M is a
vector bundle over M.

@ Given a coordinate chart (U, x) a local smoothly varying
basis for T*M is given by ( -)*. A one-form is an element of
T,M. A one-form field is a coIIectlon of smoothly varying
one—forms (a smooth section of T*M), i.e., w: M — T*M

such that w(p) € T;M and around every point, there exists a

coordinate chart (U, x) such that w =), ou,(a‘9 )* where the

functions w; are smooth.

o As before 'if w is smooth in one chart, it is so in all charts:
(why?).

Wi = wj 6“'
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Cotangent bundle and one-forms

o Recall that T*M is set theoretically, Uy T;M. T*M is a
vector bundle over M.

@ Given a coordinate chart (U, x) a local smoothly varying
basis for T*M is given by ( -)*. A one-form is an element of
T,M. A one-form field is a coIIectlon of smoothly varying
one—forms (a smooth section of T*M), i.e., w: M — T*M

such that w(p) € T;M and around every point, there exists a

coordinate chart (U, x) such that w =), ou,(a‘9 )* where the

functions w; are smooth.

o As before 'if w is smooth in one chart, it is so in all charts:
(why?).
@ Moreover, given an atlas of U, of M,

Wi = wj 6“'
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Cotangent bundle and one-forms

o Recall that T*M is set theoretically, Uy T;M. T*M is a
vector bundle over M.

@ Given a coordinate chart (U, x) a local smoothly varying
basis for T*M is given by ( -)*. A one-form is an element of
T,M. A one-form field is a coIIectlon of smoothly varying
one—forms (a smooth section of T*M), i.e., w: M — T*M

such that w(p) € T;M and around every point, there exists a

coordinate chart (U, x) such that w =), ou,(a‘9 )* where the

functions w; are smooth.

o As before 'if w is smooth in one chart, it is so in all charts:
(why?).
@ Moreover, given an atlas of U, of M, and a collection of

Wi = wj 6“'

functions w; o such that
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Cotangent bundle and one-forms

o Recall that T*M is set theoretically, Uy T;M. T*M is a
vector bundle over M.

@ Given a coordinate chart (U, x) a local smoothly varying
basis for T*M is given by ( -)*. A one-form is an element of
T,M. A one-form field is a coIIectlon of smoothly varying
one—forms (a smooth section of T*M), i.e., w: M — T*M

such that w(p) € T;M and around every point, there exists a

coordinate chart (U, x) such that w =), ou,(a‘9 )* where the

functions w; are smooth.

o As before 'if w is smooth in one chart, it is so in all charts:
(why?).
@ Moreover, given an atlas of U, of M, and a collection of

Wi = wj 6“'

functions w; o such that on U, N Ug,
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Cotangent bundle and one-forms

o Recall that T*M is set theoretically, Uy T;M. T*M is a
vector bundle over M.

@ Given a coordinate chart (U, x) a local smoothly varying
basis for T*M is given by ( -)*. A one-form is an element of
T,M. A one-form field is a coIIectlon of smoothly varying
one—forms (a smooth section of T*M), i.e., w: M — T*M

such that w(p) € T;M and around every point, there exists a

coordinate chart (U, x) such that w =), ou,(a‘9 )* where the

functions w; are smooth.

o As before 'if w is smooth in one chart, it is so in all charts:
(why?).

@ Moreover, given an atlas of U, of M, and a collection of

. 8xJ
functions w;j o such that on U, N Ug, wj o = wjgz—7 6m‘

Wi = wj 6“'

Lie bracket, Forms 6/9



Cotangent bundle and one-forms

o Recall that T*M is set theoretically, Uy T;M. T*M is a
vector bundle over M.

@ Given a coordinate chart (U, x) a local smoothly varying
basis for T*M is given by ( -)*. A one-form is an element of
T,M. A one-form field is a coIIectlon of smoothly varying
one—forms (a smooth section of T*M), i.e., w: M — T*M

such that w(p) € T;M and around every point, there exists a

coordinate chart (U, x) such that w =), ou,(a‘9 )* where the

functions w; are smooth.

o As before 'if w is smooth in one chart, it is so in all charts:
Wi = wj 6”' (why?).

