MA 229/MA 235 - Lecture 14

IISc

Submanifolds

1/9

Recap

• Proved a special case of Whitney's embedding theorem.

- Proved a special case of Whitney's embedding theorem.
- IFT and constant rank theorem for manifolds.

- Proved a special case of Whitney's embedding theorem.
- IFT and constant rank theorem for manifolds.
- Slice charts for embedded submanifolds.

Submanifolds

æ

Э

• Let M, N be smooth manifolds with or without boundary,

• Let M, N be smooth manifolds with or without boundary, $F: M \rightarrow N$ be a smooth map,

Let M, N be smooth manifolds with or without boundary,
 F : M → N be a smooth map, and S ⊂ M be an immersed or embedded submanifold, then

Let M, N be smooth manifolds with or without boundary,
 F : M → N be a smooth map, and S ⊂ M be an immersed or embedded submanifold, then F : S → N is also smooth.

Let M, N be smooth manifolds with or without boundary,
 F: M → N be a smooth map, and S ⊂ M be an immersed or embedded submanifold, then F : S → N is also smooth.
 (Proof: Composition with inclusion.)

- Let M, N be smooth manifolds with or without boundary,
 F : M → N be a smooth map, and S ⊂ M be an immersed or embedded submanifold, then F : S → N is also smooth.
 (Proof: Composition with inclusion.)
- However, restricting to the codomain is more subtle. (Example:

- Let M, N be smooth manifolds with or without boundary,
 F : M → N be a smooth map, and S ⊂ M be an immersed or embedded submanifold, then F : S → N is also smooth.
 (Proof: Composition with inclusion.)
- However, restricting to the codomain is more subtle.
 (Example: G(t) = (sin(2t), sin(t)) with its domain extended to ℝ

- Let M, N be smooth manifolds with or without boundary,
 F : M → N be a smooth map, and S ⊂ M be an immersed or embedded submanifold, then F : S → N is also smooth.
 (Proof: Composition with inclusion.)
- However, restricting to the codomain is more subtle.
 (Example: G(t) = (sin(2t), sin(t)) with its domain extended to ℝ is not continuous to the figure-8

- Let M, N be smooth manifolds with or without boundary,
 F : M → N be a smooth map, and S ⊂ M be an immersed or embedded submanifold, then F : S → N is also smooth.
 (Proof: Composition with inclusion.)
- However, restricting to the codomain is more subtle.
 (Example: G(t) = (sin(2t), sin(t)) with its domain extended to ℝ is not continuous to the figure-8 but is smooth when treated as a map to ℝ².)

- Let M, N be smooth manifolds with or without boundary,
 F : M → N be a smooth map, and S ⊂ M be an immersed or embedded submanifold, then F : S → N is also smooth.
 (Proof: Composition with inclusion.)
- However, restricting to the codomain is more subtle.
 (Example: G(t) = (sin(2t), sin(t)) with its domain extended to ℝ is not continuous to the figure-8 but is smooth when treated as a map to ℝ².) Moreover, if the codomain has a boundary,

- Let M, N be smooth manifolds with or without boundary,
 F : M → N be a smooth map, and S ⊂ M be an immersed or embedded submanifold, then F : S → N is also smooth.
 (Proof: Composition with inclusion.)
- However, restricting to the codomain is more subtle.
 (Example: G(t) = (sin(2t), sin(t)) with its domain extended to ℝ is not continuous to the figure-8 but is smooth when treated as a map to ℝ².) Moreover, if the codomain has a boundary, again it is a tricky affair.

- Let M, N be smooth manifolds with or without boundary,
 F : M → N be a smooth map, and S ⊂ M be an immersed or embedded submanifold, then F : S → N is also smooth.
 (Proof: Composition with inclusion.)
- However, restricting to the codomain is more subtle.
 (Example: G(t) = (sin(2t), sin(t)) with its domain extended to ℝ is not continuous to the figure-8 but is smooth when treated as a map to ℝ².) Moreover, if the codomain has a boundary, again it is a tricky affair.
- This is not a problem for *embedded* submanifolds (without boundary):

- Let M, N be smooth manifolds with or without boundary,
 F : M → N be a smooth map, and S ⊂ M be an immersed or embedded submanifold, then F : S → N is also smooth.
 (Proof: Composition with inclusion.)
- However, restricting to the codomain is more subtle.
 (Example: G(t) = (sin(2t), sin(t)) with its domain extended to ℝ is not continuous to the figure-8 but is smooth when treated as a map to ℝ².) Moreover, if the codomain has a boundary, again it is a tricky affair.
- This is not a problem for *embedded* submanifolds (without boundary): Let S ⊂ M be an embedded submanifold and M be a manifold.

- Let M, N be smooth manifolds with or without boundary,
 F : M → N be a smooth map, and S ⊂ M be an immersed or embedded submanifold, then F : S → N is also smooth.
 (Proof: Composition with inclusion.)
- However, restricting to the codomain is more subtle.
 (Example: G(t) = (sin(2t), sin(t)) with its domain extended to ℝ is not continuous to the figure-8 but is smooth when treated as a map to ℝ².) Moreover, if the codomain has a boundary, again it is a tricky affair.
- This is not a problem for *embedded* submanifolds (without boundary): Let $S \subset M$ be an embedded submanifold and M be a manifold. Let N be a manifold.

- Let M, N be smooth manifolds with or without boundary,
 F : M → N be a smooth map, and S ⊂ M be an immersed or embedded submanifold, then F : S → N is also smooth.
 (Proof: Composition with inclusion.)
- However, restricting to the codomain is more subtle.
 (Example: G(t) = (sin(2t), sin(t)) with its domain extended to ℝ is not continuous to the figure-8 but is smooth when treated as a map to ℝ².) Moreover, if the codomain has a boundary, again it is a tricky affair.
- This is not a problem for *embedded* submanifolds (without boundary): Let S ⊂ M be an embedded submanifold and M be a manifold. Let N be a manifold. Then if F : N → M is a smooth map such that F(N) ⊂ S,

- Let M, N be smooth manifolds with or without boundary,
 F : M → N be a smooth map, and S ⊂ M be an immersed or embedded submanifold, then F : S → N is also smooth.
 (Proof: Composition with inclusion.)
- However, restricting to the codomain is more subtle.
 (Example: G(t) = (sin(2t), sin(t)) with its domain extended to ℝ is not continuous to the figure-8 but is smooth when treated as a map to ℝ².) Moreover, if the codomain has a boundary, again it is a tricky affair.
- This is not a problem for *embedded* submanifolds (without boundary): Let S ⊂ M be an embedded submanifold and M be a manifold. Let N be a manifold. Then if F : N → M is a smooth map such that F(N) ⊂ S, then F : N → S is a smooth map.

