MA 229/MA 235 - Lecture 20

IISc

Recap

Recap

- Lie bracket.

Recap

- Lie bracket.
- One form fields, differential of a function, and pullback.
$4 \square$ •

Tensors - motivation

- If we want to measure
- If we want to measure infinitesimal distances on a manifold,
- If we want to measure infinitesimal distances on a manifold, we would need a
- If we want to measure infinitesimal distances on a manifold, we would need a "smoothly varying inner product".
- If we want to measure infinitesimal distances on a manifold, we would need a "smoothly varying inner product". How does one define such an object?
- If we want to measure infinitesimal distances on a manifold, we would need a "smoothly varying inner product". How does one define such an object?
- In physics,
- If we want to measure infinitesimal distances on a manifold, we would need a "smoothly varying inner product". How does one define such an object?
- In physics, if we press an elastic body,
- If we want to measure infinitesimal distances on a manifold, we would need a "smoothly varying inner product". How does one define such an object?
- In physics, if we press an elastic body, how will it react?
- If we want to measure infinitesimal distances on a manifold, we would need a "smoothly varying inner product". How does one define such an object?
- In physics, if we press an elastic body, how will it react? To know that,
- If we want to measure infinitesimal distances on a manifold, we would need a "smoothly varying inner product". How does one define such an object?
- In physics, if we press an elastic body, how will it react? To know that, we would need to know
- If we want to measure infinitesimal distances on a manifold, we would need a "smoothly varying inner product". How does one define such an object?
- In physics, if we press an elastic body, how will it react? To know that, we would need to know a linear function that
- If we want to measure infinitesimal distances on a manifold, we would need a "smoothly varying inner product". How does one define such an object?
- In physics, if we press an elastic body, how will it react? To know that, we would need to know a linear function that takes the normal to a surface
- If we want to measure infinitesimal distances on a manifold, we would need a "smoothly varying inner product". How does one define such an object?
- In physics, if we press an elastic body, how will it react? To know that, we would need to know a linear function that takes the normal to a surface and produces the "stress vector" across the surface. (
- If we want to measure infinitesimal distances on a manifold, we would need a "smoothly varying inner product". How does one define such an object?
- In physics, if we press an elastic body, how will it react? To know that, we would need to know a linear function that takes the normal to a surface and produces the "stress vector" across the surface. (The resulting linear map/matrix is called the stress tensor.)
- If we want to measure infinitesimal distances on a manifold, we would need a "smoothly varying inner product". How does one define such an object?
- In physics, if we press an elastic body, how will it react? To know that, we would need to know a linear function that takes the normal to a surface and produces the "stress vector" across the surface. (The resulting linear map/matrix is called the stress tensor.)
- The area of a parallelogram is $\vec{a} \times \vec{b}$.
- If we want to measure infinitesimal distances on a manifold, we would need a "smoothly varying inner product". How does one define such an object?
- In physics, if we press an elastic body, how will it react? To know that, we would need to know a linear function that takes the normal to a surface and produces the "stress vector" across the surface. (The resulting linear map/matrix is called the stress tensor.)
- The area of a parallelogram is $\vec{a} \times \vec{b}$. The volume of a parallelopiped is
- If we want to measure infinitesimal distances on a manifold, we would need a "smoothly varying inner product". How does one define such an object?
- In physics, if we press an elastic body, how will it react? To know that, we would need to know a linear function that takes the normal to a surface and produces the "stress vector" across the surface. (The resulting linear map/matrix is called the stress tensor.)
- The area of a parallelogram is $\vec{a} \times \vec{b}$. The volume of a parallelopiped is $(\vec{a} \times \vec{b}) . \vec{c}$.
- If we want to measure infinitesimal distances on a manifold, we would need a "smoothly varying inner product". How does one define such an object?
- In physics, if we press an elastic body, how will it react? To know that, we would need to know a linear function that takes the normal to a surface and produces the "stress vector" across the surface. (The resulting linear map/matrix is called the stress tensor.)
- The area of a parallelogram is $\vec{a} \times \vec{b}$. The volume of a parallelopiped is $(\vec{a} \times \vec{b}) \cdot \vec{c}$. What about in higher dimensions?
- If we want to measure infinitesimal distances on a manifold, we would need a "smoothly varying inner product". How does one define such an object?
- In physics, if we press an elastic body, how will it react? To know that, we would need to know a linear function that takes the normal to a surface and produces the "stress vector" across the surface. (The resulting linear map/matrix is called the stress tensor.)
- The area of a parallelogram is $\vec{a} \times \vec{b}$. The volume of a parallelopiped is $(\vec{a} \times \vec{b}) \cdot \vec{c}$. What about in higher dimensions? On a related note, how can one generalise the "cross product"
- If we want to measure infinitesimal distances on a manifold, we would need a "smoothly varying inner product". How does one define such an object?
- In physics, if we press an elastic body, how will it react? To know that, we would need to know a linear function that takes the normal to a surface and produces the "stress vector" across the surface. (The resulting linear map/matrix is called the stress tensor.)
- The area of a parallelogram is $\vec{a} \times \vec{b}$. The volume of a parallelopiped is $(\vec{a} \times \vec{b}) \cdot \vec{c}$. What about in higher dimensions? On a related note, how can one generalise the "cross product" to higher dimensions?
- If we want to measure infinitesimal distances on a manifold, we would need a "smoothly varying inner product". How does one define such an object?
- In physics, if we press an elastic body, how will it react? To know that, we would need to know a linear function that takes the normal to a surface and produces the "stress vector" across the surface. (The resulting linear map/matrix is called the stress tensor.)
- The area of a parallelogram is $\vec{a} \times \vec{b}$. The volume of a parallelopiped is $(\vec{a} \times \vec{b}) \cdot \vec{c}$. What about in higher dimensions? On a related note, how can one generalise the "cross product" to higher dimensions?
- A common thread in all the questions above
- If we want to measure infinitesimal distances on a manifold, we would need a "smoothly varying inner product". How does one define such an object?
- In physics, if we press an elastic body, how will it react? To know that, we would need to know a linear function that takes the normal to a surface and produces the "stress vector" across the surface. (The resulting linear map/matrix is called the stress tensor.)
- The area of a parallelogram is $\vec{a} \times \vec{b}$. The volume of a parallelopiped is $(\vec{a} \times \vec{b}) \cdot \vec{c}$. What about in higher dimensions? On a related note, how can one generalise the "cross product" to higher dimensions?
- A common thread in all the questions above is the notion of a
- If we want to measure infinitesimal distances on a manifold, we would need a "smoothly varying inner product". How does one define such an object?
- In physics, if we press an elastic body, how will it react? To know that, we would need to know a linear function that takes the normal to a surface and produces the "stress vector" across the surface. (The resulting linear map/matrix is called the stress tensor.)
- The area of a parallelogram is $\vec{a} \times \vec{b}$. The volume of a parallelopiped is $(\vec{a} \times \vec{b}) \cdot \vec{c}$. What about in higher dimensions? On a related note, how can one generalise the "cross product" to higher dimensions?
- A common thread in all the questions above is the notion of a multilinear map or simply
- If we want to measure infinitesimal distances on a manifold, we would need a "smoothly varying inner product". How does one define such an object?
- In physics, if we press an elastic body, how will it react? To know that, we would need to know a linear function that takes the normal to a surface and produces the "stress vector" across the surface. (The resulting linear map/matrix is called the stress tensor.)
- The area of a parallelogram is $\vec{a} \times \vec{b}$. The volume of a parallelopiped is $(\vec{a} \times \vec{b}) \cdot \vec{c}$. What about in higher dimensions? On a related note, how can one generalise the "cross product" to higher dimensions?
- A common thread in all the questions above is the notion of a multilinear map or simply an object that has more than one index (like $A_{i j k \ldots}$...
- If we want to measure infinitesimal distances on a manifold, we would need a "smoothly varying inner product". How does one define such an object?
- In physics, if we press an elastic body, how will it react? To know that, we would need to know a linear function that takes the normal to a surface and produces the "stress vector" across the surface. (The resulting linear map/matrix is called the stress tensor.)
- The area of a parallelogram is $\vec{a} \times \vec{b}$. The volume of a parallelopiped is $(\vec{a} \times \vec{b}) \cdot \vec{c}$. What about in higher dimensions? On a related note, how can one generalise the "cross product" to higher dimensions?
- A common thread in all the questions above is the notion of a multilinear map or simply an object that has more than one index (like $A_{i j k \ldots}$). More so, we need
- If we want to measure infinitesimal distances on a manifold, we would need a "smoothly varying inner product". How does one define such an object?
- In physics, if we press an elastic body, how will it react? To know that, we would need to know a linear function that takes the normal to a surface and produces the "stress vector" across the surface. (The resulting linear map/matrix is called the stress tensor.)
- The area of a parallelogram is $\vec{a} \times \vec{b}$. The volume of a parallelopiped is $(\vec{a} \times \vec{b}) \cdot \vec{c}$. What about in higher dimensions? On a related note, how can one generalise the "cross product" to higher dimensions?
- A common thread in all the questions above is the notion of a multilinear map or simply an object that has more than one index (like $A_{i j k . . .}$). More so, we need a "smoothly varying family" of multilinear maps.
- If we want to measure infinitesimal distances on a manifold, we would need a "smoothly varying inner product". How does one define such an object?
- In physics, if we press an elastic body, how will it react? To know that, we would need to know a linear function that takes the normal to a surface and produces the "stress vector" across the surface. (The resulting linear map/matrix is called the stress tensor.)
- The area of a parallelogram is $\vec{a} \times \vec{b}$. The volume of a parallelopiped is $(\vec{a} \times \vec{b}) \cdot \vec{c}$. What about in higher dimensions? On a related note, how can one generalise the "cross product" to higher dimensions?
- A common thread in all the questions above is the notion of a multilinear map or simply an object that has more than one index (like $A_{i j k} .$.). More so, we need a "smoothly varying family" of multilinear maps. Presumably, it corresponds to the section of some vector bundle.

Multilinear maps

Multilinear maps

- Let V_{i}, W be vector spaces (over the same field).

Multilinear maps

- Let V_{i}, W be vector spaces (over the same field). Then $T: V_{1} \times \ldots V_{k} \rightarrow W$ is called multilinear

Multilinear maps

- Let V_{i}, W be vector spaces (over the same field). Then $T: V_{1} \times \ldots V_{k} \rightarrow W$ is called multilinear if it is linear separately in each variable.

Multilinear maps

- Let V_{i}, W be vector spaces (over the same field). Then $T: V_{1} \times \ldots V_{k} \rightarrow W$ is called multilinear if it is linear separately in each variable.
- Examples:

Multilinear maps

- Let V_{i}, W be vector spaces (over the same field). Then $T: V_{1} \times \ldots V_{k} \rightarrow W$ is called multilinear if it is linear separately in each variable.
- Examples: Dot product in \mathbb{R}^{n},

Multilinear maps

- Let V_{i}, W be vector spaces (over the same field). Then $T: V_{1} \times \ldots V_{k} \rightarrow W$ is called multilinear if it is linear separately in each variable.
- Examples: Dot product in \mathbb{R}^{n}, Cross product,

Multilinear maps

- Let V_{i}, W be vector spaces (over the same field). Then $T: V_{1} \times \ldots V_{k} \rightarrow W$ is called multilinear if it is linear separately in each variable.
- Examples: Dot product in \mathbb{R}^{n}, Cross product, Determinant,

Multilinear maps

- Let V_{i}, W be vector spaces (over the same field). Then $T: V_{1} \times \ldots V_{k} \rightarrow W$ is called multilinear if it is linear separately in each variable.
- Examples: Dot product in \mathbb{R}^{n}, Cross product, Determinant, Lie bracket, etc.