@ Moreover, given an atlas of U, of M, and a collection of

. 8xJ
functions w;j o such that on U, N Ug, wj o = wjgz—7 6m‘ then
there exists a smooth one-form field w on M
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Cotangent bundle and one-forms

o Recall that T*M is set theoretically, Uy T;M. T*M is a
vector bundle over M.

@ Given a coordinate chart (U, x) a local smoothly varying
basis for T*M is given by ( -)*. A one-form is an element of
T,M. A one-form field is a coIIectlon of smoothly varying
one—forms (a smooth section of T*M), i.e., w: M — T*M

such that w(p) € T;M and around every point, there exists a

coordinate chart (U, x) such that w =), ou,(a‘9 )* where the

functions w; are smooth.

o As before 'if w is smooth in one chart, it is so in all charts:
(why?).
@ Moreover, given an atlas of U, of M, and a collection of

Wi = wj 6“'

. 8xJ
functions w;j o such that on U, N Ug, wj o = wjgz—7 6m‘ then
there exists a smooth one-form field w on M whose coordinate
representations are given by wj o (why?)
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@ Given a smooth function f : M — R,
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@ Given a smooth function f : M — R, what is its derivative?
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@ Given a smooth function f : M — R, what is its derivative?

@ Sure, one way to answer the question
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Differential of a function

@ Given a smooth function f : M — R, what is its derivative?

@ Sure, one way to answer the question is to say it is f..
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@ Given a smooth function f : M — R, what is its derivative?

@ Sure, one way to answer the question is to say it is f..
However, f, can at best
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Differential of a function

@ Given a smooth function f : M — R, what is its derivative?

@ Sure, one way to answer the question is to say it is f..
However, f, can at best be thought of as a function
f.: TM — TR.
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Differential of a function

@ Given a smooth function f : M — R, what is its derivative?

@ Sure, one way to answer the question is to say it is f..
However, f, can at best be thought of as a function
f. : TM — TR. On the other hand,
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Differential of a function

@ Given a smooth function f : M — R, what is its derivative?

@ Sure, one way to answer the question is to say it is f..
However, f, can at best be thought of as a function
f.: TM — TR. On the other hand, if M = R",
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Differential of a function

@ Given a smooth function f : M — R, what is its derivative?

@ Sure, one way to answer the question is to say it is f..
However, f, can at best be thought of as a function
f. : TM — TR. On the other hand, if M = R", we can think
of the derivative as Df : R” — R".
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Differential of a function

@ Given a smooth function f : M — R, what is its derivative?

@ Sure, one way to answer the question is to say it is f..
However, f, can at best be thought of as a function
f. : TM — TR. On the other hand, if M = R", we can think
of the derivative as Df : R” — R".

@ So is there a function df : M — something ?
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Differential of a function

@ Given a smooth function f : M — R, what is its derivative?

@ Sure, one way to answer the question is to say it is f..
However, f, can at best be thought of as a function
f. : TM — TR. On the other hand, if M = R", we can think
of the derivative as Df : R” — R".

@ So is there a function df : M — something ?

@ The most naive way to define it is
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Differential of a function

@ Given a smooth function f : M — R, what is its derivative?

@ Sure, one way to answer the question is to say it is f..
However, f, can at best be thought of as a function
f. : TM — TR. On the other hand, if M = R", we can think
of the derivative as Df : R” — R".

@ So is there a function df : M — something ?
@ The most naive way to define it is take a chart (U, x) and
take (2f,..)).

8X17
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Differential of a function

@ Given a smooth function f : M — R, what is its derivative?

@ Sure, one way to answer the question is to say it is f..
However, f, can at best be thought of as a function
f. : TM — TR. On the other hand, if M = R", we can think
of the derivative as Df : R” — R".