Submanifolds

æ

Ξ.

• Proof:

• Proof: Indeed, *F* is automatically continuous since *S* has (a topology homeomorphic to) the subspace topology.

Proof: Indeed, F is automatically continuous since S has (a topology homeomorphic to) the subspace topology. Consider a slice chart (V, y) for S ⊂ M near F(p) and a smooth chart (x, U) on N near p such that F(U) ⊂ V.

- Proof: Indeed, F is automatically continuous since S has (a topology homeomorphic to) the subspace topology. Consider a slice chart (V, y) for S ⊂ M near F(p) and a smooth chart (x, U) on N near p such that F(U) ⊂ V. Now *Ü* = F⁻¹(V ∩ S) ∩ U is open.
- Thus $F : \tilde{U} \to F(\tilde{U}) \subset V$ is smooth and $F(x) = (F^1(x), \dots, F^s(x), \dots)$. In the slice chart,

 Proof: Indeed, F is automatically continuous since S has (a topology homeomorphic to) the subspace topology. Consider a slice chart (V, y) for S ⊂ M near F(p) and a smooth chart (x, U) on N near p such that F(U) ⊂ V. Now *Ü* = F⁻¹(V ∩ S) ∩ U is open.

• Thus
$$F : \tilde{U} \to F(\tilde{U}) \subset V$$
 is smooth and
 $F(x) = (F^1(x), \dots, F^s(x), \dots)$. In the slice chart, $F : N \to S$
is $F(x) = (F^1, \dots, F^s)$ which is smooth.

- Proof: Indeed, F is automatically continuous since S has (a topology homeomorphic to) the subspace topology. Consider a slice chart (V, y) for S ⊂ M near F(p) and a smooth chart (x, U) on N near p such that F(U) ⊂ V. Now *Ü* = F⁻¹(V ∩ S) ∩ U is open.
- Thus $F : \tilde{U} \to F(\tilde{U}) \subset V$ is smooth and $F(x) = (F^1(x), \dots, F^s(x), \dots)$. In the slice chart, $F : N \to S$ is $F(x) = (F^1, \dots, F^s)$ which is smooth.
- Using these results we can show that submanifolds have a unique smooth structure.

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ □

• Recall that S^n was defined

P.

'문▶' ★ 문▶

• Recall that S^n was defined as $\sum (x^i)^2 = 1$.

▶ 《 문 ▶ 《 문 ▶

• Recall that S^n was defined as $\sum (x^i)^2 = 1$. Does this mean that

-

э

• Recall that S^n was defined as $\sum (x^i)^2 = 1$. Does this mean that if we set our favourite smooth function to 0,

Recall that Sⁿ was defined as ∑(xⁱ)² = 1. Does this mean that if we set our favourite smooth function to 0, we will get a compact n − 1-dimensional submanifold of ℝⁿ?

- Recall that Sⁿ was defined as ∑(xⁱ)² = 1. Does this mean that if we set our favourite smooth function to 0, we will get a compact n − 1-dimensional submanifold of ℝⁿ?
- Nope.

- Recall that Sⁿ was defined as ∑(xⁱ)² = 1. Does this mean that if we set our favourite smooth function to 0, we will get a compact n − 1-dimensional submanifold of ℝⁿ?
- Nope. There are several kinds of counterexamples:

- Recall that Sⁿ was defined as ∑(xⁱ)² = 1. Does this mean that if we set our favourite smooth function to 0, we will get a compact n − 1-dimensional submanifold of ℝⁿ?
- Nope. There are several kinds of counterexamples:
 - It need not be compact:

- Recall that Sⁿ was defined as ∑(xⁱ)² = 1. Does this mean that if we set our favourite smooth function to 0, we will get a compact n − 1-dimensional submanifold of ℝⁿ?
- Nope. There are several kinds of counterexamples:
 - 1 It need not be compact: Take x = 0.

- Recall that Sⁿ was defined as ∑(xⁱ)² = 1. Does this mean that if we set our favourite smooth function to 0, we will get a compact n − 1-dimensional submanifold of ℝⁿ?
- Nope. There are several kinds of counterexamples:
 - **1** It need not be compact: Take x = 0.
 - It can be empty:

- Recall that Sⁿ was defined as ∑(xⁱ)² = 1. Does this mean that if we set our favourite smooth function to 0, we will get a compact n − 1-dimensional submanifold of ℝⁿ?
- Nope. There are several kinds of counterexamples:
 - 1 It need not be compact: Take x = 0.
 - 2 It can be empty: $x^2 + y^2 + 1 = 0$. (

- Recall that Sⁿ was defined as ∑(xⁱ)² = 1. Does this mean that if we set our favourite smooth function to 0, we will get a compact n − 1-dimensional submanifold of ℝⁿ?
- Nope. There are several kinds of counterexamples:
 - 1 It need not be compact: Take x = 0.
 - 2 It can be empty: $x^2 + y^2 + 1 = 0$. (By the way, empty sets are manifolds of any dimension by definition!)

- Recall that Sⁿ was defined as ∑(xⁱ)² = 1. Does this mean that if we set our favourite smooth function to 0, we will get a compact n − 1-dimensional submanifold of ℝⁿ?
- Nope. There are several kinds of counterexamples:
 - 1 It need not be compact: Take x = 0.
 - 2 It can be empty: $x^2 + y^2 + 1 = 0$. (By the way, empty sets are manifolds of any dimension by definition!)
 - It need not even be a topological manifold:

- Recall that Sⁿ was defined as ∑(xⁱ)² = 1. Does this mean that if we set our favourite smooth function to 0, we will get a compact n − 1-dimensional submanifold of ℝⁿ?
- Nope. There are several kinds of counterexamples:
 - 1 It need not be compact: Take x = 0.
 - 2 It can be empty: $x^2 + y^2 + 1 = 0$. (By the way, empty sets are manifolds of any dimension by definition!)
 - **③** It need not even be a topological manifold: $x^2 y^2 = 0$.