Multilinear maps

- Let V_{i}, W be vector spaces (over the same field). Then $T: V_{1} \times \ldots V_{k} \rightarrow W$ is called multilinear if it is linear separately in each variable.
- Examples: Dot product in \mathbb{R}^{n}, Cross product, Determinant, Lie bracket, etc.
- Non-example:

Multilinear maps

- Let V_{i}, W be vector spaces (over the same field). Then $T: V_{1} \times \ldots V_{k} \rightarrow W$ is called multilinear if it is linear separately in each variable.
- Examples: Dot product in \mathbb{R}^{n}, Cross product, Determinant, Lie bracket, etc.
- Non-example: $T: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by

Multilinear maps

- Let V_{i}, W be vector spaces (over the same field). Then $T: V_{1} \times \ldots V_{k} \rightarrow W$ is called multilinear if it is linear separately in each variable.
- Examples: Dot product in \mathbb{R}^{n}, Cross product, Determinant, Lie bracket, etc.
- Non-example: $T: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by $T(x, y)=x+y$ is linear but

Multilinear maps

- Let V_{i}, W be vector spaces (over the same field). Then $T: V_{1} \times \ldots V_{k} \rightarrow W$ is called multilinear if it is linear separately in each variable.
- Examples: Dot product in \mathbb{R}^{n}, Cross product, Determinant, Lie bracket, etc.
- Non-example: $T: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by $T(x, y)=x+y$ is linear but not multilinear!

Multilinear maps

- Let V_{i}, W be vector spaces (over the same field). Then $T: V_{1} \times \ldots V_{k} \rightarrow W$ is called multilinear if it is linear separately in each variable.
- Examples: Dot product in \mathbb{R}^{n}, Cross product, Determinant, Lie bracket, etc.
- Non-example: $T: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by $T(x, y)=x+y$ is linear but not multilinear! $T(x, y)=x y$ is multilinear but not linear.

Multilinear maps

- Let V_{i}, W be vector spaces (over the same field). Then $T: V_{1} \times \ldots V_{k} \rightarrow W$ is called multilinear if it is linear separately in each variable.
- Examples: Dot product in \mathbb{R}^{n}, Cross product, Determinant, Lie bracket, etc.
- Non-example: $T: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by $T(x, y)=x+y$ is linear but not multilinear! $T(x, y)=x y$ is multilinear but not linear.
- Another example:

Multilinear maps

- Let V_{i}, W be vector spaces (over the same field). Then $T: V_{1} \times \ldots V_{k} \rightarrow W$ is called multilinear if it is linear separately in each variable.
- Examples: Dot product in \mathbb{R}^{n}, Cross product, Determinant, Lie bracket, etc.
- Non-example: $T: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by $T(x, y)=x+y$ is linear but not multilinear! $T(x, y)=x y$ is multilinear but not linear.
- Another example: Let $\omega, \eta \in V^{*}$.

Multilinear maps

- Let V_{i}, W be vector spaces (over the same field). Then $T: V_{1} \times \ldots V_{k} \rightarrow W$ is called multilinear if it is linear separately in each variable.
- Examples: Dot product in \mathbb{R}^{n}, Cross product, Determinant, Lie bracket, etc.
- Non-example: $T: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by $T(x, y)=x+y$ is linear but not multilinear! $T(x, y)=x y$ is multilinear but not linear.
- Another example: Let $\omega, \eta \in V^{*}$. Consider $\omega \otimes \eta: V \times V \rightarrow \mathbb{R}$ given by

Multilinear maps

- Let V_{i}, W be vector spaces (over the same field). Then $T: V_{1} \times \ldots V_{k} \rightarrow W$ is called multilinear if it is linear separately in each variable.
- Examples: Dot product in \mathbb{R}^{n}, Cross product, Determinant, Lie bracket, etc.
- Non-example: $T: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by $T(x, y)=x+y$ is linear but not multilinear! $T(x, y)=x y$ is multilinear but not linear.
- Another example: Let $\omega, \eta \in V^{*}$. Consider $\omega \otimes \eta: V \times V \rightarrow \mathbb{R}$ given by $\omega \otimes \eta(v, w)=\omega(v) \eta(w)$.

Multilinear maps

- Let V_{i}, W be vector spaces (over the same field). Then $T: V_{1} \times \ldots V_{k} \rightarrow W$ is called multilinear if it is linear separately in each variable.
- Examples: Dot product in \mathbb{R}^{n}, Cross product, Determinant, Lie bracket, etc.
- Non-example: $T: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by $T(x, y)=x+y$ is linear but not multilinear! $T(x, y)=x y$ is multilinear but not linear.
- Another example: Let $\omega, \eta \in V^{*}$. Consider $\omega \otimes \eta: V \times V \rightarrow \mathbb{R}$ given by $\omega \otimes \eta(v, w)=\omega(v) \eta(w)$. This is a multilinear map.

Multilinear maps

- Let V_{i}, W be vector spaces (over the same field). Then $T: V_{1} \times \ldots V_{k} \rightarrow W$ is called multilinear if it is linear separately in each variable.
- Examples: Dot product in \mathbb{R}^{n}, Cross product, Determinant, Lie bracket, etc.
- Non-example: $T: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by $T(x, y)=x+y$ is linear but not multilinear! $T(x, y)=x y$ is multilinear but not linear.
- Another example: Let $\omega, \eta \in V^{*}$. Consider $\omega \otimes \eta: V \times V \rightarrow \mathbb{R}$ given by $\omega \otimes \eta(v, w)=\omega(v) \eta(w)$. This is a multilinear map. This example can be generalised

Multilinear maps

- Let V_{i}, W be vector spaces (over the same field). Then $T: V_{1} \times \ldots V_{k} \rightarrow W$ is called multilinear if it is linear separately in each variable.
- Examples: Dot product in \mathbb{R}^{n}, Cross product, Determinant, Lie bracket, etc.
- Non-example: $T: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by $T(x, y)=x+y$ is linear but not multilinear! $T(x, y)=x y$ is multilinear but not linear.
- Another example: Let $\omega, \eta \in V^{*}$. Consider $\omega \otimes \eta: V \times V \rightarrow \mathbb{R}$ given by $\omega \otimes \eta(v, w)=\omega(v) \eta(w)$. This is a multilinear map. This example can be generalised to define the tensor product of arbitrary multilinear functionals.

Multilinear maps

- Let V_{i}, W be vector spaces (over the same field). Then $T: V_{1} \times \ldots V_{k} \rightarrow W$ is called multilinear if it is linear separately in each variable.
- Examples: Dot product in \mathbb{R}^{n}, Cross product, Determinant, Lie bracket, etc.
- Non-example: $T: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by $T(x, y)=x+y$ is linear but not multilinear! $T(x, y)=x y$ is multilinear but not linear.
- Another example: Let $\omega, \eta \in V^{*}$. Consider $\omega \otimes \eta: V \times V \rightarrow \mathbb{R}$ given by $\omega \otimes \eta(v, w)=\omega(v) \eta(w)$. This is a multilinear map. This example can be generalised to define the tensor product of arbitrary multilinear functionals. It is easily seen to be associative.

Multilinear maps

- Let V_{i}, W be vector spaces (over the same field). Then $T: V_{1} \times \ldots V_{k} \rightarrow W$ is called multilinear if it is linear separately in each variable.
- Examples: Dot product in \mathbb{R}^{n}, Cross product, Determinant, Lie bracket, etc.
- Non-example: $T: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by $T(x, y)=x+y$ is linear but not multilinear! $T(x, y)=x y$ is multilinear but not linear.
- Another example: Let $\omega, \eta \in V^{*}$. Consider $\omega \otimes \eta: V \times V \rightarrow \mathbb{R}$ given by $\omega \otimes \eta(v, w)=\omega(v) \eta(w)$. This is a multilinear map. This example can be generalised to define the tensor product of arbitrary multilinear functionals. It is easily seen to be associative. Recursively, we can talk about

Multilinear maps

- Let V_{i}, W be vector spaces (over the same field). Then $T: V_{1} \times \ldots V_{k} \rightarrow W$ is called multilinear if it is linear separately in each variable.
- Examples: Dot product in \mathbb{R}^{n}, Cross product, Determinant, Lie bracket, etc.
- Non-example: $T: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by $T(x, y)=x+y$ is linear but not multilinear! $T(x, y)=x y$ is multilinear but not linear.
- Another example: Let $\omega, \eta \in V^{*}$. Consider $\omega \otimes \eta: V \times V \rightarrow \mathbb{R}$ given by $\omega \otimes \eta(v, w)=\omega(v) \eta(w)$. This is a multilinear map. This example can be generalised to define the tensor product of arbitrary multilinear functionals. It is easily seen to be associative. Recursively, we can talk about $\omega_{1} \otimes \omega_{2} \ldots$

Multilinear maps

- Let V_{i}, W be vector spaces (over the same field). Then $T: V_{1} \times \ldots V_{k} \rightarrow W$ is called multilinear if it is linear separately in each variable.
- Examples: Dot product in \mathbb{R}^{n}, Cross product, Determinant, Lie bracket, etc.
- Non-example: $T: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by $T(x, y)=x+y$ is linear but not multilinear! $T(x, y)=x y$ is multilinear but not linear.
- Another example: Let $\omega, \eta \in V^{*}$. Consider $\omega \otimes \eta: V \times V \rightarrow \mathbb{R}$ given by $\omega \otimes \eta(v, w)=\omega(v) \eta(w)$. This is a multilinear map. This example can be generalised to define the tensor product of arbitrary multilinear functionals. It is easily seen to be associative. Recursively, we can talk about $\omega_{1} \otimes \omega_{2} \ldots$. Likewise, since $V=V^{* *}$ (in f.d),

Multilinear maps

- Let V_{i}, W be vector spaces (over the same field). Then $T: V_{1} \times \ldots V_{k} \rightarrow W$ is called multilinear if it is linear separately in each variable.
- Examples: Dot product in \mathbb{R}^{n}, Cross product, Determinant, Lie bracket, etc.
- Non-example: $T: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by $T(x, y)=x+y$ is linear but not multilinear! $T(x, y)=x y$ is multilinear but not linear.
- Another example: Let $\omega, \eta \in V^{*}$. Consider $\omega \otimes \eta: V \times V \rightarrow \mathbb{R}$ given by $\omega \otimes \eta(v, w)=\omega(v) \eta(w)$. This is a multilinear map. This example can be generalised to define the tensor product of arbitrary multilinear functionals. It is easily seen to be associative. Recursively, we can talk about $\omega_{1} \otimes \omega_{2} \ldots$. Likewise, since $V=V^{* *}$ (in f.d), we can talk about $v \otimes w \otimes \ldots$.

A basis for multilinear functionals

A basis for multilinear functionals

- Theorem: Let $n_{i}=\operatorname{dim}\left(V_{i}\right)$.

A basis for multilinear functionals

- Theorem: Let $n_{i}=\operatorname{dim}\left(V_{i}\right)$. The dimension of the space $\operatorname{Mult}\left(V_{1}, \ldots, V_{k} ; \mathbb{R}\right)$ is $n_{1} n_{2} \ldots$ and

A basis for multilinear functionals

- Theorem: Let $n_{i}=\operatorname{dim}\left(V_{i}\right)$. The dimension of the space $\operatorname{Mult}\left(V_{1}, \ldots, V_{k} ; \mathbb{R}\right)$ is $n_{1} n_{2} \ldots$ and a basis is $\left(e_{1}^{i_{1}}\right) \otimes\left(e_{2}^{i_{2}}\right) \ldots$..

