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Tensors - motivation

If we want to measure infinitesimal distances on a manifold,
we would need a “smoothly varying inner product”. How does
one define such an object?
In physics, if we press an elastic body, how will it react? To
know that, we would need to know a linear function that takes
the normal to a surface and produces the “stress vector”
across the surface. (The resulting linear map/matrix is called
the stress tensor.)
The area of a parallelogram is ~a× ~b. The volume of a
parallelopiped is (~a× ~b).~c . What about in higher dimensions?
On a related note, how can one generalise the “cross product”
to higher dimensions?
A common thread in all the questions above is the notion of a
multilinear map or simply an object that has more than one
index (like Aijk...). More so, we need a “smoothly varying
family” of multilinear maps. Presumably, it corresponds to the
section of some vector bundle.
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Multilinear maps

Let Vi ,W be vector spaces (over the same field). Then
T : V1 × . . .Vk →W is called multilinear if it is linear
separately in each variable.

Examples: Dot product in Rn, Cross product, Determinant,
Lie bracket, etc.

Non-example: T : R2 → R given by T (x , y) = x + y is linear
but not multilinear! T (x , y) = xy is multilinear but not linear.

Another example: Let ω, η ∈ V ∗. Consider
ω ⊗ η : V × V → R given by ω ⊗ η(v ,w) = ω(v)η(w). This
is a multilinear map. This example can be generalised to
define the tensor product of arbitrary multilinear functionals.
It is easily seen to be associative. Recursively, we can talk
about ω1 ⊗ ω2 . . .. Likewise, since V = V ∗∗ (in f.d), we can
talk about v ⊗ w ⊗ . . ..
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A basis for multilinear functionals

Theorem: Let ni = dim(Vi ). The dimension of the space
Mult(V1, . . . ,Vk ;R) is n1n2 . . . and a basis is (e i11 )⊗ (e i22 ) . . ..

Proof: This set is linearly independent: Indeed, if
ci1i2...(e

i1
1 )⊗ (e i22 ) . . . = 0, then acting on (e1,j1 , e2,j2 , . . .) we

get cj1j2... = 0. This is true for all j1, j2 . . .. Hence we are done.
It spans the space: Let F be a multilinear functional. Define
Fi1i2... = F (e1,i1 , e2,i2 , . . .). Now consider

ω = Fi1i2...(e
i1
1 )⊗ (e i22 ) . . .. Note that

(ω − F )(v1, v2, . . .) = (ω − F )(v j11 ej1 , . . .) =

v j11 v
j2
2 . . . (ω − F )(e1,j1 , e2,j2 , . . .) = 0.
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Tensor product - Universal property

Let V1,V2 be vector spaces. We can bring multilinear maps
into the framework of linear maps. Basically, we want to
create a vector space V1 ⊗ V2 formed by “formal” linear
combinations of things of the type v1 ⊗ v2.

Theorem: Suppose there exists a vector space (called the
tensor product of Vi ) V1 ⊗ V2 and a multilinear map
π : V1 × V2 → V1 ⊗ V2 with the property that given any
multilinear map T : V1 × V2 →W , there is a unique linear
map T̃ : V1 ⊗ V2 →W such that T = T̃ ◦ π. Then any other
vector space satisfying this universal property is isomorphic to
V1 ⊗ V2 (with the isomorphism preserving the universal
property).

Proof: Suppose (V ′, π′) is another such space. Then consider
the map π̃′ : V1 ⊗ V2 → V ′ induced from π′.
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Tensor product - Construction

Likewise, we have π̃ : V ′ → V1 ⊗ V2. These two are inverses
of each other and hence give the desired isomorphism
(why?).

We can prove that tensor products (if they exist) are
associative (using the universal property). We can then take
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Tensor product - Basis

One can also prove that if ei ,j are bases for Vi , then
e1,j1 ⊗ e2,j2 . . . is a basis for the tensor product.

Moreover, there is a canonical isomorphism between V ∗1 ⊗ . . .
and Mult(V1,V2, . . . ;R).