- Recall that Sⁿ was defined as ∑(xⁱ)² = 1. Does this mean that if we set our favourite smooth function to 0, we will get a compact n − 1-dimensional submanifold of ℝⁿ?
- Nope. There are several kinds of counterexamples:
 - 1 It need not be compact: Take x = 0.
 - (2) It can be empty: $x^2 + y^2 + 1 = 0$. (By the way, empty sets are manifolds of any dimension by definition!)
 - 3 It need not even be a topological manifold: $x^2 y^2 = 0$.
 - It need not be a submanifold:

- Recall that Sⁿ was defined as ∑(xⁱ)² = 1. Does this mean that if we set our favourite smooth function to 0, we will get a compact n − 1-dimensional submanifold of ℝⁿ?
- Nope. There are several kinds of counterexamples:
 - **1** It need not be compact: Take x = 0.
 - (2) It can be empty: $x^2 + y^2 + 1 = 0$. (By the way, empty sets are manifolds of any dimension by definition!)
 - 3 It need not even be a topological manifold: $x^2 y^2 = 0$.
 - **④** It need not be a submanifold: $y^2 x^3 = 0$. Indeed,

- Recall that Sⁿ was defined as ∑(xⁱ)² = 1. Does this mean that if we set our favourite smooth function to 0, we will get a compact n − 1-dimensional submanifold of ℝⁿ?
- Nope. There are several kinds of counterexamples:
 - **1** It need not be compact: Take x = 0.
 - It can be empty: x² + y² + 1 = 0. (By the way, empty sets are manifolds of any dimension by definition!)
 - **(3)** It need not even be a topological manifold: $x^2 y^2 = 0$.
 - It need not be a submanifold: $y^2 x^3 = 0$. Indeed, if this set were a submanifold near the origin,

- Recall that Sⁿ was defined as ∑(xⁱ)² = 1. Does this mean that if we set our favourite smooth function to 0, we will get a compact n − 1-dimensional submanifold of ℝⁿ?
- Nope. There are several kinds of counterexamples:
 - **1** It need not be compact: Take x = 0.
 - It can be empty: x² + y² + 1 = 0. (By the way, empty sets are manifolds of any dimension by definition!)
 - **(3)** It need not even be a topological manifold: $x^2 y^2 = 0$.
 - It need not be a submanifold: $y^2 x^3 = 0$. Indeed, if this set were a submanifold near the origin, then near the origin, we can change coordinates to (u, v) so that

- Recall that Sⁿ was defined as ∑(xⁱ)² = 1. Does this mean that if we set our favourite smooth function to 0, we will get a compact n − 1-dimensional submanifold of ℝⁿ?
- Nope. There are several kinds of counterexamples:
 - **1** It need not be compact: Take x = 0.
 - It can be empty: x² + y² + 1 = 0. (By the way, empty sets are manifolds of any dimension by definition!)
 - **③** It need not even be a topological manifold: $x^2 y^2 = 0$.
 - It need not be a submanifold: y² x³ = 0. Indeed, if this set were a submanifold near the origin, then near the origin, we can change coordinates to (u, v) so that v = 0 is this subset, i.e.,

- Recall that Sⁿ was defined as ∑(xⁱ)² = 1. Does this mean that if we set our favourite smooth function to 0, we will get a compact n − 1-dimensional submanifold of ℝⁿ?
- Nope. There are several kinds of counterexamples:
 - **1** It need not be compact: Take x = 0.
 - It can be empty: x² + y² + 1 = 0. (By the way, empty sets are manifolds of any dimension by definition!)
 - **③** It need not even be a topological manifold: $x^2 y^2 = 0$.
 - It need not be a submanifold: y² − x³ = 0. Indeed, if this set were a submanifold near the origin, then near the origin, we can change coordinates to (u, v) so that v = 0 is this subset, i.e., this subset is u → (x(u,0), y(u,0)).

- Recall that Sⁿ was defined as ∑(xⁱ)² = 1. Does this mean that if we set our favourite smooth function to 0, we will get a compact n − 1-dimensional submanifold of ℝⁿ?
- Nope. There are several kinds of counterexamples:
 - **1** It need not be compact: Take x = 0.
 - It can be empty: x² + y² + 1 = 0. (By the way, empty sets are manifolds of any dimension by definition!)
 - **(3)** It need not even be a topological manifold: $x^2 y^2 = 0$.
 - It need not be a submanifold: y² x³ = 0. Indeed, if this set were a submanifold near the origin, then near the origin, we can change coordinates to (u, v) so that v = 0 is this subset, i.e., this subset is u → (x(u,0), y(u,0)). Suppose ∂x/∂u ≠ 0 at the origin.

- Recall that Sⁿ was defined as ∑(xⁱ)² = 1. Does this mean that if we set our favourite smooth function to 0, we will get a compact n − 1-dimensional submanifold of ℝⁿ?
- Nope. There are several kinds of counterexamples:
 - **1** It need not be compact: Take x = 0.
 - It can be empty: x² + y² + 1 = 0. (By the way, empty sets are manifolds of any dimension by definition!)
 - **(3)** It need not even be a topological manifold: $x^2 y^2 = 0$.
 - It need not be a submanifold: y² − x³ = 0. Indeed, if this set were a submanifold near the origin, then near the origin, we can change coordinates to (u, v) so that v = 0 is this subset, i.e., this subset is u → (x(u,0), y(u,0)). Suppose ∂x/∂u ≠ 0 at the origin. Then changing charts to (x, v), we see that

- Recall that Sⁿ was defined as ∑(xⁱ)² = 1. Does this mean that if we set our favourite smooth function to 0, we will get a compact n − 1-dimensional submanifold of ℝⁿ?
- Nope. There are several kinds of counterexamples:
 - **1** It need not be compact: Take x = 0.
 - 2 It can be empty: $x^2 + y^2 + 1 = 0$. (By the way, empty sets are manifolds of any dimension by definition!)
 - **(3)** It need not even be a topological manifold: $x^2 y^2 = 0$.
 - It need not be a submanifold: $y^2 x^3 = 0$. Indeed, if this set were a submanifold near the origin, then near the origin, we can change coordinates to (u, v) so that v = 0 is this subset, i.e., this subset is $u \to (x(u,0), y(u,0))$. Suppose $\frac{\partial x}{\partial u} \neq 0$ at the origin. Then changing charts to (x, v), we see that y = y(u, v) = y(u(x, v), v) and hence $y^2 = x^3$ near the origin iff y = y(u(x, 0), 0), i.e., y is a smooth function of x.