A basis for multilinear functionals

- Theorem: Let $n_{i}=\operatorname{dim}\left(V_{i}\right)$. The dimension of the space $\operatorname{Mult}\left(V_{1}, \ldots, V_{k} ; \mathbb{R}\right)$ is $n_{1} n_{2} \ldots$ and a basis is $\left(e_{1}^{i_{1}}\right) \otimes\left(e_{2}^{i_{2}}\right) \ldots$..
- Proof:

A basis for multilinear functionals

- Theorem: Let $n_{i}=\operatorname{dim}\left(V_{i}\right)$. The dimension of the space $\operatorname{Mult}\left(V_{1}, \ldots, V_{k} ; \mathbb{R}\right)$ is $n_{1} n_{2} \ldots$ and a basis is $\left(e_{1}^{i_{1}}\right) \otimes\left(e_{2}^{i_{2}}\right) \ldots$..
- Proof: This set is linearly independent:

A basis for multilinear functionals

- Theorem: Let $n_{i}=\operatorname{dim}\left(V_{i}\right)$. The dimension of the space $\operatorname{Mult}\left(V_{1}, \ldots, V_{k} ; \mathbb{R}\right)$ is $n_{1} n_{2} \ldots$ and a basis is $\left(e_{1}^{i_{1}}\right) \otimes\left(e_{2}^{i_{2}}\right) \ldots$..
- Proof: This set is linearly independent: Indeed, if $c_{i_{1} i_{2} \ldots}\left(e_{1}^{i_{1}}\right) \otimes\left(e_{2}^{i_{2}}\right) \ldots=0$, then

A basis for multilinear functionals

- Theorem: Let $n_{i}=\operatorname{dim}\left(V_{i}\right)$. The dimension of the space $\operatorname{Mult}\left(V_{1}, \ldots, V_{k} ; \mathbb{R}\right)$ is $n_{1} n_{2} \ldots$ and a basis is $\left(e_{1}^{i_{1}}\right) \otimes\left(e_{2}^{i_{2}}\right) \ldots$..
- Proof: This set is linearly independent: Indeed, if
$c_{i_{1} i_{2} \ldots}\left(e_{1}^{i_{1}}\right) \otimes\left(e_{2}^{i_{2}}\right) \ldots=0$, then acting on $\left(e_{1, j_{1}}, e_{2, j_{2}}, \ldots\right)$ we get

A basis for multilinear functionals

- Theorem: Let $n_{i}=\operatorname{dim}\left(V_{i}\right)$. The dimension of the space $\operatorname{Mult}\left(V_{1}, \ldots, V_{k} ; \mathbb{R}\right)$ is $n_{1} n_{2} \ldots$ and a basis is $\left(e_{1}^{i_{1}}\right) \otimes\left(e_{2}^{i_{2}}\right) \ldots$..
- Proof: This set is linearly independent: Indeed, if
$c_{i_{1} i_{2} \ldots}\left(e_{1}^{i_{1}}\right) \otimes\left(e_{2}^{i_{2}}\right) \ldots=0$, then acting on $\left(e_{1, j_{1}}, e_{2, j_{2}}, \ldots\right)$ we get $c_{j_{1} j_{2} \ldots}=0$.

A basis for multilinear functionals

- Theorem: Let $n_{i}=\operatorname{dim}\left(V_{i}\right)$. The dimension of the space $\operatorname{Mult}\left(V_{1}, \ldots, V_{k} ; \mathbb{R}\right)$ is $n_{1} n_{2} \ldots$ and a basis is $\left(e_{1}^{i_{1}}\right) \otimes\left(e_{2}^{i_{2}}\right) \ldots$.
- Proof: This set is linearly independent: Indeed, if $c_{i_{1} i_{2} \ldots}\left(e_{1}^{i_{1}}\right) \otimes\left(e_{2}^{i_{2}}\right) \ldots=0$, then acting on $\left(e_{1, j_{1}}, e_{2, j_{2}}, \ldots\right)$ we get $c_{j_{1} j_{2} \ldots}=0$. This is true for all $j_{1}, j_{2} \ldots$. Hence we are done.

A basis for multilinear functionals

- Theorem: Let $n_{i}=\operatorname{dim}\left(V_{i}\right)$. The dimension of the space $\operatorname{Mult}\left(V_{1}, \ldots, V_{k} ; \mathbb{R}\right)$ is $n_{1} n_{2} \ldots$ and a basis is $\left(e_{1}^{i_{1}}\right) \otimes\left(e_{2}^{i_{2}}\right) \ldots$..
- Proof: This set is linearly independent: Indeed, if $c_{i_{1} i_{2} \ldots}\left(e_{1}^{i_{1}}\right) \otimes\left(e_{2}^{i_{2}}\right) \ldots=0$, then acting on $\left(e_{1, j_{1}}, e_{2, j_{2}}, \ldots\right)$ we get $c_{j_{1} j_{2} \ldots}=0$. This is true for all $j_{1}, j_{2} \ldots$. Hence we are done. It spans the space:

A basis for multilinear functionals

- Theorem: Let $n_{i}=\operatorname{dim}\left(V_{i}\right)$. The dimension of the space $\operatorname{Mult}\left(V_{1}, \ldots, V_{k} ; \mathbb{R}\right)$ is $n_{1} n_{2} \ldots$ and a basis is $\left(e_{1}^{i_{1}}\right) \otimes\left(e_{2}^{i_{2}}\right) \ldots$..
- Proof: This set is linearly independent: Indeed, if $c_{i_{1} i_{2} \ldots}\left(e_{1}^{i_{1}}\right) \otimes\left(e_{2}^{i_{2}}\right) \ldots=0$, then acting on $\left(e_{1, j_{1}}, e_{2, j_{2}}, \ldots\right)$ we get $c_{j_{1} j_{2} \ldots}=0$. This is true for all $j_{1}, j_{2} \ldots$. Hence we are done. It spans the space: Let F be a multilinear functional.

A basis for multilinear functionals

- Theorem: Let $n_{i}=\operatorname{dim}\left(V_{i}\right)$. The dimension of the space $\operatorname{Mult}\left(V_{1}, \ldots, V_{k} ; \mathbb{R}\right)$ is $n_{1} n_{2} \ldots$ and a basis is $\left(e_{1}^{i_{1}}\right) \otimes\left(e_{2}^{i_{2}}\right) \ldots$.
- Proof: This set is linearly independent: Indeed, if
$c_{i_{1} i_{2} \ldots}\left(e_{1}^{i_{1}}\right) \otimes\left(e_{2}^{i_{2}}\right) \ldots=0$, then acting on $\left(e_{1, j_{1}}, e_{2, j_{2}}, \ldots\right)$ we get $c_{j_{1} j_{2} \ldots}=0$. This is true for all $j_{1}, j_{2} \ldots$. Hence we are done. It spans the space: Let F be a multilinear functional. Define $F_{i_{1} i_{2} \ldots}=F\left(e_{1, i_{1}}, e_{2, i_{2}}, \ldots\right)$.

A basis for multilinear functionals

- Theorem: Let $n_{i}=\operatorname{dim}\left(V_{i}\right)$. The dimension of the space $\operatorname{Mult}\left(V_{1}, \ldots, V_{k} ; \mathbb{R}\right)$ is $n_{1} n_{2} \ldots$ and a basis is $\left(e_{1}^{i_{1}}\right) \otimes\left(e_{2}^{i_{2}}\right) \ldots$.
- Proof: This set is linearly independent: Indeed, if
$c_{i_{1} i_{2} \ldots}\left(e_{1}^{i_{1}}\right) \otimes\left(e_{2}^{i_{2}}\right) \ldots=0$, then acting on $\left(e_{1, j_{1}}, e_{2, j_{2}}, \ldots\right)$ we get $c_{j_{1} j_{2} \ldots}=0$. This is true for all $j_{1}, j_{2} \ldots$. Hence we are done. It spans the space: Let F be a multilinear functional. Define $F_{i_{1} i_{2} \ldots}=F\left(e_{1, i_{1}}, e_{2, i_{2}}, \ldots\right)$. Now consider $\omega=F_{i_{1} i_{2} \ldots}\left(e_{1}^{i_{1}}\right) \otimes\left(e_{2}^{i_{2}}\right) \ldots$

A basis for multilinear functionals

- Theorem: Let $n_{i}=\operatorname{dim}\left(V_{i}\right)$. The dimension of the space $\operatorname{Mult}\left(V_{1}, \ldots, V_{k} ; \mathbb{R}\right)$ is $n_{1} n_{2} \ldots$ and a basis is $\left(e_{1}^{i_{1}}\right) \otimes\left(e_{2}^{i_{2}}\right) \ldots$.
- Proof: This set is linearly independent: Indeed, if
$c_{i_{1} i_{2} \ldots}\left(e_{1}^{i_{1}}\right) \otimes\left(e_{2}^{i_{2}}\right) \ldots=0$, then acting on $\left(e_{1, j_{1}}, e_{2, j_{2}}, \ldots\right)$ we get $c_{j_{1} j_{2} \ldots}=0$. This is true for all $j_{1}, j_{2} \ldots$. Hence we are done. It spans the space: Let F be a multilinear functional. Define $F_{i_{1} i_{2} \ldots}=F\left(e_{1, i_{1}}, e_{2, i_{2}}, \ldots\right)$. Now consider
$\omega=F_{i_{1} i_{2} \ldots}\left(e_{1}^{i_{1}}\right) \otimes\left(e_{2}^{i_{2}}\right) \ldots$. Note that
$(\omega-F)\left(v_{1}, v_{2}, \ldots\right)=(\omega-F)\left(v_{1}^{j_{1}} e_{j_{1}}, \ldots\right)=$
$v_{1}^{j_{1}} v_{2}^{j_{2}} \ldots(\omega-F)\left(e_{1, j_{1}}, e_{2, j_{2}}, \ldots\right)=0$.

Tensor product - Universal property

Tensor product - Universal property

- Let V_{1}, V_{2} be vector spaces.

Tensor product - Universal property

- Let V_{1}, V_{2} be vector spaces. We can bring multilinear maps

Tensor product - Universal property

- Let V_{1}, V_{2} be vector spaces. We can bring multilinear maps into the framework of linear maps.

Tensor product - Universal property

- Let V_{1}, V_{2} be vector spaces. We can bring multilinear maps into the framework of linear maps. Basically, we want to create

Tensor product - Universal property

- Let V_{1}, V_{2} be vector spaces. We can bring multilinear maps into the framework of linear maps. Basically, we want to create a vector space $V_{1} \otimes V_{2}$ formed by

Tensor product - Universal property

- Let V_{1}, V_{2} be vector spaces. We can bring multilinear maps into the framework of linear maps. Basically, we want to create a vector space $V_{1} \otimes V_{2}$ formed by "formal" linear combinations of things of the type

Tensor product - Universal property

- Let V_{1}, V_{2} be vector spaces. We can bring multilinear maps into the framework of linear maps. Basically, we want to create a vector space $V_{1} \otimes V_{2}$ formed by "formal" linear combinations of things of the type $v_{1} \otimes v_{2}$.