@ So is there a function df : M — something ?
@ The most naive way to define it is take a chart (U, x) and

take (%, ...). However, when we change charts,
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Differential of a function

@ Given a smooth function f : M — R, what is its derivative?

@ Sure, one way to answer the question is to say it is f..
However, f, can at best be thought of as a function
f. : TM — TR. On the other hand, if M = R", we can think
of the derivative as Df : R” — R".

@ So is there a function df : M — something ?
@ The most naive way to define it is take a chart (U, x) and

take (2£,...). However, when we change charts, these
Ox

vectors change to

Lie bracket, Forms 7/9



Differential of a function

@ Given a smooth function f : M — R, what is its derivative?

@ Sure, one way to answer the question is to say it is f..
However, f, can at best be thought of as a function
f. : TM — TR. On the other hand, if M = R", we can think
of the derivative as Df : R” — R".

@ So is there a function df : M — something ?

@ The most naive way to define it is take a chart (U, x) and

take ( xl"")' However, when we change charts, these
of 0 : :
vectors change to (5 ; 8;(1 ,...) which is
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Differential of a function

@ Given a smooth function f : M — R, what is its derivative?

@ Sure, one way to answer the question is to say it is f..
However, f, can at best be thought of as a function
f. : TM — TR. On the other hand, if M = R", we can think
of the derivative as Df : R” — R".

@ So is there a function df : M — something 7

e The most naive way to define it is take a chart (U, x) and

take (2 ). However, when we change charts, these

BT
vectors change to (gxf, g;l ,...) which is exactly the way

one-form fields change!
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Differential of a function

@ Given a smooth function f : M — R, what is its derivative?

@ Sure, one way to answer the question is to say it is f..
However, f, can at best be thought of as a function
f. : TM — TR. On the other hand, if M = R", we can think
of the derivative as Df : R” — R".

@ So is there a function df : M — something ?

@ The most naive way to define it is take a chart (U, x) and

take (2f,...). However, when we change charts, these

Oxl? ,
vectors change to (%%,.

one-form fields change!

..) which is exactly the way

@ Thus df must be thought of as a one-form field!
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Differential of a function
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e Invariantly speaking, df(X,) := Xp(f).
o Suppose x' are coordinates, then dx"(%) = (51’ ie.,

dx’ = (82,-)*.
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dx’ = (82,)*. Thus any one-form field w
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Differential of a function

e Invariantly speaking, df(X,) := Xp(f).
o Suppose x' are coordinates, then dx"(%) = (51’ ie.,

dx’ = (:2)*. Thus any one-form field w is w = w;dx'.
Ox
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Differential of a function

e Invariantly speaking, df(X,) := Xp(f).
o Suppose x' are coordinates, then dx"(%) = (51’ ie.,
dx’ = (86,)*. Thus any one-form field w is w = w;dx’.
X
@ Suppose 7 is a smooth path,
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Differential of a function

e Invariantly speaking, df(X,) := Xp(f).
@ Suppose x' are coordinates, then dx"(%) = (51’ i.e.,
dx’ = (82,)*. Thus any one-form field w is w = w;dx'.
@ Suppose 7 is a smooth path, then df (y') = +/(f) = (f o).
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@ Suppose 7 is a smooth path, then df (y') = +/(f) = (f o).
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o Suppose x' are coordinates, then dx"(%) = (51’ ie.,
dx’ = (82,)*. Thus any one-form field w is w = w;dx'.

@ Suppose 7 is a smooth path, then df (y') = +/(f) = (f o).
Thus in some sense, df is the “right” analogue of
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Differential of a function

e Invariantly speaking, df(X,) := Xp(f).

o Suppose x' are coordinates, then dx"(%) = (51’ ie.,
dx’ = (82,)*. Thus any one-form field w is w = w;dx'.

@ Suppose 7 is a smooth path, then df (y') = +/(f) = (f o).
Thus in some sense, df is the “right” analogue of Newton's
infinitesimals.
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Differential of a function

e Invariantly speaking, df(X,) := Xp(f).

o Suppose x' are coordinates, then dx"(%) = (51’ ie.,
dx’ = (82,)*. Thus any one-form field w is w = w;dx'.