- Recall that Sⁿ was defined as ∑(xⁱ)² = 1. Does this mean that if we set our favourite smooth function to 0, we will get a compact n − 1-dimensional submanifold of ℝⁿ?
- Nope. There are several kinds of counterexamples:
 - **1** It need not be compact: Take x = 0.
 - 2 It can be empty: $x^2 + y^2 + 1 = 0$. (By the way, empty sets are manifolds of any dimension by definition!)
 - **(3)** It need not even be a topological manifold: $x^2 y^2 = 0$.
 - It need not be a submanifold: $y^2 x^3 = 0$. Indeed, if this set were a submanifold near the origin, then near the origin, we can change coordinates to (u, v) so that v = 0 is this subset, i.e., this subset is $u \to (x(u,0), y(u,0))$. Suppose $\frac{\partial x}{\partial u} \neq 0$ at the origin. Then changing charts to (x, v), we see that y = y(u, v) = y(u(x, v), v) and hence $y^2 = x^3$ near the origin iff y = y(u(x, 0), 0), i.e., y is a smooth function of x. But that is impossible. (

- Recall that Sⁿ was defined as ∑(xⁱ)² = 1. Does this mean that if we set our favourite smooth function to 0, we will get a compact n − 1-dimensional submanifold of ℝⁿ?
- Nope. There are several kinds of counterexamples:
 - 1 It need not be compact: Take x = 0.
 - 2 It can be empty: $x^2 + y^2 + 1 = 0$. (By the way, empty sets are manifolds of any dimension by definition!)
 - **(3)** It need not even be a topological manifold: $x^2 y^2 = 0$.
 - It need not be a submanifold: y² − x³ = 0. Indeed, if this set were a submanifold near the origin, then near the origin, we can change coordinates to (u, v) so that v = 0 is this subset, i.e., this subset is u → (x(u,0), y(u,0)). Suppose $\frac{\partial x}{\partial u} \neq 0$ at the origin. Then changing charts to (x, v), we see that y = y(u, v) = y(u(x, v), v) and hence $y^2 = x^3$ near the origin iff y = y(u(x, 0), 0), i.e., y is a smooth function of x. But that is impossible. (Likewise, if $\frac{\partial x}{\partial u} = 0$ at the origin, then x is a smooth function of y.)

Submanifolds

• Compactness and emptyness aside,

• Compactness and emptyness aside, the main problem appears to be that

• Compactness and emptyness aside, the main problem appears to be that $\nabla f = 0$ at some points where f = 0. (

 Compactness and emptyness aside, the main problem appears to be that ∇f = 0 at some points where f = 0. (Caution: This is not a *necessary* condition by any means!

• Compactness and emptyness aside, the main problem appears to be that $\nabla f = 0$ at some points where f = 0. (Caution: This is not a *necessary* condition by any means! Take $x^2 = 0$. It is a submanifold!)

- Compactness and emptyness aside, the main problem appears to be that ∇f = 0 at some points where f = 0. (Caution: This is not a *necessary* condition by any means! Take x² = 0. It is a submanifold!)
- Def:

- Compactness and emptyness aside, the main problem appears to be that $\nabla f = 0$ at some points where f = 0. (Caution: This is not a *necessary* condition by any means! Take $x^2 = 0$. It is a submanifold!)
- Def: Let M, N be smooth manifolds (without boundary) and $F: M \rightarrow N$ be a smooth map.

- Compactness and emptyness aside, the main problem appears to be that $\nabla f = 0$ at some points where f = 0. (Caution: This is not a *necessary* condition by any means! Take $x^2 = 0$. It is a submanifold!)
- Def: Let M, N be smooth manifolds (without boundary) and F : M → N be a smooth map. A point p ∈ M is a regular point of F if

- Compactness and emptyness aside, the main problem appears to be that $\nabla f = 0$ at some points where f = 0. (Caution: This is not a *necessary* condition by any means! Take $x^2 = 0$. It is a submanifold!)
- Def: Let M, N be smooth manifolds (without boundary) and F : M → N be a smooth map. A point p ∈ M is a regular point of F if (F_{*})_p is surjective.

- Compactness and emptyness aside, the main problem appears to be that $\nabla f = 0$ at some points where f = 0. (Caution: This is not a *necessary* condition by any means! Take $x^2 = 0$. It is a submanifold!)
- Def: Let M, N be smooth manifolds (without boundary) and F : M → N be a smooth map. A point p ∈ M is a regular point of F if (F_{*})_p is surjective. Otherwise, it is a critical point of F.

- Compactness and emptyness aside, the main problem appears to be that $\nabla f = 0$ at some points where f = 0. (Caution: This is not a *necessary* condition by any means! Take $x^2 = 0$. It is a submanifold!)
- Def: Let M, N be smooth manifolds (without boundary) and F: M → N be a smooth map. A point p ∈ M is a regular point of F if (F_{*})_p is surjective. Otherwise, it is a critical point of F. A regular value of F is a point c ∈ N such that

- Compactness and emptyness aside, the main problem appears to be that $\nabla f = 0$ at some points where f = 0. (Caution: This is not a *necessary* condition by any means! Take $x^2 = 0$. It is a submanifold!)
- Def: Let M, N be smooth manifolds (without boundary) and F : M → N be a smooth map. A point p ∈ M is a regular point of F if (F*)p is surjective. Otherwise, it is a critical point of F. A regular value of F is a point c ∈ N such that every point in F⁻¹(c) ⊂ M is a regular point of F.

