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Recap

Discussed canonical coordinates for vector fields.

Started motivating the Lie bracket.
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Lie bracket: Definition

The expression −∂Y i

∂xk
(p)X k(p) + ∂X i

∂xk
(p)Y k(p) actually

defines a vector field (why?)

Is there an coordinate-invariant way of defining this vector
field?

Def: Let X ,Y be smooth vector fields on a manifold M.
Then [X ,Y ]p(f ) = Xp(Y (f ))− Yp(X (f )) is a vector field on
M called the Lie bracket of X and Y .

Lemma (proof by calculation): The Lie bracket genuinely
defines a vector field whose components are given above.
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Lie bracket: Properties

[X ,Y ] = −[Y ,X ].

[X ,Y ] is multi-linear in X ,Y .

It is not associative! That is [X , [Y ,Z ]] 6= [[X ,Y ],Z ]! Indeed,
[X , [Y ,Z ]] + [Y , [Z ,X ]] + [Z , [X ,Y ]] = 0 (Jacobi’s identity).

Any vector space equipped with such a “bracket” is called a
Lie algebra. The space of smooth vector fields is an example.
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Lie bracket: Characterisation of coordinate vector fields

If X ,Y are coordinate vector fields, they Lie-commute (why?).

Conversely, Theorem (proof omitted): If X 1,X 2, . . . ,X k are
smooth Lie-commuting vector fields that are linearly
independent at p, there is a neighbourhood and a coordinate
chart such that X i = ∂

∂x i
.
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Cotangent bundle and one-forms

Recall that T ∗M is set theoretically, ∪pT ∗pM. T ∗M is a
vector bundle over M.

Given a coordinate chart (U, x), a local smoothly varying
basis for T ∗M is given by ( ∂

∂x i
)∗. A one-form is an element of

T ∗pM. A one-form field is a collection of smoothly varying
one-forms (a smooth section of T ∗M), i.e., ω : M → T ∗M
such that ω(p) ∈ T ∗pM and around every point, there exists a

coordinate chart (U, x) such that ω =
∑

i ωi (
∂
∂x i

)∗ where the
functions ωi are smooth.

As before, if ω is smooth in one chart, it is so in all charts:
ω̃i = ωj

∂x j

∂x̃ i
(why?).

Moreover, given an atlas of Uα of M, and a collection of

functions ωi ,α such that on Uα ∩ Uβ, ωi ,α = ωj ,β
∂x jβ
∂xαi then

there exists a smooth one-form field ω on M whose coordinate
representations are given by ωi ,α (why?)
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Differential of a function

Given a smooth function f : M → R, what is its derivative?

Sure, one way to answer the question is to say it is f∗.
However, f∗ can at best be thought of as a function
f∗ : TM → TR. On the other hand, if M = Rn, we can think
of the derivative as Df : Rn → Rn.

So is there a function df : M → something ?

The most naive way to define it is take a chart (U, x) and
take ( ∂f

∂x1
, . . .). However, when we change charts, these

vectors change to ( ∂f
∂x i

∂x i

∂x̃1
, . . .) which is exactly the way

one-form fields change!

Thus df must be thought of as a one-form field!
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Differential of a function

Invariantly speaking, df (Xp) := Xp(f ).

Suppose x i are coordinates, then dx i ( ∂
∂x j

) = δij , i.e.,

dx i = ( ∂
∂x i

)∗. Thus any one-form field ω is ω = ωidx
i .

Suppose γ is a smooth path, then df (γ′) = γ′(f ) = (f ◦ γ)′.
Thus in some sense, df is the “right” analogue of Newton’s
infinitesimals.

d(fg) = dfg + fdg , d(f + g) = df + dg , d(f /g) =
dfg−fdg

g2 , d(c) = 0. Moreover, if df ≡ 0 on a connected

manifold, f is constant on the manifold: Indeed, let f (p) = c
for some p. Then the set of all q ∈ M such that f (q) = p is
non-empty and closed. It is also open: on a coordinate
neighbourhood of q, df = 0 iff ∂f

∂x i
= 0 and hence f = c on

that neighbourhood. By connectedness we are done.
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Pullback

Just as we can pushforward tangent vectors
(F∗)p : TpM → TF (p)N, the dual map can be used to pullback
cotangent vectors/one-forms: (F ∗)F (p) : T ∗F (p)N → T ∗pM

given by (F ∗)F (p)(ωF (p))(Xp) = ωF (p)((F∗)pXp).

In fact, while we cannot pushforward vector fields, we can
always pullback one-form fields:
(F ∗)ω(p)(Xp) = ωF (p)((F∗)pXp).

In coordinates, F ∗ (dx i )( ∂
∂x j

) = dx i (∂F
k

∂x j
∂
∂xk

) = ∂F i

∂x j
, i.e,

F ∗(dx i ) = dF i = dF i .

For ease of notation, if we denote F ∗f = f ◦ F , then
F ∗(ωidx

i ) = ωi ◦ FdF i = F ∗ωidF
∗x i .

As an example, if y = F (x) = x2 and ω = 3y4dy , then
F ∗ ω = 3(x2)42xdx .
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