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Recap

Proved a special case of Whitney’s embedding theorem.

IFT and constant rank theorem for manifolds.

Slice charts for embedded submanifolds.
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Restricting maps

Let M,N be smooth manifolds with or without boundary,
F : M → N be a smooth map, and S ⊂ M be an immersed or
embedded submanifold, then F : S → N is also smooth.
(Proof: Composition with inclusion.)

However, restricting to the codomain is more subtle.
(Example: G (t) = (sin(2t), sin(t)) with its domain extended
to R is not continuous to the figure-8 but is smooth when
treated as a map to R2.) Moreover, if the codomain has a
boundary, again it is a tricky affair.

This is not a problem for embedded submanifolds (without
boundary): Let S ⊂ M be an embedded submanifold and M
be a manifold. Let N be a manifold. Then if F : N → M is a
smooth map such that F (N) ⊂ S , then F : N → S is a
smooth map.
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Restricting maps

Proof: Indeed, F is automatically continuous since S has (a
topology homeomorphic to) the subspace topology. Consider
a slice chart (V , y) for S ⊂ M near F (p) and a smooth chart
(x ,U) on N near p such that F (U) ⊂ V . Now
Ũ = F−1(V ∩ S) ∩ U is open.

Thus F : Ũ → F (Ũ) ⊂ V is smooth and
F (x) = (F 1(x), . . . ,F s(x), . . .). In the slice chart, F : N → S
is F (x) = (F 1, . . . ,F s) which is smooth.

Using these results we can show that submanifolds have a
unique smooth structure.
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Level sets

Recall that Sn was defined as
∑

(x i )2 = 1. Does this mean
that if we set our favourite smooth function to 0, we will get a
compact n − 1-dimensional submanifold of Rn?

Nope. There are several kinds of counterexamples:
1 It need not be compact: Take x = 0.
2 It can be empty: x2 + y2 + 1 = 0. (By the way, empty sets are

manifolds of any dimension by definition!)
3 It need not even be a topological manifold: x2 − y2 = 0.
4 It need not be a submanifold: y2 − x3 = 0. Indeed, if this set

were a submanifold near the origin, then near the origin, we
can change coordinates to (u, v) so that v = 0 is this subset,i
.e., this subset is u → (x(u, 0), y(u, 0)). Suppose ∂x

∂u 6= 0 at
the origin. Then changing charts to (x , v), we see that
y = y(u, v) = y(u(x , v), v) and hence y2 = x3 near the origin
iff y = y(u(x , 0), 0), i.e., y is a smooth function of x . But that
is impossible. (Likewise, if ∂x

∂u = 0 at the origin, then x is a
smooth function of y .)
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Regular values, critical values

Compactness and emptyness aside, the main problem appears
to be that ∇f = 0 at some points where f = 0. (Caution:
This is not a necessary condition by any means! Take x2 = 0.
It is a submanifold!)

Def: Let M,N be smooth manifolds (without boundary) and
F : M → N be a smooth map. A point p ∈ M is a regular
point of F if (F∗)p is surjective. Otherwise, it is a critical
point of F . A regular value of F is a point c ∈ N such that
every point in F−1(c) ⊂ M is a regular point of F . A critical
value of F is a point c ∈ N such that it is not a regular value,
i.e., F−1(c) has at least one critical point. If c is a regular
value, then F−1(c) is a regular level set. Note that if
F−1(c) = ∅, then c is a regular value.
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Level set theorem

Theorem: Every regular level set of a smooth map between
smooth manifolds is an embedded submanifold whose
codimension equals the codimension of the codomain.

Proof: Let S = F−1(c) ⊂ M. For every p ∈ S , choose
arbitrary charts centred p,F (p) = c . Thus [DF ] has constant
rank. Hence we can change charts (to centred ones) so that
F (x) = (x1, . . . , xn). Thus S is an n−m-slice near p. Thus S
is an embedded submanifold with dimension n −m.

If in addition, F is a proper map, that is
F−1(compact) = compact, then if c is a regular value,
F−1(c) is compact submanifold. In fact, a regular level set is
also a properly embedded submanifold, i.e., the inclusion map
is compact. Indeed, F−1(c) is a closed subset by continuity. If
K ⊂ M is compact, then K ∩ F−1(c) is compact. Hence
i−1(F−1(c)) is compact.
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Defining functions

S ⊂ M is a submanifold of dimension k iff locally it is the
level set of a submersion F : U → Rm−k . (Such a function is
called a local defining function.)

Proof: If S is a submanifold: There are local slice charts.
Take F = (xk+1, . . . , xn) for such charts.
If there is a local defining function: It is locally a submanifold
and hence satisfies the local slice condition. Thus it is a
submanifold.

It is not true that the codimension-1 submanifold of Rn has a
global defining function. However, under some necessary
condition (nowhere vanishing smoothly varying unit normal),
it is true. Under a similar necessary condition, it is harder to
prove but true that a codimension-2 submanifold of Rn has a
defining function. As far as I know, this problem is open for
higher codimensions.
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Sard’s theorem

Do regular values exist at all?

Sard’s theorem (a weak version): For a smooth map
F : M → N, the set of regular values is dense in N.

In particular, if f : M → R is a smooth exhaustion, then there
is an increasing sequence ci →∞ such that f −1(ci ) is a
smooth manifold and f −1(−∞, ci ] form an exhaustion. In
fact, f −1(−∞, ci ] form manifolds-with-boundary (why?).

There cannot be an onto smooth map from R to R2: Indeed,
if there is such a map, then there is a c ∈ R2 such that
f −1(c) is regular level set. Hence f −1(c) is a submanifold of
dimension 1− 2 = −1! A contradiction. On the other hand,
there are continuous space filling curves.
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