- Compactness and emptyness aside, the main problem appears to be that $\nabla f = 0$ at some points where f = 0. (Caution: This is not a *necessary* condition by any means! Take $x^2 = 0$. It is a submanifold!)
- Def: Let M, N be smooth manifolds (without boundary) and F : M → N be a smooth map. A point p ∈ M is a regular point of F if (F_{*})_p is surjective. Otherwise, it is a critical point of F. A regular value of F is a point c ∈ N such that every point in F⁻¹(c) ⊂ M is a regular point of F. A critical value of F is a point c ∈ N such that

- Compactness and emptyness aside, the main problem appears to be that $\nabla f = 0$ at some points where f = 0. (Caution: This is not a *necessary* condition by any means! Take $x^2 = 0$. It is a submanifold!)
- Def: Let M, N be smooth manifolds (without boundary) and F: M → N be a smooth map. A point p ∈ M is a regular point of F if (F*)p is surjective. Otherwise, it is a critical point of F. A regular value of F is a point c ∈ N such that every point in F⁻¹(c) ⊂ M is a regular point of F. A critical value of F is a point c ∈ N such that it is not a regular value, i.e.,

- Compactness and emptyness aside, the main problem appears to be that $\nabla f = 0$ at some points where f = 0. (Caution: This is not a *necessary* condition by any means! Take $x^2 = 0$. It is a submanifold!)
- Def: Let M, N be smooth manifolds (without boundary) and F: M → N be a smooth map. A point p ∈ M is a regular point of F if (F*)p is surjective. Otherwise, it is a critical point of F. A regular value of F is a point c ∈ N such that every point in F⁻¹(c) ⊂ M is a regular point of F. A critical value of F is a point c ∈ N such that it is not a regular value, i.e., F⁻¹(c) has at least one critical point.

Regular values, critical values

- Compactness and emptyness aside, the main problem appears to be that $\nabla f = 0$ at some points where f = 0. (Caution: This is not a *necessary* condition by any means! Take $x^2 = 0$. It is a submanifold!)
- Def: Let M, N be smooth manifolds (without boundary) and F: M → N be a smooth map. A point p ∈ M is a regular point of F if (F*)p is surjective. Otherwise, it is a critical point of F. A regular value of F is a point c ∈ N such that every point in F⁻¹(c) ⊂ M is a regular point of F. A critical value of F is a point c ∈ N such that it is not a regular value, i.e., F⁻¹(c) has at least one critical point. If c is a regular value, then F⁻¹(c) is a regular level set.

Regular values, critical values

- Compactness and emptyness aside, the main problem appears to be that $\nabla f = 0$ at some points where f = 0. (Caution: This is not a *necessary* condition by any means! Take $x^2 = 0$. It is a submanifold!)
- Def: Let M, N be smooth manifolds (without boundary) and F: M → N be a smooth map. A point p ∈ M is a regular point of F if (F*)p is surjective. Otherwise, it is a critical point of F. A regular value of F is a point c ∈ N such that every point in F⁻¹(c) ⊂ M is a regular point of F. A critical value of F is a point c ∈ N such that it is not a regular value, i.e., F⁻¹(c) has at least one critical point. If c is a regular value, then F⁻¹(c) is a regular level set. Note that if F⁻¹(c) = Ø, then c is a regular value.

Submanifolds

æ

æ

• Theorem: Every regular level set of a smooth map between smooth manifolds

• Theorem: Every regular level set of a smooth map between smooth manifolds is an embedded submanifold whose codimension equals the codimension of the codomain.

- Theorem: Every regular level set of a smooth map between smooth manifolds is an embedded submanifold whose codimension equals the codimension of the codomain.
- Proof:

- Theorem: Every regular level set of a smooth map between smooth manifolds is an embedded submanifold whose codimension equals the codimension of the codomain.
- Proof: Let $S = F^{-1}(c) \subset M$.

- Theorem: Every regular level set of a smooth map between smooth manifolds is an embedded submanifold whose codimension equals the codimension of the codomain.
- Proof: Let S = F⁻¹(c) ⊂ M. For every p ∈ S, choose arbitrary charts centred p, F(p) = c.

- Theorem: Every regular level set of a smooth map between smooth manifolds is an embedded submanifold whose codimension equals the codimension of the codomain.
- Proof: Let S = F⁻¹(c) ⊂ M. For every p ∈ S, choose arbitrary charts centred p, F(p) = c. Thus [DF] has constant rank.

- Theorem: Every regular level set of a smooth map between smooth manifolds is an embedded submanifold whose codimension equals the codimension of the codomain.
- Proof: Let S = F⁻¹(c) ⊂ M. For every p ∈ S, choose arbitrary charts centred p, F(p) = c. Thus [DF] has constant rank. Hence we can change charts (to centred ones) so that

- Theorem: Every regular level set of a smooth map between smooth manifolds is an embedded submanifold whose codimension equals the codimension of the codomain.
- Proof: Let S = F⁻¹(c) ⊂ M. For every p ∈ S, choose arbitrary charts centred p, F(p) = c. Thus [DF] has constant rank. Hence we can change charts (to centred ones) so that F(x) = (x¹,...,xⁿ).

- Theorem: Every regular level set of a smooth map between smooth manifolds is an embedded submanifold whose codimension equals the codimension of the codomain.
- Proof: Let S = F⁻¹(c) ⊂ M. For every p ∈ S, choose arbitrary charts centred p, F(p) = c. Thus [DF] has constant rank. Hence we can change charts (to centred ones) so that F(x) = (x¹,...,xⁿ). Thus S is an n m-slice near p.

- Theorem: Every regular level set of a smooth map between smooth manifolds is an embedded submanifold whose codimension equals the codimension of the codomain.
- Proof: Let S = F⁻¹(c) ⊂ M. For every p ∈ S, choose arbitrary charts centred p, F(p) = c. Thus [DF] has constant rank. Hence we can change charts (to centred ones) so that F(x) = (x¹,...,xⁿ). Thus S is an n-m-slice near p. Thus S is an embedded submanifold with dimension n m.