Tensor product - Universal property

- Let V_{1}, V_{2} be vector spaces. We can bring multilinear maps into the framework of linear maps. Basically, we want to create a vector space $V_{1} \otimes V_{2}$ formed by "formal" linear combinations of things of the type $v_{1} \otimes v_{2}$.
- Theorem:

Tensor product - Universal property

- Let V_{1}, V_{2} be vector spaces. We can bring multilinear maps into the framework of linear maps. Basically, we want to create a vector space $V_{1} \otimes V_{2}$ formed by "formal" linear combinations of things of the type $v_{1} \otimes v_{2}$.
- Theorem: Suppose there exists a vector space (called the tensor product of V_{i})

Tensor product - Universal property

- Let V_{1}, V_{2} be vector spaces. We can bring multilinear maps into the framework of linear maps. Basically, we want to create a vector space $V_{1} \otimes V_{2}$ formed by "formal" linear combinations of things of the type $v_{1} \otimes v_{2}$.
- Theorem: Suppose there exists a vector space (called the tensor product of V_{i}) $V_{1} \otimes V_{2}$ and a multilinear map $\pi: V_{1} \times V_{2} \rightarrow V_{1} \otimes V_{2}$ with the property that

Tensor product - Universal property

- Let V_{1}, V_{2} be vector spaces. We can bring multilinear maps into the framework of linear maps. Basically, we want to create a vector space $V_{1} \otimes V_{2}$ formed by "formal" linear combinations of things of the type $v_{1} \otimes v_{2}$.
- Theorem: Suppose there exists a vector space (called the tensor product of V_{i}) $V_{1} \otimes V_{2}$ and a multilinear map $\pi: V_{1} \times V_{2} \rightarrow V_{1} \otimes V_{2}$ with the property that given any multilinear map $T: V_{1} \times V_{2} \rightarrow W$,

Tensor product - Universal property

- Let V_{1}, V_{2} be vector spaces. We can bring multilinear maps into the framework of linear maps. Basically, we want to create a vector space $V_{1} \otimes V_{2}$ formed by "formal" linear combinations of things of the type $v_{1} \otimes v_{2}$.
- Theorem: Suppose there exists a vector space (called the tensor product of V_{i}) $V_{1} \otimes V_{2}$ and a multilinear map $\pi: V_{1} \times V_{2} \rightarrow V_{1} \otimes V_{2}$ with the property that given any multilinear map $T: V_{1} \times V_{2} \rightarrow W$, there is a unique linear map

Tensor product - Universal property

- Let V_{1}, V_{2} be vector spaces. We can bring multilinear maps into the framework of linear maps. Basically, we want to create a vector space $V_{1} \otimes V_{2}$ formed by "formal" linear combinations of things of the type $v_{1} \otimes v_{2}$.
- Theorem: Suppose there exists a vector space (called the tensor product of V_{i}) $V_{1} \otimes V_{2}$ and a multilinear map $\pi: V_{1} \times V_{2} \rightarrow V_{1} \otimes V_{2}$ with the property that given any multilinear map $T: V_{1} \times V_{2} \rightarrow W$, there is a unique linear map $\tilde{T}: V_{1} \otimes V_{2} \rightarrow W$ such that

Tensor product - Universal property

- Let V_{1}, V_{2} be vector spaces. We can bring multilinear maps into the framework of linear maps. Basically, we want to create a vector space $V_{1} \otimes V_{2}$ formed by "formal" linear combinations of things of the type $v_{1} \otimes v_{2}$.
- Theorem: Suppose there exists a vector space (called the tensor product of V_{i}) $V_{1} \otimes V_{2}$ and a multilinear map $\pi: V_{1} \times V_{2} \rightarrow V_{1} \otimes V_{2}$ with the property that given any multilinear map $T: V_{1} \times V_{2} \rightarrow W$, there is a unique linear $\operatorname{map} \tilde{T}: V_{1} \otimes V_{2} \rightarrow W$ such that $T=\tilde{T} \circ \pi$.

Tensor product - Universal property

- Let V_{1}, V_{2} be vector spaces. We can bring multilinear maps into the framework of linear maps. Basically, we want to create a vector space $V_{1} \otimes V_{2}$ formed by "formal" linear combinations of things of the type $v_{1} \otimes v_{2}$.
- Theorem: Suppose there exists a vector space (called the tensor product of V_{i}) $V_{1} \otimes V_{2}$ and a multilinear map $\pi: V_{1} \times V_{2} \rightarrow V_{1} \otimes V_{2}$ with the property that given any multilinear map $T: V_{1} \times V_{2} \rightarrow W$, there is a unique linear $\operatorname{map} \tilde{T}: V_{1} \otimes V_{2} \rightarrow W$ such that $T=\tilde{T} \circ \pi$. Then any other vector space satisfying this

Tensor product - Universal property

- Let V_{1}, V_{2} be vector spaces. We can bring multilinear maps into the framework of linear maps. Basically, we want to create a vector space $V_{1} \otimes V_{2}$ formed by "formal" linear combinations of things of the type $v_{1} \otimes v_{2}$.
- Theorem: Suppose there exists a vector space (called the tensor product of V_{i}) $V_{1} \otimes V_{2}$ and a multilinear map $\pi: V_{1} \times V_{2} \rightarrow V_{1} \otimes V_{2}$ with the property that given any multilinear map $T: V_{1} \times V_{2} \rightarrow W$, there is a unique linear $\operatorname{map} \tilde{T}: V_{1} \otimes V_{2} \rightarrow W$ such that $T=\tilde{T} \circ \pi$. Then any other vector space satisfying this universal property

Tensor product - Universal property

- Let V_{1}, V_{2} be vector spaces. We can bring multilinear maps into the framework of linear maps. Basically, we want to create a vector space $V_{1} \otimes V_{2}$ formed by "formal" linear combinations of things of the type $v_{1} \otimes v_{2}$.
- Theorem: Suppose there exists a vector space (called the tensor product of V_{i}) $V_{1} \otimes V_{2}$ and a multilinear map $\pi: V_{1} \times V_{2} \rightarrow V_{1} \otimes V_{2}$ with the property that given any multilinear map $T: V_{1} \times V_{2} \rightarrow W$, there is a unique linear $\operatorname{map} \tilde{T}: V_{1} \otimes V_{2} \rightarrow W$ such that $T=\tilde{T} \circ \pi$. Then any other vector space satisfying this universal property is isomorphic to $V_{1} \otimes V_{2}$ (with the isomorphism preserving the universal property).

Tensor product - Universal property

- Let V_{1}, V_{2} be vector spaces. We can bring multilinear maps into the framework of linear maps. Basically, we want to create a vector space $V_{1} \otimes V_{2}$ formed by "formal" linear combinations of things of the type $v_{1} \otimes v_{2}$.
- Theorem: Suppose there exists a vector space (called the tensor product of V_{i}) $V_{1} \otimes V_{2}$ and a multilinear map $\pi: V_{1} \times V_{2} \rightarrow V_{1} \otimes V_{2}$ with the property that given any multilinear map $T: V_{1} \times V_{2} \rightarrow W$, there is a unique linear $\operatorname{map} \tilde{T}: V_{1} \otimes V_{2} \rightarrow W$ such that $T=\tilde{T} \circ \pi$. Then any other vector space satisfying this universal property is isomorphic to $V_{1} \otimes V_{2}$ (with the isomorphism preserving the universal property).
- Proof:

Tensor product - Universal property

- Let V_{1}, V_{2} be vector spaces. We can bring multilinear maps into the framework of linear maps. Basically, we want to create a vector space $V_{1} \otimes V_{2}$ formed by "formal" linear combinations of things of the type $v_{1} \otimes v_{2}$.
- Theorem: Suppose there exists a vector space (called the tensor product of V_{i}) $V_{1} \otimes V_{2}$ and a multilinear map $\pi: V_{1} \times V_{2} \rightarrow V_{1} \otimes V_{2}$ with the property that given any multilinear map $T: V_{1} \times V_{2} \rightarrow W$, there is a unique linear $\operatorname{map} \tilde{T}: V_{1} \otimes V_{2} \rightarrow W$ such that $T=\tilde{T} \circ \pi$. Then any other vector space satisfying this universal property is isomorphic to $V_{1} \otimes V_{2}$ (with the isomorphism preserving the universal property).
- Proof: Suppose $\left(V^{\prime}, \pi^{\prime}\right)$ is another such space.

Tensor product - Universal property

- Let V_{1}, V_{2} be vector spaces. We can bring multilinear maps into the framework of linear maps. Basically, we want to create a vector space $V_{1} \otimes V_{2}$ formed by "formal" linear combinations of things of the type $v_{1} \otimes v_{2}$.
- Theorem: Suppose there exists a vector space (called the tensor product of V_{i}) $V_{1} \otimes V_{2}$ and a multilinear map $\pi: V_{1} \times V_{2} \rightarrow V_{1} \otimes V_{2}$ with the property that given any multilinear map $T: V_{1} \times V_{2} \rightarrow W$, there is a unique linear $\operatorname{map} \tilde{T}: V_{1} \otimes V_{2} \rightarrow W$ such that $T=\tilde{T} \circ \pi$. Then any other vector space satisfying this universal property is isomorphic to $V_{1} \otimes V_{2}$ (with the isomorphism preserving the universal property).
- Proof: Suppose $\left(V^{\prime}, \pi^{\prime}\right)$ is another such space. Then consider the map $\tilde{\pi^{\prime}}: V_{1} \otimes V_{2} \rightarrow V^{\prime}$ induced from π^{\prime}.

Tensor product - Construction

Tensor product - Construction

- Likewise, we have $\tilde{\pi}: V^{\prime} \rightarrow V_{1} \otimes V_{2}$.
- Likewise, we have $\tilde{\pi}: V^{\prime} \rightarrow V_{1} \otimes V_{2}$. These two are inverses of each other and hence give the desired isomorphism (why?).
- Likewise, we have $\tilde{\pi}: V^{\prime} \rightarrow V_{1} \otimes V_{2}$. These two are inverses of each other and hence give the desired isomorphism (why?).
- We can prove that
- Likewise, we have $\tilde{\pi}: V^{\prime} \rightarrow V_{1} \otimes V_{2}$. These two are inverses of each other and hence give the desired isomorphism (why?).
- We can prove that tensor products (if they exist)
- Likewise, we have $\tilde{\pi}: V^{\prime} \rightarrow V_{1} \otimes V_{2}$. These two are inverses of each other and hence give the desired isomorphism (why?).
- We can prove that tensor products (if they exist) are associative (using the universal property).
- Likewise, we have $\tilde{\pi}: V^{\prime} \rightarrow V_{1} \otimes V_{2}$. These two are inverses of each other and hence give the desired isomorphism (why?).
- We can prove that tensor products (if they exist) are associative (using the universal property). We can then take arbitrary (finite) number of tensor products.
- Likewise, we have $\tilde{\pi}: V^{\prime} \rightarrow V_{1} \otimes V_{2}$. These two are inverses of each other and hence give the desired isomorphism (why?).
- We can prove that tensor products (if they exist) are associative (using the universal property). We can then take arbitrary (finite) number of tensor products.
- We need to manage to construct

Tensor product - Construction

- Likewise, we have $\tilde{\pi}: V^{\prime} \rightarrow V_{1} \otimes V_{2}$. These two are inverses of each other and hence give the desired isomorphism (why?).
- We can prove that tensor products (if they exist) are associative (using the universal property). We can then take arbitrary (finite) number of tensor products.
- We need to manage to construct one such space.