@ Suppose 7 is a smooth path, then df (y') = +/(f) = (f o).
Thus in some sense, df is the “right” analogue of Newton's
infinitesimals.

o d(fg) = dfg + fdg,d(f +g) = df +dg,d(f/g) =
dfg—tdg _
=gz d(c)=0.

Lie bracket, Forms 8/9



Differential of a function

e Invariantly speaking, df(X,) := Xp(f).

o Suppose x' are coordinates, then dx"(%) = (51’ ie.,
dx’ = (82,)*. Thus any one-form field w is w = w;dx'.

@ Suppose 7 is a smooth path, then df (y') = +/(f) = (f o).
Thus in some sense, df is the “right” analogue of Newton's
infinitesimals.

o d(fg) = dfg + fdg,d(f +g) = df +dg,d(f/g) =
dfgg#, d(c) = 0. Moreover, if df =0 on a connected

manifold,
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Differential of a function

e Invariantly speaking, df(X,) := Xp(f).

® Suppose x' are coordinates, then dx'(57) = ¢, i.e.,

dx’ = (82,)*. Thus any one-form field w is w = w;dx'.

@ Suppose 7 is a smooth path, then df (y') = +/(f) = (f o).
Thus in some sense, df is the “right” analogue of Newton's
infinitesimals.

o d(fg) =dfg + fdg,d(f +g) =df +dg,d(f/g) =
dfgg#, d(c) = 0. Moreover, if df =0 on a connected

manifold, f is constant on the manifold:
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Differential of a function

e Invariantly speaking, df(X,) := Xp(f).

o Suppose x' are coordinates, then dx"(%) = (51’ ie.,
dx’ = (82,)*. Thus any one-form field w is w = w;dx'.

@ Suppose 7 is a smooth path, then df (y') = +/(f) = (f o).
Thus in some sense, df is the “right” analogue of Newton's
infinitesimals.

o d(fg) = dfg + fdg,d(f +g) = df +dg,d(f/g) =
dfgg#, d(c) = 0. Moreover, if df =0 on a connected
manifold, f is constant on the manifold: Indeed, let f(p) = ¢
for some p.
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Differential of a function

e Invariantly speaking, df(X,) := Xp(f).

o Suppose x' are coordinates, then dx"(%) = (51’ ie.,
dx’ = (82,)*. Thus any one-form field w is w = w;dx'.

@ Suppose 7 is a smooth path, then df (y') = +/(f) = (f o).
Thus in some sense, df is the “right” analogue of Newton's
infinitesimals.

o d(fg) = dfg + fdg,d(f +g) = df +dg,d(f/g) =
dfgg#, d(c) = 0. Moreover, if df =0 on a connected
manifold, f is constant on the manifold: Indeed, let f(p) = ¢
for some p. Then the set of all ¢ € M such that f(q) = p is
non-empty and closed.
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Differential of a function

e Invariantly speaking, df(X,) := Xp(f).

® Suppose x' are coordinates, then dx'(57) = ¢, i.e.,

dx’ = (82,)*. Thus any one-form field w is w = w;dx'.

@ Suppose 7 is a smooth path, then df (y') = +/(f) = (f o).
Thus in some sense, df is the “right” analogue of Newton's
infinitesimals.

o d(fg) =dfg + fdg,d(f +g) =df +dg,d(f/g) =
dfgg#, d(c) = 0. Moreover, if df =0 on a connected
manifold, f is constant on the manifold: Indeed, let f(p) = ¢
for some p. Then the set of all ¢ € M such that f(q) = p is
non-empty and closed. It is also open:
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Differential of a function

e Invariantly speaking, df(X,) := Xp(f).

® Suppose x' are coordinates, then dx'(57) = ¢, i.e.,

dx' = (82,)*. Thus any one-form field w is w = w;jdx’.