- Theorem: Every regular level set of a smooth map between smooth manifolds is an embedded submanifold whose codimension equals the codimension of the codomain.
- Proof: Let S = F⁻¹(c) ⊂ M. For every p ∈ S, choose arbitrary charts centred p, F(p) = c. Thus [DF] has constant rank. Hence we can change charts (to centred ones) so that F(x) = (x¹,...,xⁿ). Thus S is an n-m-slice near p. Thus S is an embedded submanifold with dimension n m.
- If in addition, F is a proper map, that is

- Theorem: Every regular level set of a smooth map between smooth manifolds is an embedded submanifold whose codimension equals the codimension of the codomain.
- Proof: Let S = F⁻¹(c) ⊂ M. For every p ∈ S, choose arbitrary charts centred p, F(p) = c. Thus [DF] has constant rank. Hence we can change charts (to centred ones) so that F(x) = (x¹,...,xⁿ). Thus S is an n-m-slice near p. Thus S is an embedded submanifold with dimension n m.
- If in addition, F is a proper map, that is $F^{-1}(compact) = compact$, then if c is a regular value,

- Theorem: Every regular level set of a smooth map between smooth manifolds is an embedded submanifold whose codimension equals the codimension of the codomain.
- Proof: Let S = F⁻¹(c) ⊂ M. For every p ∈ S, choose arbitrary charts centred p, F(p) = c. Thus [DF] has constant rank. Hence we can change charts (to centred ones) so that F(x) = (x¹,...,xⁿ). Thus S is an n-m-slice near p. Thus S is an embedded submanifold with dimension n m.
- If in addition, F is a proper map, that is $F^{-1}(compact) = compact$, then if c is a regular value, $F^{-1}(c)$ is compact submanifold.

- Theorem: Every regular level set of a smooth map between smooth manifolds is an embedded submanifold whose codimension equals the codimension of the codomain.
- Proof: Let S = F⁻¹(c) ⊂ M. For every p ∈ S, choose arbitrary charts centred p, F(p) = c. Thus [DF] has constant rank. Hence we can change charts (to centred ones) so that F(x) = (x¹,...,xⁿ). Thus S is an n-m-slice near p. Thus S is an embedded submanifold with dimension n m.
- If in addition, F is a proper map, that is
 F⁻¹(compact) = compact, then if c is a regular value,
 F⁻¹(c) is compact submanifold. In fact, a regular level set is
 also a properly embedded submanifold, i.e.,

- Theorem: Every regular level set of a smooth map between smooth manifolds is an embedded submanifold whose codimension equals the codimension of the codomain.
- Proof: Let S = F⁻¹(c) ⊂ M. For every p ∈ S, choose arbitrary charts centred p, F(p) = c. Thus [DF] has constant rank. Hence we can change charts (to centred ones) so that F(x) = (x¹,...,xⁿ). Thus S is an n-m-slice near p. Thus S is an embedded submanifold with dimension n m.
- If in addition, F is a proper map, that is
 F⁻¹(compact) = compact, then if c is a regular value,
 F⁻¹(c) is compact submanifold. In fact, a regular level set is
 also a properly embedded submanifold, i.e., the inclusion map
 is compact.

- Theorem: Every regular level set of a smooth map between smooth manifolds is an embedded submanifold whose codimension equals the codimension of the codomain.
- Proof: Let S = F⁻¹(c) ⊂ M. For every p ∈ S, choose arbitrary charts centred p, F(p) = c. Thus [DF] has constant rank. Hence we can change charts (to centred ones) so that F(x) = (x¹,...,xⁿ). Thus S is an n-m-slice near p. Thus S is an embedded submanifold with dimension n m.
- If in addition, F is a proper map, that is $F^{-1}(compact) = compact$, then if c is a regular value, $F^{-1}(c)$ is compact submanifold. In fact, a regular level set is also a properly embedded submanifold, i.e., the inclusion map is compact. Indeed, $F^{-1}(c)$ is a closed subset by continuity.

- Theorem: Every regular level set of a smooth map between smooth manifolds is an embedded submanifold whose codimension equals the codimension of the codomain.
- Proof: Let S = F⁻¹(c) ⊂ M. For every p ∈ S, choose arbitrary charts centred p, F(p) = c. Thus [DF] has constant rank. Hence we can change charts (to centred ones) so that F(x) = (x¹,...,xⁿ). Thus S is an n-m-slice near p. Thus S is an embedded submanifold with dimension n m.
- If in addition, F is a proper map, that is
 F⁻¹(compact) = compact, then if c is a regular value,
 F⁻¹(c) is compact submanifold. In fact, a regular level set is
 also a properly embedded submanifold, i.e., the inclusion map
 is compact. Indeed, F⁻¹(c) is a closed subset by continuity. If
 K ⊂ M is compact, then K ∩ F⁻¹(c) is compact.

- Theorem: Every regular level set of a smooth map between smooth manifolds is an embedded submanifold whose codimension equals the codimension of the codomain.
- Proof: Let S = F⁻¹(c) ⊂ M. For every p ∈ S, choose arbitrary charts centred p, F(p) = c. Thus [DF] has constant rank. Hence we can change charts (to centred ones) so that F(x) = (x¹,...,xⁿ). Thus S is an n-m-slice near p. Thus S is an embedded submanifold with dimension n m.
- If in addition, F is a proper map, that is $F^{-1}(compact) = compact$, then if c is a regular value, $F^{-1}(c)$ is compact submanifold. In fact, a regular level set is also a properly embedded submanifold, i.e., the inclusion map is compact. Indeed, $F^{-1}(c)$ is a closed subset by continuity. If $K \subset M$ is compact, then $K \cap F^{-1}(c)$ is compact. Hence $i^{-1}(F^{-1}(c))$ is compact.

æ

• $S \subset M$ is a submanifold of dimension k iff

S ⊂ M is a submanifold of dimension k iff locally it is the level set of a submersion F : U → ℝ^{m-k}. (

 S ⊂ M is a submanifold of dimension k iff locally it is the level set of a submersion F : U → ℝ^{m-k}. (Such a function is called a local defining function.)

- S ⊂ M is a submanifold of dimension k iff locally it is the level set of a submersion F : U → ℝ^{m-k}. (Such a function is called a local defining function.)
- Proof:

- S ⊂ M is a submanifold of dimension k iff locally it is the level set of a submersion F : U → ℝ^{m-k}. (Such a function is called a local defining function.)
- Proof: If S is a submanifold:

- S ⊂ M is a submanifold of dimension k iff locally it is the level set of a submersion F : U → ℝ^{m-k}. (Such a function is called a local defining function.)
- Proof: If S is a submanifold: There are local slice charts.