Tensor product - Construction

- Likewise, we have $\tilde{\pi}: V^{\prime} \rightarrow V_{1} \otimes V_{2}$. These two are inverses of each other and hence give the desired isomorphism (why?).
- We can prove that tensor products (if they exist) are associative (using the universal property). We can then take arbitrary (finite) number of tensor products.
- We need to manage to construct one such space. The idea is to take the

Tensor product - Construction

- Likewise, we have $\tilde{\pi}: V^{\prime} \rightarrow V_{1} \otimes V_{2}$. These two are inverses of each other and hence give the desired isomorphism (why?).
- We can prove that tensor products (if they exist) are associative (using the universal property). We can then take arbitrary (finite) number of tensor products.
- We need to manage to construct one such space. The idea is to take the free vector space $F\left(S=V_{1} \times V_{2} \times \ldots\right)$ defined as

Tensor product - Construction

- Likewise, we have $\tilde{\pi}: V^{\prime} \rightarrow V_{1} \otimes V_{2}$. These two are inverses of each other and hence give the desired isomorphism (why?).
- We can prove that tensor products (if they exist) are associative (using the universal property). We can then take arbitrary (finite) number of tensor products.
- We need to manage to construct one such space. The idea is to take the free vector space $F\left(S=V_{1} \times V_{2} \times \ldots\right)$ defined as the set of all formal linear combinations of elements of S, i.e.,

Tensor product - Construction

- Likewise, we have $\tilde{\pi}: V^{\prime} \rightarrow V_{1} \otimes V_{2}$. These two are inverses of each other and hence give the desired isomorphism (why?).
- We can prove that tensor products (if they exist) are associative (using the universal property). We can then take arbitrary (finite) number of tensor products.
- We need to manage to construct one such space. The idea is to take the free vector space $F\left(S=V_{1} \times V_{2} \times \ldots\right)$ defined as the set of all formal linear combinations of elements of S, i.e., $f: S \rightarrow \mathbb{R}$ such that $f(s)=0$ for all but finitely many s.

Tensor product - Construction

- Likewise, we have $\tilde{\pi}: V^{\prime} \rightarrow V_{1} \otimes V_{2}$. These two are inverses of each other and hence give the desired isomorphism (why?).
- We can prove that tensor products (if they exist) are associative (using the universal property). We can then take arbitrary (finite) number of tensor products.
- We need to manage to construct one such space. The idea is to take the free vector space $F\left(S=V_{1} \times V_{2} \times \ldots\right)$ defined as the set of all formal linear combinations of elements of S, i.e., $f: S \rightarrow \mathbb{R}$ such that $f(s)=0$ for all but finitely many s. Define a subspace R generated by

Tensor product - Construction

- Likewise, we have $\tilde{\pi}: V^{\prime} \rightarrow V_{1} \otimes V_{2}$. These two are inverses of each other and hence give the desired isomorphism (why?).
- We can prove that tensor products (if they exist) are associative (using the universal property). We can then take arbitrary (finite) number of tensor products.
- We need to manage to construct one such space. The idea is to take the free vector space $F\left(S=V_{1} \times V_{2} \times \ldots\right)$ defined as the set of all formal linear combinations of elements of S, i.e., $f: S \rightarrow \mathbb{R}$ such that $f(s)=0$ for all but finitely many s.
Define a subspace R generated by the set
$\left(v_{1}, v_{2}, \ldots, a v_{i}, \ldots\right)-a\left(v_{1}, v_{2}, \ldots\right)$ and
$\left(v_{1}, v_{2}, \ldots, v_{i}+v_{i}^{\prime}, \ldots\right)-\left(v_{1}, \ldots, v_{i}, \ldots\right)-\left(v_{1}, \ldots, v_{i}^{\prime}, \ldots\right)$.

Tensor product - Construction

- Likewise, we have $\tilde{\pi}: V^{\prime} \rightarrow V_{1} \otimes V_{2}$. These two are inverses of each other and hence give the desired isomorphism (why?).
- We can prove that tensor products (if they exist) are associative (using the universal property). We can then take arbitrary (finite) number of tensor products.
- We need to manage to construct one such space. The idea is to take the free vector space $F\left(S=V_{1} \times V_{2} \times \ldots\right)$ defined as the set of all formal linear combinations of elements of S, i.e., $f: S \rightarrow \mathbb{R}$ such that $f(s)=0$ for all but finitely many s.
Define a subspace R generated by the set
$\left(v_{1}, v_{2}, \ldots, a v_{i}, \ldots\right)-a\left(v_{1}, v_{2}, \ldots\right)$ and
$\left(v_{1}, v_{2}, \ldots, v_{i}+v_{i}^{\prime}, \ldots\right)-\left(v_{1}, \ldots, v_{i}, \ldots\right)-\left(v_{1}, \ldots, v_{i}^{\prime}, \ldots\right)$.
The quotient space is denoted as $V_{1} \otimes V_{2} \ldots$ and

Tensor product - Construction

- Likewise, we have $\tilde{\pi}: V^{\prime} \rightarrow V_{1} \otimes V_{2}$. These two are inverses of each other and hence give the desired isomorphism (why?).
- We can prove that tensor products (if they exist) are associative (using the universal property). We can then take arbitrary (finite) number of tensor products.
- We need to manage to construct one such space. The idea is to take the free vector space $F\left(S=V_{1} \times V_{2} \times \ldots\right)$ defined as the set of all formal linear combinations of elements of S, i.e., $f: S \rightarrow \mathbb{R}$ such that $f(s)=0$ for all but finitely many s.
Define a subspace R generated by the set
$\left(v_{1}, v_{2}, \ldots, a v_{i}, \ldots\right)-a\left(v_{1}, v_{2}, \ldots\right)$ and
$\left(v_{1}, v_{2}, \ldots, v_{i}+v_{i}^{\prime}, \ldots\right)-\left(v_{1}, \ldots, v_{i}, \ldots\right)-\left(v_{1}, \ldots, v_{i}^{\prime}, \ldots\right)$.
The quotient space is denoted as $V_{1} \otimes V_{2} \ldots$ and the projection map by π.

Tensor product - Construction

- Likewise, we have $\tilde{\pi}: V^{\prime} \rightarrow V_{1} \otimes V_{2}$. These two are inverses of each other and hence give the desired isomorphism (why?).
- We can prove that tensor products (if they exist) are associative (using the universal property). We can then take arbitrary (finite) number of tensor products.
- We need to manage to construct one such space. The idea is to take the free vector space $F\left(S=V_{1} \times V_{2} \times \ldots\right)$ defined as the set of all formal linear combinations of elements of S, i.e., $f: S \rightarrow \mathbb{R}$ such that $f(s)=0$ for all but finitely many s.
Define a subspace R generated by the set
$\left(v_{1}, v_{2}, \ldots, a v_{i}, \ldots\right)-a\left(v_{1}, v_{2}, \ldots\right)$ and
$\left(v_{1}, v_{2}, \ldots, v_{i}+v_{i}^{\prime}, \ldots\right)-\left(v_{1}, \ldots, v_{i}, \ldots\right)-\left(v_{1}, \ldots, v_{i}^{\prime}, \ldots\right)$.
The quotient space is denoted as $V_{1} \otimes V_{2} \ldots$ and the projection map by $\pi . \pi\left(v_{1}, v_{2}, \ldots\right)$ is denoted by $v_{1} \otimes v_{2} \ldots$

Tensor product - Construction

- Likewise, we have $\tilde{\pi}: V^{\prime} \rightarrow V_{1} \otimes V_{2}$. These two are inverses of each other and hence give the desired isomorphism (why?).
- We can prove that tensor products (if they exist) are associative (using the universal property). We can then take arbitrary (finite) number of tensor products.
- We need to manage to construct one such space. The idea is to take the free vector space $F\left(S=V_{1} \times V_{2} \times \ldots\right)$ defined as the set of all formal linear combinations of elements of S, i.e., $f: S \rightarrow \mathbb{R}$ such that $f(s)=0$ for all but finitely many s.
Define a subspace R generated by the set
$\left(v_{1}, v_{2}, \ldots, a v_{i}, \ldots\right)-a\left(v_{1}, v_{2}, \ldots\right)$ and
$\left(v_{1}, v_{2}, \ldots, v_{i}+v_{i}^{\prime}, \ldots\right)-\left(v_{1}, \ldots, v_{i}, \ldots\right)-\left(v_{1}, \ldots, v_{i}^{\prime}, \ldots\right)$.
The quotient space is denoted as $V_{1} \otimes V_{2} \ldots$ and the projection map by $\pi . \pi\left(v_{1}, v_{2}, \ldots\right)$ is denoted by $v_{1} \otimes v_{2} \ldots$ One can prove that

Tensor product - Construction

- Likewise, we have $\tilde{\pi}: V^{\prime} \rightarrow V_{1} \otimes V_{2}$. These two are inverses of each other and hence give the desired isomorphism (why?).
- We can prove that tensor products (if they exist) are associative (using the universal property). We can then take arbitrary (finite) number of tensor products.
- We need to manage to construct one such space. The idea is to take the free vector space $F\left(S=V_{1} \times V_{2} \times \ldots\right)$ defined as the set of all formal linear combinations of elements of S, i.e., $f: S \rightarrow \mathbb{R}$ such that $f(s)=0$ for all but finitely many s.
Define a subspace R generated by the set
$\left(v_{1}, v_{2}, \ldots, a v_{i}, \ldots\right)-a\left(v_{1}, v_{2}, \ldots\right)$ and
$\left(v_{1}, v_{2}, \ldots, v_{i}+v_{i}^{\prime}, \ldots\right)-\left(v_{1}, \ldots, v_{i}, \ldots\right)-\left(v_{1}, \ldots, v_{i}^{\prime}, \ldots\right)$.
The quotient space is denoted as $V_{1} \otimes V_{2} \ldots$ and the projection map by $\pi . \pi\left(v_{1}, v_{2}, \ldots\right)$ is denoted by $v_{1} \otimes v_{2} \ldots$ One can prove that indeed this satisfies the universal property.

Tensor product - Basis

Tensor product - Basis

- One can also prove that
- One can also prove that if $e_{i, j}$ are bases for V_{i},
- One can also prove that if $e_{i, j}$ are bases for V_{i}, then $e_{1, j_{1}} \otimes e_{2, j_{2}} \ldots$ is a basis for the tensor product.

Tensor product - Basis

- One can also prove that if $e_{i, j}$ are bases for V_{i}, then $e_{1, j_{1}} \otimes e_{2, j_{2}} \ldots$ is a basis for the tensor product.
- Moreover, there is a

Tensor product - Basis

- One can also prove that if $e_{i, j}$ are bases for V_{i}, then $e_{1, j_{1}} \otimes e_{2, j_{2}} \ldots$ is a basis for the tensor product.
- Moreover, there is a canonical isomorphism between

Tensor product - Basis

- One can also prove that if $e_{i, j}$ are bases for V_{i}, then $e_{1, j_{1}} \otimes e_{2, j_{2}} \ldots$ is a basis for the tensor product.
- Moreover, there is a canonical isomorphism between $V_{1}^{*} \otimes \ldots$ and $\operatorname{Mult}\left(V_{1}, V_{2}, \ldots ; \mathbb{R}\right)$.

Tensor product - Basis

- One can also prove that if $e_{i, j}$ are bases for V_{i}, then $e_{1, j_{1}} \otimes e_{2, j_{2}} \ldots$ is a basis for the tensor product.
- Moreover, there is a canonical isomorphism between $V_{1}^{*} \otimes \ldots$ and $\operatorname{Mult}\left(V_{1}, V_{2}, \ldots ; \mathbb{R}\right)$.
- Likewise (in finite-dimensions), there is a

Tensor product - Basis

- One can also prove that if $e_{i, j}$ are bases for V_{i}, then $e_{1, j_{1}} \otimes e_{2, j_{2}} \ldots$ is a basis for the tensor product.
- Moreover, there is a canonical isomorphism between $V_{1}^{*} \otimes \ldots$ and $\operatorname{Mult}\left(V_{1}, V_{2}, \ldots ; \mathbb{R}\right)$.
- Likewise (in finite-dimensions), there is a canonical isomorphism between

Tensor product - Basis

- One can also prove that if $e_{i, j}$ are bases for V_{i}, then $e_{1, j_{1}} \otimes e_{2, j_{2}} \ldots$ is a basis for the tensor product.
- Moreover, there is a canonical isomorphism between $V_{1}^{*} \otimes \ldots$ and $\operatorname{Mult}\left(V_{1}, V_{2}, \ldots ; \mathbb{R}\right)$.
- Likewise (in finite-dimensions), there is a canonical isomorphism between $V_{1} \otimes \ldots$ and $\operatorname{Mult}\left(V_{1}^{*}, V_{2}^{*}, \ldots ; \mathbb{R}\right)$.

