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o IFT and constant rank theorem for manifolds.

@ Slice charts for embedded submanifolds.
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Restricting maps

@ Proof: Indeed, F is automatically continuous since S has (a
topology homeomorphic to) the subspace topology. Consider
a slice chart (V,y) for S C M near F(p) and a smooth chart
(x,U) on N near p such that F(U) C V. Now
U=FYVNS)NU is open.

o Thus F: U — F(0) c V is smooth and
F(x) = (FY(x),...,F5(x),...). In the slice chart, F: N — S
is F(x) = (F',..., F®) which is smooth. O

@ Using these results we can show that submanifolds have a
unique smooth structure.
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the origin. Then changing charts to (x, v), we see that
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e Def: Let M, N be smooth manifolds (without boundary) and
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This is not a necessary condition by any means! Take x? = 0.
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e Def: Let M, N be smooth manifolds (without boundary) and
F: M — N be a smooth map. A point p € M is a regular
point of F if (F,)p is surjective. Otherwise, it is a critical
point of F. A regular value of F is a point ¢ € N such that
every point in F~1(c) C M is a regular point of F. A critical
value of F is a point ¢ € N such that it is not a regular value,
i.e., F71(c) has at least one critical point. If ¢ is a regular
value, then F~1(c) is a regular level set. Note that if
F~1(c) =0, then c is a regular value.
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arbitrary charts centred p, F(p) = ¢. Thus [DF] has constant
rank. Hence we can change charts (to centred ones) so that
F(x) = (x},...,x"). Thus S is an n — m-slice near p. Thus S
is an embedded submanifold with dimension n — m. O

o If in addition, F is a proper map, that is
F~1(compact) = compact, then if c is a regular value,
F~1(c) is compact submanifold. In fact, a regular level set is
also a properly embedded submanifold, i.e., the inclusion map
is compact. Indeed, F~1(c) is a closed subset by continuity. If
K C M is compact, then K N F~1(c) is compact. Hence
i1 (F71(c)) is compact.
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level set of a submersion F : U — R™%_ (Such a function is
called a local defining function.)

@ Proof: If S is a submanifold: There are local slice charts.
Take F = (xk*1,...,x") for such charts.
If there is a local defining function: It is locally a submanifold
and hence satisfies the local slice condition. Thus it is a
submanifold.

@ It is not true that the codimension-1 submanifold of R” has a
global defining function. However, under some necessary
condition (nowhere vanishing smoothly varying unit normal),
it is true. Under a similar necessary condition, it is harder to
prove but true that a codimension-2 submanifold of R” has a
defining function. As far as | know, this problem is open for
higher codimensions.
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@ Sard’s theorem (a weak version): For a smooth map
F : M — N, the set of regular values is dense in N.

@ In particular, if f : M — R is a smooth exhaustion, then there
is an increasing sequence ¢; — oo such that f~1(c;) is a
smooth manifold and f~!(—o0, ¢;] form an exhaustion. In
fact, f~1(—o0, ¢;] form manifolds-with-boundary (why?).

@ There cannot be an onto smooth map from R to R?: Indeed,
if there is such a map, then there is a ¢ € R? such that
f~1(c) is regular level set. Hence f~1(c) is a submanifold of
dimension 1 — 2 = —1! A contradiction. On the other hand,
there are continuous space filling curves.

Submanifolds 9/9