- S ⊂ M is a submanifold of dimension k iff locally it is the level set of a submersion F : U → ℝ^{m-k}. (Such a function is called a local defining function.)
- Proof: If S is a submanifold: There are local slice charts. Take $F = (x^{k+1}, ..., x^n)$ for such charts.

- S ⊂ M is a submanifold of dimension k iff locally it is the level set of a submersion F : U → ℝ^{m-k}. (Such a function is called a local defining function.)
- Proof: If S is a submanifold: There are local slice charts. Take F = (x^{k+1},...,xⁿ) for such charts. If there is a local defining function:

- S ⊂ M is a submanifold of dimension k iff locally it is the level set of a submersion F : U → ℝ^{m-k}. (Such a function is called a local defining function.)
- Proof: If S is a submanifold: There are local slice charts. Take F = (x^{k+1},...,xⁿ) for such charts. If there is a local defining function: It is locally a submanifold and

- S ⊂ M is a submanifold of dimension k iff locally it is the level set of a submersion F : U → ℝ^{m-k}. (Such a function is called a local defining function.)
- Proof: If S is a submanifold: There are local slice charts. Take F = (x^{k+1},...,xⁿ) for such charts.
 If there is a local defining function: It is locally a submanifold and hence satisfies the local slice condition.

- S ⊂ M is a submanifold of dimension k iff locally it is the level set of a submersion F : U → ℝ^{m-k}. (Such a function is called a local defining function.)
- Proof: If S is a submanifold: There are local slice charts. Take F = (x^{k+1},...,xⁿ) for such charts. If there is a local defining function: It is locally a submanifold and hence satisfies the local slice condition. Thus it is a submanifold.

- S ⊂ M is a submanifold of dimension k iff locally it is the level set of a submersion F : U → ℝ^{m-k}. (Such a function is called a local defining function.)
- Proof: If S is a submanifold: There are local slice charts. Take F = (x^{k+1},...,xⁿ) for such charts. If there is a local defining function: It is locally a submanifold and hence satisfies the local slice condition. Thus it is a submanifold.
- It is not true

- S ⊂ M is a submanifold of dimension k iff locally it is the level set of a submersion F : U → ℝ^{m-k}. (Such a function is called a local defining function.)
- Proof: If S is a submanifold: There are local slice charts. Take F = (x^{k+1},...,xⁿ) for such charts. If there is a local defining function: It is locally a submanifold and hence satisfies the local slice condition. Thus it is a submanifold.
- It is not true that the codimension-1 submanifold of \mathbb{R}^n has

- S ⊂ M is a submanifold of dimension k iff locally it is the level set of a submersion F : U → ℝ^{m-k}. (Such a function is called a local defining function.)
- Proof: If S is a submanifold: There are local slice charts. Take F = (x^{k+1},...,xⁿ) for such charts. If there is a local defining function: It is locally a submanifold and hence satisfies the local slice condition. Thus it is a submanifold.
- It is not true that the codimension-1 submanifold of ℝⁿ has a global defining function.

- S ⊂ M is a submanifold of dimension k iff locally it is the level set of a submersion F : U → ℝ^{m-k}. (Such a function is called a local defining function.)
- Proof: If S is a submanifold: There are local slice charts. Take F = (x^{k+1},...,xⁿ) for such charts. If there is a local defining function: It is locally a submanifold and hence satisfies the local slice condition. Thus it is a submanifold.
- It is not true that the codimension-1 submanifold of ℝⁿ has a global defining function. However, under some necessary condition (nowhere vanishing smoothly varying unit normal), it is true.

- S ⊂ M is a submanifold of dimension k iff locally it is the level set of a submersion F : U → ℝ^{m-k}. (Such a function is called a local defining function.)
- Proof: If S is a submanifold: There are local slice charts. Take F = (x^{k+1},...,xⁿ) for such charts. If there is a local defining function: It is locally a submanifold and hence satisfies the local slice condition. Thus it is a submanifold.
- It is not true that the codimension-1 submanifold of ℝⁿ has a global defining function. However, under some necessary condition (nowhere vanishing smoothly varying unit normal), it is true. Under a similar necessary condition,

- S ⊂ M is a submanifold of dimension k iff locally it is the level set of a submersion F : U → ℝ^{m-k}. (Such a function is called a local defining function.)
- Proof: If S is a submanifold: There are local slice charts. Take F = (x^{k+1},...,xⁿ) for such charts. If there is a local defining function: It is locally a submanifold and hence satisfies the local slice condition. Thus it is a submanifold.
- It is not true that the codimension-1 submanifold of ℝⁿ has a global defining function. However, under some necessary condition (nowhere vanishing smoothly varying unit normal), it is true. Under a similar necessary condition, it is harder to prove but true that

- S ⊂ M is a submanifold of dimension k iff locally it is the level set of a submersion F : U → ℝ^{m-k}. (Such a function is called a local defining function.)
- Proof: If S is a submanifold: There are local slice charts. Take F = (x^{k+1},...,xⁿ) for such charts. If there is a local defining function: It is locally a submanifold and hence satisfies the local slice condition. Thus it is a submanifold.
- It is not true that the codimension-1 submanifold of ℝⁿ has a global defining function. However, under some necessary condition (nowhere vanishing smoothly varying unit normal), it is true. Under a similar necessary condition, it is harder to prove but true that a codimension-2 submanifold of ℝⁿ has a defining function.

- S ⊂ M is a submanifold of dimension k iff locally it is the level set of a submersion F : U → ℝ^{m-k}. (Such a function is called a local defining function.)
- Proof: If S is a submanifold: There are local slice charts. Take F = (x^{k+1},...,xⁿ) for such charts. If there is a local defining function: It is locally a submanifold and hence satisfies the local slice condition. Thus it is a submanifold.
- It is not true that the codimension-1 submanifold of ℝⁿ has a global defining function. However, under some necessary condition (nowhere vanishing smoothly varying unit normal), it is true. Under a similar necessary condition, it is harder to prove but true that a codimension-2 submanifold of ℝⁿ has a defining function. As far as I know,

- S ⊂ M is a submanifold of dimension k iff locally it is the level set of a submersion F : U → ℝ^{m-k}. (Such a function is called a local defining function.)
- Proof: If S is a submanifold: There are local slice charts. Take F = (x^{k+1},...,xⁿ) for such charts. If there is a local defining function: It is locally a submanifold and hence satisfies the local slice condition. Thus it is a submanifold.
- It is not true that the codimension-1 submanifold of ℝⁿ has a global defining function. However, under some necessary condition (nowhere vanishing smoothly varying unit normal), it is true. Under a similar necessary condition, it is harder to prove but true that a codimension-2 submanifold of ℝⁿ has a defining function. As far as I know, this problem is open for higher codimensions.