Covariant and Contravariant tensors

Covariant and Contravariant tensors

- A covariant tensor of

Covariant and Contravariant tensors

- A covariant tensor of type-/ on V

Covariant and Contravariant tensors

- A covariant tensor of type-/ on V is an element of $V^{*} \otimes V^{*} \otimes \ldots(I$ times $)$.

Covariant and Contravariant tensors

- A covariant tensor of type-/ on V is an element of $V^{*} \otimes V^{*} \otimes \ldots$ (I times). It can be thought of as

Covariant and Contravariant tensors

- A covariant tensor of type-/ on V is an element of $V^{*} \otimes V^{*} \otimes \ldots$ (/ times). It can be thought of as corresponding to a multilinear map from $V \times V \ldots$ to \mathbb{R}.

Covariant and Contravariant tensors

- A covariant tensor of type-/ on V is an element of $V^{*} \otimes V^{*} \otimes \ldots$ ($/$ times). It can be thought of as corresponding to a multilinear map from $V \times V \ldots$ to \mathbb{R}. A contravariant tensor of

Covariant and Contravariant tensors

- A covariant tensor of type-/ on V is an element of $V^{*} \otimes V^{*} \otimes \ldots$ ($/$ times). It can be thought of as corresponding to a multilinear map from $V \times V \ldots$ to \mathbb{R}. A contravariant tensor of type- k on V

Covariant and Contravariant tensors

- A covariant tensor of type-/ on V is an element of $V^{*} \otimes V^{*} \otimes \ldots$ (I times). It can be thought of as corresponding to a multilinear map from $V \times V \ldots$ to \mathbb{R}. A contravariant tensor of type- k on V is an element of $V \otimes V \otimes \ldots$ (k times).

Covariant and Contravariant tensors

- A covariant tensor of type-/ on V is an element of $V^{*} \otimes V^{*} \otimes \ldots$ (I times). It can be thought of as corresponding to a multilinear map from $V \times V \ldots$ to \mathbb{R}. A contravariant tensor of type- k on V is an element of $V \otimes V \otimes \ldots$ (k times).
- A (k, l)-mixed tensor

Covariant and Contravariant tensors

- A covariant tensor of type-/ on V is an element of $V^{*} \otimes V^{*} \otimes \ldots$ (I times). It can be thought of as corresponding to a multilinear map from $V \times V \ldots$ to \mathbb{R}. A contravariant tensor of type- k on V is an element of $V \otimes V \otimes \ldots$ (k times).
- A (k, l)-mixed tensor is an element of $V \otimes V \ldots(k$ times $) \otimes V^{*} \ldots(I$ times $)$. $($

Covariant and Contravariant tensors

- A covariant tensor of type-/ on V is an element of $V^{*} \otimes V^{*} \otimes \ldots$ (I times). It can be thought of as corresponding to a multilinear map from $V \times V \ldots$ to \mathbb{R}. A contravariant tensor of type- k on V is an element of $V \otimes V \otimes \ldots$ (k times).
- A (k, l)-mixed tensor is an element of $V \otimes V \ldots(k$ times $) \otimes V^{*} \ldots$ ($/$ times $)$. (By convention $T^{0,0}=\mathbb{R}$.)

Covariant and Contravariant tensors

- A covariant tensor of type-/ on V is an element of $V^{*} \otimes V^{*} \otimes \ldots$ (I times). It can be thought of as corresponding to a multilinear map from $V \times V \ldots$ to \mathbb{R}. A contravariant tensor of type- k on V is an element of $V \otimes V \otimes \ldots$ (k times).
- A (k, l)-mixed tensor is an element of $V \otimes V \ldots$ (k times $) \otimes V^{*} \ldots$ ($/$ times). (By convention, $T^{0,0}=\mathbb{R}$.) In terms of indices,

Covariant and Contravariant tensors

- A covariant tensor of type-/ on V is an element of $V^{*} \otimes V^{*} \otimes \ldots$ (I times). It can be thought of as corresponding to a multilinear map from $V \times V \ldots$ to \mathbb{R}. A contravariant tensor of type- k on V is an element of $V \otimes V \otimes \ldots$ (k times).
- A (k, l)-mixed tensor is an element of $V \otimes V \ldots(k$ times $) \otimes V^{*} \ldots(I$ times $)$. (By convention, $T^{0,0}=\mathbb{R}$.) In terms of indices, a (k, l) tensor has

Covariant and Contravariant tensors

- A covariant tensor of type-/ on V is an element of $V^{*} \otimes V^{*} \otimes \ldots$ (I times). It can be thought of as corresponding to a multilinear map from $V \times V \ldots$ to \mathbb{R}. A contravariant tensor of type- k on V is an element of $V \otimes V \otimes \ldots$ (k times).
- A (k, l)-mixed tensor is an element of $V \otimes V \ldots$ (k times $) \otimes V^{*} \ldots$ ($/$ times). (By convention, $T^{0,0}=\mathbb{R}$.) In terms of indices, a (k, l) tensor has k upstairs indices and / downstairs indices.

Covariant and Contravariant tensors

- A covariant tensor of type-/ on V is an element of $V^{*} \otimes V^{*} \otimes \ldots$ (I times). It can be thought of as corresponding to a multilinear map from $V \times V \ldots$ to \mathbb{R}. A contravariant tensor of type- k on V is an element of $V \otimes V \otimes \ldots$ (k times).
- A (k, l)-mixed tensor is an element of $V \otimes V \ldots$ (k times $) \otimes V^{*} \ldots$ ($/$ times). (By convention, $T^{0,0}=\mathbb{R}$.) In terms of indices, a (k, l) tensor has k upstairs indices and I downstairs indices.
- Example:

Covariant and Contravariant tensors

- A covariant tensor of type-/ on V is an element of $V^{*} \otimes V^{*} \otimes \ldots$ (I times). It can be thought of as corresponding to a multilinear map from $V \times V \ldots$ to \mathbb{R}. A contravariant tensor of type- k on V is an element of $V \otimes V \otimes \ldots$ (k times).
- A (k, l)-mixed tensor is an element of $V \otimes V \ldots(k$ times $) \otimes V^{*} \ldots$ ($/$ times). (By convention, $T^{0,0}=\mathbb{R}$.) In terms of indices, a (k, l) tensor has k upstairs indices and / downstairs indices.
- Example: Given a f.d V,

Covariant and Contravariant tensors

- A covariant tensor of type-/ on V is an element of $V^{*} \otimes V^{*} \otimes \ldots$ (I times). It can be thought of as corresponding to a multilinear map from $V \times V \ldots$ to \mathbb{R}. A contravariant tensor of type- k on V is an element of $V \otimes V \otimes \ldots$ (k times).
- A (k, l)-mixed tensor is an element of $V \otimes V \ldots$ (k times $) \otimes V^{*} \ldots$ ($/$ times). (By convention, $T^{0,0}=\mathbb{R}$.) In terms of indices, a (k, l) tensor has k upstairs indices and I downstairs indices.
- Example: Given a f.d V, and $T: V \rightarrow V$,

Covariant and Contravariant tensors

- A covariant tensor of type-/ on V is an element of $V^{*} \otimes V^{*} \otimes \ldots$ (I times). It can be thought of as corresponding to a multilinear map from $V \times V \ldots$ to \mathbb{R}. A contravariant tensor of type- k on V is an element of $V \otimes V \otimes \ldots$ (k times).
- A (k, l)-mixed tensor is an element of $V \otimes V \ldots(k$ times $) \otimes V^{*} \ldots$ ($/$ times). (By convention, $T^{0,0}=\mathbb{R}$.) In terms of indices, a (k, l) tensor has k upstairs indices and I downstairs indices.
- Example: Given a f.d V, and $T: V \rightarrow V$, it can be thought of

Covariant and Contravariant tensors

- A covariant tensor of type-/ on V is an element of $V^{*} \otimes V^{*} \otimes \ldots$ (I times). It can be thought of as corresponding to a multilinear map from $V \times V \ldots$ to \mathbb{R}. A contravariant tensor of type- k on V is an element of $V \otimes V \otimes \ldots$ (k times).
- A (k, l)-mixed tensor is an element of $V \otimes V \ldots(k$ times $) \otimes V^{*} \ldots$ ($/$ times). (By convention, $T^{0,0}=\mathbb{R}$.) In terms of indices, a (k, l) tensor has k upstairs indices and I downstairs indices.
- Example: Given a f.d V, and $T: V \rightarrow V$, it can be thought of as a mixed (1,1)-tensor, i.e.,

Covariant and Contravariant tensors

- A covariant tensor of type-/ on V is an element of $V^{*} \otimes V^{*} \otimes \ldots$ (/ times). It can be thought of as corresponding to a multilinear map from $V \times V \ldots$ to \mathbb{R}. A contravariant tensor of type- k on V is an element of $V \otimes V \otimes \ldots$ (k times).
- A (k, l)-mixed tensor is an element of $V \otimes V \ldots(k$ times $) \otimes V^{*} \ldots$ ($/$ times). (By convention, $T^{0,0}=\mathbb{R}$.) In terms of indices, a (k, l) tensor has k upstairs indices and I downstairs indices.
- Example: Given a f.d V, and $T: V \rightarrow V$, it can be thought of as a mixed (1,1)-tensor, i.e., as an element of $V \otimes V^{*}$ as follows:

Covariant and Contravariant tensors

- A covariant tensor of type-/ on V is an element of $V^{*} \otimes V^{*} \otimes \ldots$ (I times). It can be thought of as corresponding to a multilinear map from $V \times V \ldots$ to \mathbb{R}. A contravariant tensor of type- k on V is an element of $V \otimes V \otimes \ldots$ (k times).
- A (k, l)-mixed tensor is an element of $V \otimes V \ldots(k$ times $) \otimes V^{*} \ldots$ ($/$ times). (By convention, $T^{0,0}=\mathbb{R}$.) In terms of indices, a (k, l) tensor has k upstairs indices and I downstairs indices.
- Example: Given a f.d V, and $T: V \rightarrow V$, it can be thought of as a mixed (1,1)-tensor, i.e., as an element of $V \otimes V^{*}$ as follows: Define $\mathcal{T}: V^{*} \times V \rightarrow \mathbb{R}$ as

Covariant and Contravariant tensors

- A covariant tensor of type-/ on V is an element of $V^{*} \otimes V^{*} \otimes \ldots$ (/ times). It can be thought of as corresponding to a multilinear map from $V \times V \ldots$ to \mathbb{R}. A contravariant tensor of type- k on V is an element of $V \otimes V \otimes \ldots$ (k times).
- A (k, l)-mixed tensor is an element of $V \otimes V \ldots(k$ times $) \otimes V^{*} \ldots$ ($/$ times). (By convention, $T^{0,0}=\mathbb{R}$.) In terms of indices, a (k, l) tensor has k upstairs indices and I downstairs indices.
- Example: Given a f.d V, and $T: V \rightarrow V$, it can be thought of as a mixed (1,1)-tensor, i.e., as an element of $V \otimes V^{*}$ as follows: Define $\mathcal{T}: V^{*} \times V \rightarrow \mathbb{R}$ as $\mathcal{T}(\omega, v)=\omega(T(v))$.