Likewise (in finite-dimensions), there is a canonical
isomorphism between V1 ⊗ . . . and Mult(V ∗1 ,V

∗
2 , . . . ;R).
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Covariant and Contravariant tensors

A covariant tensor of type-l on V is an element of
V ∗⊗V ∗⊗ . . . (l times). It can be thought of as corresponding
to a multilinear map from V × V . . . to R. A contravariant
tensor of type-k on V is an element of V ⊗V ⊗ . . . (k times).
A (k , l)-mixed tensor is an element of
V ⊗ V . . . ( k times) ⊗ V ∗ . . . ( l times). (By convention,
T 0,0 = R.) In terms of indices, a (k, l) tensor has k upstairs
indices and l downstairs indices.
Example: Given a f.d V , and T : V → V , it can be thought
of as a mixed (1, 1)-tensor, i.e., as an element of V ⊗ V ∗ as
follows: Define T : V ∗ × V → R as T (ω, v) = ω(T (v)). This
is a multilinear map and hence corresponds to a unique linear
functional on V ∗ ⊗ V , i.e., to an element of V ⊗ V ∗. In fact,
the map T → T is a linear isomorphism from L(V ,V ) to
V ⊗ V ∗ (why?)
We will be interested in covariant tensors in this course. In
fact, in elements of T ∗pM ⊗ T ∗pM . . ..
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Symmetric and Alternating tensors

An inner product on V is an example of a covariant 2-tensor,
i.e., an element of V ∗ ⊗ V ∗. Indeed, it is a multilinear
functional on V × V . In fact, if e1, . . . , en is an ordered basis
of V and e1 . . . is the dual basis, then
〈, 〉 = 〈ei , ej〉e i ⊗ e j = gije

i ⊗ e j

This example is very special. It is symmetric, i.e.,
〈v ,w〉 = 〈w , v〉.
On the other hand, suppose v1, . . . , vn are n elements of Rn

forming the columns of a matrix A, then det(A) is a
multilinear map from Rn × . . . to R, i.e., a covariant tensor of
type n. However, this one is antisymmetric/alternating, i.e., if
you permute the elements, you pick up the sign of the
permutation.
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Symmetric and Alternating tensors

Def: A symmetric covariant tensor is one that is unchanged
under a transposition of two of its entries (and hence under
any permutation). An alternating/antisymmetric covariant
tensor changes sign under a transposition (and hence picks up
the sign of the permutation).

Example: A (skew)symmetric matrix gives a (skew)symmetric

tensor: A(v ,w) = vTAw . Now A = A+AT

2 + A−AT

2 , i.e., every
matrix is a sum of symmetric and antisymmetric matrices.

Motivated by this construction, define the symmetrisation of a
k-covariant tensor α as
Sym(α)(v1, . . . , vk) = 1

k!

∑
σ∈Sk α(vσ(1), . . .). It is symmetric

and Sym(α) = α iff α is symmetric.

The antisymmetrisation/alternation is defined as
Alt(α)((v1, . . . , vk) = 1

k!

∑
σ∈Sk sgn(σ)α(vσ(1), . . .). It is

alternating and Alt(α) = α iff α is alternating.
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Def: A symmetric covariant tensor is one that is unchanged
under a transposition of two of its entries (and hence under
any permutation). An alternating/antisymmetric covariant
tensor changes sign under a transposition (and hence picks up
the sign of the permutation).

Example: A (skew)symmetric matrix gives a (skew)symmetric

tensor: A(v ,w) = vTAw . Now A = A+AT

2 + A−AT

2 , i.e., every
matrix is a sum of symmetric and antisymmetric matrices.

Motivated by this construction, define the symmetrisation of a
k-covariant tensor α as
Sym(α)(v1, . . . , vk) = 1

k!

∑
σ∈Sk α(vσ(1), . . .). It is symmetric

and Sym(α) = α iff α is symmetric.

The antisymmetrisation/alternation is defined as
Alt(α)((v1, . . . , vk) = 1

k!

∑
σ∈Sk sgn(σ)α(vσ(1), . . .). It is

alternating and Alt(α) = α iff α is alternating.
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