@ Suppose 7 is a smooth path, then df (y') = +/(f) = (f o).
Thus in some sense, df is the “right” analogue of Newton's
infinitesimals.

o d(fg) =dfg + fdg,d(f +g) =df +dg,d(f/g) =
dfgg#, d(c) = 0. Moreover, if df =0 on a connected
manifold, f is constant on the manifold: Indeed, let f(p) = ¢
for some p. Then the set of all ¢ € M such that f(q) = p is
non-empty and closed. It is also open: on a coordinate
neighbourhood of g, df = 0 iff g)fi =0 and hence f = c on
that neighbourhood.
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Differential of a function

e Invariantly speaking, df(X,) := Xp(f).

® Suppose x' are coordinates, then dx'(57) = ¢, i.e.,

dx’ = (82,)*. Thus any one-form field w is w = w;dx'.

@ Suppose 7 is a smooth path, then df (y') = +/(f) = (f o).
Thus in some sense, df is the “right” analogue of Newton's
infinitesimals.

o d(fg) =dfg + fdg,d(f +g) =df +dg,d(f/g) =
dfgg#, d(c) = 0. Moreover, if df =0 on a connected
manifold, f is constant on the manifold: Indeed, let f(p) = ¢
for some p. Then the set of all ¢ € M such that f(q) = p is
non-empty and closed. It is also open: on a coordinate
neighbourhood of g, df = 0 iff 2% =0 and hence f = ¢ on

ox!
that neighbourhood. By connectedness we are done. O
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@ Just as we can pushforward tangent vectors
(F*)p . TPM — TF(p)N,
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@ Just as we can pushforward tangent vectors
(Fi)p : ToM — Tr(p)N, the dual map can be used to pullback
cotangent vectors/one-forms:
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Pullback

@ Just as we can pushforward tangent vectors
(Fi)p : ToM — Tr(p)N, the dual map can be used to pullback
cotangent vectors/one-forms: (F*)g(,) : TEN = T;M

given by
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Pullback

@ Just as we can pushforward tangent vectors
(Fi)p : ToM — Tr(p)N, the dual map can be used to pullback
cotangent vectors/one-forms: (F*)g(,) : TEN = T;M

given by (F*),_—(p)(wp(p))(Xp) = wF(p)((F*)po).
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Pullback

@ Just as we can pushforward tangent vectors
(Fi)p : ToM — Tr(p)N, the dual map can be used to pullback
cotangent vectors/one-forms: (F*)g(,) : TEN = T;M

given by (F*)r(p)(wr(p))(Xp) = wr(p)((F)pXp)-
@ In fact,
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cotangent vectors/one-forms: (F*)g(,) : TEN = T;M

given by (F*)r(p)(wr(p))(Xp) = wr(p)((F)pXp)-
@ In fact, while we cannot pushforward vector fields,
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(Fi)p : ToM — Tr(p)N, the dual map can be used to pullback
cotangent vectors/one-forms: (F*)g(,) : TEN = T;M
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@ Just as we can pushforward tangent vectors
(Fi)p : ToM — Tr(p)N, the dual map can be used to pullback
cotangent vectors/one-forms: (F*)g(,) : TEN = T;M
given by (F*)r(p)(wr(p))(Xp) = wr(p)((F<)pXp).

@ In fact, while we cannot pushforward vector fields, we can
always pullback one-form fields:

(F*)w(p)(Xp) = wr(p)((Fe)pXp)-
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Pullback

@ Just as we can pushforward tangent vectors
(Fi)p : ToM — Tr(p)N, the dual map can be used to pullback
cotangent vectors/one-forms: (F*)g(,) : TEN = T;M
given by (F*)r(p)(wr(p))(Xp) = wr(p)((F<)pXp).

@ In fact, while we cannot pushforward vector fields, we can
always pullback one-form fields:

(F*)w(p)(Xp) = wr(p)((Fe)pXp)-

@ In coordinates,
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Pullback

@ Just as we can pushforward tangent vectors
(Fi)p : ToM — Tr(p)N, the dual map can be used to pullback
cotangent vectors/one-forms: (F*)g(,) : TEN = T;M
given by (F*)r(p)(wr(p))(Xp) = wr(p)((F<)pXp).