Covariant and Contravariant tensors

- A covariant tensor of type-/ on V is an element of $V^{*} \otimes V^{*} \otimes \ldots$ (/ times). It can be thought of as corresponding to a multilinear map from $V \times V \ldots$ to \mathbb{R}. A contravariant tensor of type- k on V is an element of $V \otimes V \otimes \ldots$ (k times).
- A (k, l)-mixed tensor is an element of $V \otimes V \ldots(k$ times $) \otimes V^{*} \ldots$ ($/$ times). (By convention, $T^{0,0}=\mathbb{R}$.) In terms of indices, a (k, l) tensor has k upstairs indices and I downstairs indices.
- Example: Given a f.d V, and $T: V \rightarrow V$, it can be thought of as a mixed (1,1)-tensor, i.e., as an element of $V \otimes V^{*}$ as follows: Define $\mathcal{T}: V^{*} \times V \rightarrow \mathbb{R}$ as $\mathcal{T}(\omega, v)=\omega(T(v))$. This is a multilinear map and hence

Covariant and Contravariant tensors

- A covariant tensor of type-/ on V is an element of $V^{*} \otimes V^{*} \otimes \ldots$ (/ times). It can be thought of as corresponding to a multilinear map from $V \times V \ldots$ to \mathbb{R}. A contravariant tensor of type- k on V is an element of $V \otimes V \otimes \ldots$ (k times).
- A (k, l)-mixed tensor is an element of $V \otimes V \ldots(k$ times $) \otimes V^{*} \ldots$ ($/$ times). (By convention, $T^{0,0}=\mathbb{R}$.) In terms of indices, a (k, l) tensor has k upstairs indices and I downstairs indices.
- Example: Given a f.d V, and $T: V \rightarrow V$, it can be thought of as a mixed (1,1)-tensor, i.e., as an element of $V \otimes V^{*}$ as follows: Define $\mathcal{T}: V^{*} \times V \rightarrow \mathbb{R}$ as $\mathcal{T}(\omega, v)=\omega(T(v))$. This is a multilinear map and hence corresponds to a unique linear functional on

Covariant and Contravariant tensors

- A covariant tensor of type-/ on V is an element of $V^{*} \otimes V^{*} \otimes \ldots$ (/ times). It can be thought of as corresponding to a multilinear map from $V \times V \ldots$ to \mathbb{R}. A contravariant tensor of type- k on V is an element of $V \otimes V \otimes \ldots$ (k times).
- A (k, l)-mixed tensor is an element of $V \otimes V \ldots(k$ times $) \otimes V^{*} \ldots$ ($/$ times). (By convention, $T^{0,0}=\mathbb{R}$.) In terms of indices, a (k, l) tensor has k upstairs indices and I downstairs indices.
- Example: Given a f.d V, and $T: V \rightarrow V$, it can be thought of as a mixed (1,1)-tensor, i.e., as an element of $V \otimes V^{*}$ as follows: Define $\mathcal{T}: V^{*} \times V \rightarrow \mathbb{R}$ as $\mathcal{T}(\omega, v)=\omega(T(v))$. This is a multilinear map and hence corresponds to a unique linear functional on $V^{*} \otimes V$, i.e.,

Covariant and Contravariant tensors

- A covariant tensor of type-/ on V is an element of $V^{*} \otimes V^{*} \otimes \ldots$ (/ times). It can be thought of as corresponding to a multilinear map from $V \times V \ldots$ to \mathbb{R}. A contravariant tensor of type- k on V is an element of $V \otimes V \otimes \ldots$ (k times).
- A (k, l)-mixed tensor is an element of $V \otimes V \ldots(k$ times $) \otimes V^{*} \ldots$ ($/$ times). (By convention, $T^{0,0}=\mathbb{R}$.) In terms of indices, a (k, l) tensor has k upstairs indices and I downstairs indices.
- Example: Given a f.d V, and $T: V \rightarrow V$, it can be thought of as a mixed (1,1)-tensor, i.e., as an element of $V \otimes V^{*}$ as follows: Define $\mathcal{T}: V^{*} \times V \rightarrow \mathbb{R}$ as $\mathcal{T}(\omega, v)=\omega(T(v))$. This is a multilinear map and hence corresponds to a unique linear functional on $V^{*} \otimes V$, i.e., to an element of $V \otimes V^{*}$.

Covariant and Contravariant tensors

- A covariant tensor of type-/ on V is an element of $V^{*} \otimes V^{*} \otimes \ldots$ (/ times). It can be thought of as corresponding to a multilinear map from $V \times V \ldots$ to \mathbb{R}. A contravariant tensor of type- k on V is an element of $V \otimes V \otimes \ldots$ (k times).
- A (k, l)-mixed tensor is an element of $V \otimes V \ldots(k$ times $) \otimes V^{*} \ldots$ ($/$ times). (By convention, $T^{0,0}=\mathbb{R}$.) In terms of indices, a (k, l) tensor has k upstairs indices and I downstairs indices.
- Example: Given a f.d V, and $T: V \rightarrow V$, it can be thought of as a mixed (1,1)-tensor, i.e., as an element of $V \otimes V^{*}$ as follows: Define $\mathcal{T}: V^{*} \times V \rightarrow \mathbb{R}$ as $\mathcal{T}(\omega, v)=\omega(T(v))$. This is a multilinear map and hence corresponds to a unique linear functional on $V^{*} \otimes V$, i.e., to an element of $V \otimes V^{*}$. In fact, the map $T \rightarrow \mathcal{T}$

Covariant and Contravariant tensors

- A covariant tensor of type-/ on V is an element of $V^{*} \otimes V^{*} \otimes \ldots$ (/ times). It can be thought of as corresponding to a multilinear map from $V \times V \ldots$ to \mathbb{R}. A contravariant tensor of type- k on V is an element of $V \otimes V \otimes \ldots$ (k times).
- A (k, l)-mixed tensor is an element of $V \otimes V \ldots(k$ times $) \otimes V^{*} \ldots$ ($/$ times). (By convention, $T^{0,0}=\mathbb{R}$.) In terms of indices, a (k, l) tensor has k upstairs indices and I downstairs indices.
- Example: Given a f.d V, and $T: V \rightarrow V$, it can be thought of as a mixed (1,1)-tensor, i.e., as an element of $V \otimes V^{*}$ as follows: Define $\mathcal{T}: V^{*} \times V \rightarrow \mathbb{R}$ as $\mathcal{T}(\omega, v)=\omega(T(v))$. This is a multilinear map and hence corresponds to a unique linear functional on $V^{*} \otimes V$, i.e., to an element of $V \otimes V^{*}$. In fact, the map $T \rightarrow \mathcal{T}$ is a linear isomorphism from $L(V, V)$ to $V \otimes V^{*}$ (why?)

Covariant and Contravariant tensors

- A covariant tensor of type-/ on V is an element of $V^{*} \otimes V^{*} \otimes \ldots$ (/ times). It can be thought of as corresponding to a multilinear map from $V \times V \ldots$ to \mathbb{R}. A contravariant tensor of type- k on V is an element of $V \otimes V \otimes \ldots$ (k times).
- A (k, l)-mixed tensor is an element of $V \otimes V \ldots(k$ times $) \otimes V^{*} \ldots$ ($/$ times). (By convention, $T^{0,0}=\mathbb{R}$.) In terms of indices, a (k, l) tensor has k upstairs indices and I downstairs indices.
- Example: Given a f.d V, and $T: V \rightarrow V$, it can be thought of as a mixed (1,1)-tensor, i.e., as an element of $V \otimes V^{*}$ as follows: Define $\mathcal{T}: V^{*} \times V \rightarrow \mathbb{R}$ as $\mathcal{T}(\omega, v)=\omega(T(v))$. This is a multilinear map and hence corresponds to a unique linear functional on $V^{*} \otimes V$, i.e., to an element of $V \otimes V^{*}$. In fact, the map $T \rightarrow \mathcal{T}$ is a linear isomorphism from $L(V, V)$ to $V \otimes V^{*}$ (why?)
- We will be

Covariant and Contravariant tensors

- A covariant tensor of type-/ on V is an element of $V^{*} \otimes V^{*} \otimes \ldots$ (/ times). It can be thought of as corresponding to a multilinear map from $V \times V \ldots$ to \mathbb{R}. A contravariant tensor of type- k on V is an element of $V \otimes V \otimes \ldots$ (k times).
- A (k, l)-mixed tensor is an element of $V \otimes V \ldots(k$ times $) \otimes V^{*} \ldots$ ($/$ times). (By convention, $T^{0,0}=\mathbb{R}$.) In terms of indices, a (k, l) tensor has k upstairs indices and I downstairs indices.
- Example: Given a f.d V, and $T: V \rightarrow V$, it can be thought of as a mixed (1,1)-tensor, i.e., as an element of $V \otimes V^{*}$ as follows: Define $\mathcal{T}: V^{*} \times V \rightarrow \mathbb{R}$ as $\mathcal{T}(\omega, v)=\omega(T(v))$. This is a multilinear map and hence corresponds to a unique linear functional on $V^{*} \otimes V$, i.e., to an element of $V \otimes V^{*}$. In fact, the map $T \rightarrow \mathcal{T}$ is a linear isomorphism from $L(V, V)$ to $V \otimes V^{*}$ (why?)
- We will be interested in covariant tensors

Covariant and Contravariant tensors

- A covariant tensor of type-/ on V is an element of $V^{*} \otimes V^{*} \otimes \ldots$ (/ times). It can be thought of as corresponding to a multilinear map from $V \times V \ldots$ to \mathbb{R}. A contravariant tensor of type- k on V is an element of $V \otimes V \otimes \ldots$ (k times).
- A (k, l)-mixed tensor is an element of $V \otimes V \ldots(k$ times $) \otimes V^{*} \ldots$ ($/$ times). (By convention, $T^{0,0}=\mathbb{R}$.) In terms of indices, a (k, l) tensor has k upstairs indices and / downstairs indices.
- Example: Given a f.d V, and $T: V \rightarrow V$, it can be thought of as a mixed (1,1)-tensor, i.e., as an element of $V \otimes V^{*}$ as follows: Define $\mathcal{T}: V^{*} \times V \rightarrow \mathbb{R}$ as $\mathcal{T}(\omega, v)=\omega(T(v))$. This is a multilinear map and hence corresponds to a unique linear functional on $V^{*} \otimes V$, i.e., to an element of $V \otimes V^{*}$. In fact, the map $T \rightarrow \mathcal{T}$ is a linear isomorphism from $L(V, V)$ to $V \otimes V^{*}$ (why?)
- We will be interested in covariant tensors in this course.