Sard's theorem

Submanifolds

9/9

æ

Ξ.

• Do regular values exist at all?

Sard's theorem

- Do regular values exist at all?
- Sard's theorem (a weak version):

Sard's theorem

- Do regular values exist at all?
- Sard's theorem (a weak version): For a smooth map $F: M \to N$,

- Do regular values exist at all?
- Sard's theorem (a weak version): For a smooth map $F: M \rightarrow N$, the set of regular values is *dense* in *N*.

- Do regular values exist at all?
- Sard's theorem (a weak version): For a smooth map $F: M \rightarrow N$, the set of regular values is *dense* in *N*.
- In particular, if $f: M \to \mathbb{R}$ is a smooth exhaustion,

- Do regular values exist at all?
- Sard's theorem (a weak version): For a smooth map $F: M \rightarrow N$, the set of regular values is *dense* in *N*.
- In particular, if $f: M \to \mathbb{R}$ is a smooth exhaustion, then there is an increasing sequence $c_i \to \infty$ such that

- Do regular values exist at all?
- Sard's theorem (a weak version): For a smooth map $F: M \rightarrow N$, the set of regular values is *dense* in *N*.
- In particular, if f : M → ℝ is a smooth exhaustion, then there
 is an increasing sequence c_i → ∞ such that f⁻¹(c_i) is a
 smooth manifold

- Do regular values exist at all?
- Sard's theorem (a weak version): For a smooth map $F: M \rightarrow N$, the set of regular values is *dense* in *N*.
- In particular, if f : M → ℝ is a smooth exhaustion, then there is an increasing sequence c_i → ∞ such that f⁻¹(c_i) is a smooth manifold and f⁻¹(-∞, c_i] form an exhaustion.

- Do regular values exist at all?
- Sard's theorem (a weak version): For a smooth map $F: M \rightarrow N$, the set of regular values is *dense* in *N*.
- In particular, if f : M → ℝ is a smooth exhaustion, then there is an increasing sequence c_i → ∞ such that f⁻¹(c_i) is a smooth manifold and f⁻¹(-∞, c_i] form an exhaustion. In fact, f⁻¹(-∞, c_i] form manifolds-with-boundary (why?).

- Do regular values exist at all?
- Sard's theorem (a weak version): For a smooth map $F: M \rightarrow N$, the set of regular values is *dense* in *N*.
- In particular, if f : M → ℝ is a smooth exhaustion, then there is an increasing sequence c_i → ∞ such that f⁻¹(c_i) is a smooth manifold and f⁻¹(-∞, c_i] form an exhaustion. In fact, f⁻¹(-∞, c_i] form manifolds-with-boundary (why?).
- There cannot be an onto smooth map

- Do regular values exist at all?
- Sard's theorem (a weak version): For a smooth map $F: M \rightarrow N$, the set of regular values is *dense* in *N*.
- In particular, if f: M → ℝ is a smooth exhaustion, then there is an increasing sequence c_i → ∞ such that f⁻¹(c_i) is a smooth manifold and f⁻¹(-∞, c_i] form an exhaustion. In fact, f⁻¹(-∞, c_i] form manifolds-with-boundary (why?).
- There cannot be an onto smooth map from $\mathbb R$ to $\mathbb R^2$:

- Do regular values exist at all?
- Sard's theorem (a weak version): For a smooth map $F: M \rightarrow N$, the set of regular values is *dense* in *N*.
- In particular, if f : M → ℝ is a smooth exhaustion, then there is an increasing sequence c_i → ∞ such that f⁻¹(c_i) is a smooth manifold and f⁻¹(-∞, c_i] form an exhaustion. In fact, f⁻¹(-∞, c_i] form manifolds-with-boundary (why?).
- There cannot be an onto smooth map from $\mathbb R$ to $\mathbb R^2:$ Indeed, if there is such a map,

- Do regular values exist at all?
- Sard's theorem (a weak version): For a smooth map $F: M \rightarrow N$, the set of regular values is *dense* in *N*.
- In particular, if f : M → ℝ is a smooth exhaustion, then there is an increasing sequence c_i → ∞ such that f⁻¹(c_i) is a smooth manifold and f⁻¹(-∞, c_i] form an exhaustion. In fact, f⁻¹(-∞, c_i] form manifolds-with-boundary (why?).
- There cannot be an onto smooth map from ℝ to ℝ²: Indeed, if there is such a map, then there is a c ∈ ℝ² such that f⁻¹(c) is regular level set.

- Do regular values exist at all?
- Sard's theorem (a weak version): For a smooth map $F: M \rightarrow N$, the set of regular values is *dense* in *N*.
- In particular, if f: M → ℝ is a smooth exhaustion, then there is an increasing sequence c_i → ∞ such that f⁻¹(c_i) is a smooth manifold and f⁻¹(-∞, c_i] form an exhaustion. In fact, f⁻¹(-∞, c_i] form manifolds-with-boundary (why?).
- There cannot be an onto smooth map from R to R²: Indeed, if there is such a map, then there is a c ∈ R² such that f⁻¹(c) is regular level set. Hence f⁻¹(c) is a submanifold of dimension 1 2 = -1! A contradiction.

- Do regular values exist at all?
- Sard's theorem (a weak version): For a smooth map $F: M \rightarrow N$, the set of regular values is *dense* in *N*.
- In particular, if f : M → ℝ is a smooth exhaustion, then there is an increasing sequence c_i → ∞ such that f⁻¹(c_i) is a smooth manifold and f⁻¹(-∞, c_i] form an exhaustion. In fact, f⁻¹(-∞, c_i] form manifolds-with-boundary (why?).
- There cannot be an onto smooth map from R to R²: Indeed, if there is such a map, then there is a c ∈ R² such that f⁻¹(c) is regular level set. Hence f⁻¹(c) is a submanifold of dimension 1 2 = -1! A contradiction. On the other hand, there are continuous space filling curves.