@ In fact, while we cannot pushforward vector fields, we can
always pullback one-form fields:

(F*)W(P)(Xp) = WF(p)((F*)po)-
@ In coordinates, F x (dx")(%) = dx"(%—’;%k) = gz, ie,
F*(dx') = dF' = dF'.
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Pullback

@ Just as we can pushforward tangent vectors
(Fi)p : ToM — Tr(p)N, the dual map can be used to pullback
cotangent vectors/one-forms: (F*)g(,) : TEN = T;M
given by (F*)r(p)(wr(p))(Xp) = wr(p)((F<)pXp).

@ In fact, while we cannot pushforward vector fields, we can
always pullback one-form fields:

(F*)W(P)(Xp) = WF(p)((F*)po)-
@ In coordinates, F x (dx")(%) = dx"(%—’;%k) = gz, ie,
F*(dx') = dF' = dF'.

@ For ease of notation,
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@ Just as we can pushforward tangent vectors
(Fi)p : ToM — Tr(p)N, the dual map can be used to pullback
cotangent vectors/one-forms: (F*)g(,) : TEN = T;M
given by (F*)r(p)(wr(p))(Xp) = wr(p)((F<)pXp).

@ In fact, while we cannot pushforward vector fields, we can
always pullback one-form fields:

(F*)W(P)(Xp) = WF(p)((F*)po)-
@ In coordinates, F x (dx")(%) = dx"(%—’;%k) = gz, ie,
F*(dx') = dF' = dF'.

@ For ease of notation, if we denote F*f = f o F,
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Pullback

@ Just as we can pushforward tangent vectors
(Fi)p : ToM — Tr(p)N, the dual map can be used to pullback
cotangent vectors/one-forms: (F*)g(,) : TEN = T;M
given by (F*)r(p)(wr(p))(Xp) = wr(p)((F<)pXp).

@ In fact, while we cannot pushforward vector fields, we can
always pullback one-form fields:

(F*)W(P)(Xp) = WF(p)((F*)po)-

@ In coordinates, F x (dx")(%) = dx"(%—’;%k) = gg ie,
F*(dx") = dF'" = dF".

@ For ease .of notation, if we denote Fff =foF, then
F*(wjdx') = w;j o FdF' = F*w;dF*x'.
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Pullback

@ Just as we can pushforward tangent vectors
(Fi)p : ToM — Tr(p)N, the dual map can be used to pullback
cotangent vectors/one-forms: (F*)g(,) : TEN = T;M
given by (F*)r(p)(wr(p))(Xp) = wr(p)((F<)pXp)-

@ In fact, while we cannot pushforward vector fields, we can
always pullback one-form fields:

(F*)W(P)(Xp) = WF(p)((F*)po)-

@ In coordinates, F x (dx")(%) = dx"(%—’;%k) = gg ie,
F*(dx") = dF'" = dF".

@ For ease .of notation, if we denote Fff =foF, then
F*(wjdx') = w;j o FdF' = F*w;dF*x'.

@ As an example,
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Pullback

@ Just as we can pushforward tangent vectors
(Fi)p : ToM — Tr(p)N, the dual map can be used to pullback
cotangent vectors/one-forms: (F*)g(,) : TEN = T;M
given by (F*)r(p)(wr(p))(Xp) = wr(p)((F<)pXp).

@ In fact, while we cannot pushforward vector fields, we can
always pullback one-form fields:

(F*)W(P)(Xp) = WF(p)((F*)po)-

@ In coordinates, F x (dx")(%) = dx"(%—’;%k) = gg ie,
F*(dx') = dF' = dF'.

o For ease of notation, if we denote F*f = f o F, then
F*(wjdx') = w;j o FdF' = F*w;dF*x'.

@ As an example, if y = F(x) = x? and w = 3y*dy, then
F % w = 3(x?)*2xdx.
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