Covariant and Contravariant tensors

- A covariant tensor of type-/ on V is an element of $V^{*} \otimes V^{*} \otimes \ldots$ (/ times). It can be thought of as corresponding to a multilinear map from $V \times V \ldots$ to \mathbb{R}. A contravariant tensor of type- k on V is an element of $V \otimes V \otimes \ldots$ (k times).
- A (k, l)-mixed tensor is an element of $V \otimes V \ldots(k$ times $) \otimes V^{*} \ldots$ ($/$ times). (By convention, $T^{0,0}=\mathbb{R}$.) In terms of indices, a (k, l) tensor has k upstairs indices and / downstairs indices.
- Example: Given a f.d V, and $T: V \rightarrow V$, it can be thought of as a mixed (1,1)-tensor, i.e., as an element of $V \otimes V^{*}$ as follows: Define $\mathcal{T}: V^{*} \times V \rightarrow \mathbb{R}$ as $\mathcal{T}(\omega, v)=\omega(T(v))$. This is a multilinear map and hence corresponds to a unique linear functional on $V^{*} \otimes V$, i.e., to an element of $V \otimes V^{*}$. In fact, the map $T \rightarrow \mathcal{T}$ is a linear isomorphism from $L(V, V)$ to $V \otimes V^{*}$ (why?)
- We will be interested in covariant tensors in this course. In fact,

Covariant and Contravariant tensors

- A covariant tensor of type-/ on V is an element of $V^{*} \otimes V^{*} \otimes \ldots$ (/ times). It can be thought of as corresponding to a multilinear map from $V \times V \ldots$ to \mathbb{R}. A contravariant tensor of type- k on V is an element of $V \otimes V \otimes \ldots$ (k times).
- A (k, l)-mixed tensor is an element of $V \otimes V \ldots(k$ times $) \otimes V^{*} \ldots$ ($/$ times). (By convention, $T^{0,0}=\mathbb{R}$.) In terms of indices, a (k, l) tensor has k upstairs indices and / downstairs indices.
- Example: Given a f.d V, and $T: V \rightarrow V$, it can be thought of as a mixed (1,1)-tensor, i.e., as an element of $V \otimes V^{*}$ as follows: Define $\mathcal{T}: V^{*} \times V \rightarrow \mathbb{R}$ as $\mathcal{T}(\omega, v)=\omega(T(v))$. This is a multilinear map and hence corresponds to a unique linear functional on $V^{*} \otimes V$, i.e., to an element of $V \otimes V^{*}$. In fact, the map $T \rightarrow \mathcal{T}$ is a linear isomorphism from $L(V, V)$ to $V \otimes V^{*}$ (why?)
- We will be interested in covariant tensors in this course. In fact, in elements of $T_{p}^{*} M \otimes T_{p}^{*} M \ldots$.

Symmetric and Alternating tensors

Symmetric and Alternating tensors

- An inner product on V

Symmetric and Alternating tensors

- An inner product on V is an example of a covariant 2-tensor, i.e.,

Symmetric and Alternating tensors

- An inner product on V is an example of a covariant 2-tensor, i.e., an element of $V^{*} \otimes V^{*}$.

Symmetric and Alternating tensors

- An inner product on V is an example of a covariant 2-tensor, i.e., an element of $V^{*} \otimes V^{*}$. Indeed, it is a multilinear functional on $V \times V$.

Symmetric and Alternating tensors

- An inner product on V is an example of a covariant 2-tensor, i.e., an element of $V^{*} \otimes V^{*}$. Indeed, it is a multilinear functional on $V \times V$. In fact, if e_{1}, \ldots, e_{n} is an ordered basis of V and

Symmetric and Alternating tensors

- An inner product on V is an example of a covariant 2-tensor, i.e., an element of $V^{*} \otimes V^{*}$. Indeed, it is a multilinear functional on $V \times V$. In fact, if e_{1}, \ldots, e_{n} is an ordered basis of V and $e^{1} \ldots$ is the dual basis,

Symmetric and Alternating tensors

- An inner product on V is an example of a covariant 2-tensor, i.e., an element of $V^{*} \otimes V^{*}$. Indeed, it is a multilinear functional on $V \times V$. In fact, if e_{1}, \ldots, e_{n} is an ordered basis of V and $e^{1} \ldots$ is the dual basis, then
$\langle\rangle=,\left\langle e_{i}, e_{j}\right\rangle e^{i} \otimes e^{j}=g_{i j} e^{i} \otimes e^{j}$

Symmetric and Alternating tensors

- An inner product on V is an example of a covariant 2-tensor, i.e., an element of $V^{*} \otimes V^{*}$. Indeed, it is a multilinear functional on $V \times V$. In fact, if e_{1}, \ldots, e_{n} is an ordered basis of V and $e^{1} \ldots$ is the dual basis, then
$\langle\rangle=,\left\langle e_{i}, e_{j}\right\rangle e^{i} \otimes e^{j}=g_{i j} e^{i} \otimes e^{j}$
- This example is very special.

Symmetric and Alternating tensors

- An inner product on V is an example of a covariant 2-tensor, i.e., an element of $V^{*} \otimes V^{*}$. Indeed, it is a multilinear functional on $V \times V$. In fact, if e_{1}, \ldots, e_{n} is an ordered basis of V and $e^{1} \ldots$ is the dual basis, then

$$
\langle,\rangle=\left\langle e_{i}, e_{j}\right\rangle e^{i} \otimes e^{j}=g_{i j} e^{i} \otimes e^{j}
$$

- This example is very special. It is symmetric, i.e.,

Symmetric and Alternating tensors

- An inner product on V is an example of a covariant 2-tensor, i.e., an element of $V^{*} \otimes V^{*}$. Indeed, it is a multilinear functional on $V \times V$. In fact, if e_{1}, \ldots, e_{n} is an ordered basis of V and $e^{1} \ldots$ is the dual basis, then

$$
\langle,\rangle=\left\langle e_{i}, e_{j}\right\rangle e^{i} \otimes e^{j}=g_{i j} e^{i} \otimes e^{j}
$$

- This example is very special. It is symmetric, i.e., $\langle v, w\rangle=\langle w, v\rangle$.

Symmetric and Alternating tensors

- An inner product on V is an example of a covariant 2-tensor, i.e., an element of $V^{*} \otimes V^{*}$. Indeed, it is a multilinear functional on $V \times V$. In fact, if e_{1}, \ldots, e_{n} is an ordered basis of V and $e^{1} \ldots$ is the dual basis, then
$\langle\rangle=,\left\langle e_{i}, e_{j}\right\rangle e^{i} \otimes e^{j}=g_{i j} e^{i} \otimes e^{j}$
- This example is very special. It is symmetric, i.e., $\langle v, w\rangle=\langle w, v\rangle$.
- On the other hand,

Symmetric and Alternating tensors

- An inner product on V is an example of a covariant 2-tensor, i.e., an element of $V^{*} \otimes V^{*}$. Indeed, it is a multilinear functional on $V \times V$. In fact, if e_{1}, \ldots, e_{n} is an ordered basis of V and $e^{1} \ldots$ is the dual basis, then
$\langle\rangle=,\left\langle e_{i}, e_{j}\right\rangle e^{i} \otimes e^{j}=g_{i j} e^{i} \otimes e^{j}$
- This example is very special. It is symmetric, i.e., $\langle v, w\rangle=\langle w, v\rangle$.
- On the other hand, suppose v_{1}, \ldots, v_{n} are n elements of \mathbb{R}^{n} forming the columns of a matrix A,

Symmetric and Alternating tensors

- An inner product on V is an example of a covariant 2-tensor, i.e., an element of $V^{*} \otimes V^{*}$. Indeed, it is a multilinear functional on $V \times V$. In fact, if e_{1}, \ldots, e_{n} is an ordered basis of V and $e^{1} \ldots$ is the dual basis, then
$\langle\rangle=,\left\langle e_{i}, e_{j}\right\rangle e^{i} \otimes e^{j}=g_{i j} e^{i} \otimes e^{j}$
- This example is very special. It is symmetric, i.e., $\langle v, w\rangle=\langle w, v\rangle$.
- On the other hand, suppose v_{1}, \ldots, v_{n} are n elements of \mathbb{R}^{n} forming the columns of a matrix A, then $\operatorname{det}(A)$ is a multilinear map from $\mathbb{R}^{n} \times \ldots$ to \mathbb{R}, i.e.,

Symmetric and Alternating tensors

- An inner product on V is an example of a covariant 2-tensor, i.e., an element of $V^{*} \otimes V^{*}$. Indeed, it is a multilinear functional on $V \times V$. In fact, if e_{1}, \ldots, e_{n} is an ordered basis of V and $e^{1} \ldots$ is the dual basis, then
$\langle\rangle=,\left\langle e_{i}, e_{j}\right\rangle e^{i} \otimes e^{j}=g_{i j} e^{i} \otimes e^{j}$
- This example is very special. It is symmetric, i.e., $\langle v, w\rangle=\langle w, v\rangle$.
- On the other hand, suppose v_{1}, \ldots, v_{n} are n elements of \mathbb{R}^{n} forming the columns of a matrix A, then $\operatorname{det}(A)$ is a multilinear map from $\mathbb{R}^{n} \times \ldots$ to \mathbb{R}, i.e., a covariant tensor of type n.

Symmetric and Alternating tensors

- An inner product on V is an example of a covariant 2-tensor, i.e., an element of $V^{*} \otimes V^{*}$. Indeed, it is a multilinear functional on $V \times V$. In fact, if e_{1}, \ldots, e_{n} is an ordered basis of V and $e^{1} \ldots$ is the dual basis, then
$\langle\rangle=,\left\langle e_{i}, e_{j}\right\rangle e^{i} \otimes e^{j}=g_{i j} e^{i} \otimes e^{j}$
- This example is very special. It is symmetric, i.e., $\langle v, w\rangle=\langle w, v\rangle$.
- On the other hand, suppose v_{1}, \ldots, v_{n} are n elements of \mathbb{R}^{n} forming the columns of a matrix A, then $\operatorname{det}(A)$ is a multilinear map from $\mathbb{R}^{n} \times \ldots$ to \mathbb{R}, i.e., a covariant tensor of type n. However, this one is

Symmetric and Alternating tensors

- An inner product on V is an example of a covariant 2-tensor, i.e., an element of $V^{*} \otimes V^{*}$. Indeed, it is a multilinear functional on $V \times V$. In fact, if e_{1}, \ldots, e_{n} is an ordered basis of V and $e^{1} \ldots$ is the dual basis, then
$\langle\rangle=,\left\langle e_{i}, e_{j}\right\rangle e^{i} \otimes e^{j}=g_{i j} e^{i} \otimes e^{j}$
- This example is very special. It is symmetric, i.e., $\langle v, w\rangle=\langle w, v\rangle$.
- On the other hand, suppose v_{1}, \ldots, v_{n} are n elements of \mathbb{R}^{n} forming the columns of a matrix A, then $\operatorname{det}(A)$ is a multilinear map from $\mathbb{R}^{n} \times \ldots$ to \mathbb{R}, i.e., a covariant tensor of type n. However, this one is antisymmetric/alternating, i.e.,

Symmetric and Alternating tensors

- An inner product on V is an example of a covariant 2-tensor, i.e., an element of $V^{*} \otimes V^{*}$. Indeed, it is a multilinear functional on $V \times V$. In fact, if e_{1}, \ldots, e_{n} is an ordered basis of V and $e^{1} \ldots$ is the dual basis, then
$\langle\rangle=,\left\langle e_{i}, e_{j}\right\rangle e^{i} \otimes e^{j}=g_{i j} e^{i} \otimes e^{j}$
- This example is very special. It is symmetric, i.e., $\langle v, w\rangle=\langle w, v\rangle$.
- On the other hand, suppose v_{1}, \ldots, v_{n} are n elements of \mathbb{R}^{n} forming the columns of a matrix A, then $\operatorname{det}(A)$ is a multilinear map from $\mathbb{R}^{n} \times \ldots$ to \mathbb{R}, i.e., a covariant tensor of type n. However, this one is antisymmetric/alternating, i.e., if you permute the elements,

Symmetric and Alternating tensors

- An inner product on V is an example of a covariant 2-tensor, i.e., an element of $V^{*} \otimes V^{*}$. Indeed, it is a multilinear functional on $V \times V$. In fact, if e_{1}, \ldots, e_{n} is an ordered basis of V and $e^{1} \ldots$ is the dual basis, then
$\langle\rangle=,\left\langle e_{i}, e_{j}\right\rangle e^{i} \otimes e^{j}=g_{i j} e^{i} \otimes e^{j}$
- This example is very special. It is symmetric, i.e., $\langle v, w\rangle=\langle w, v\rangle$.
- On the other hand, suppose v_{1}, \ldots, v_{n} are n elements of \mathbb{R}^{n} forming the columns of a matrix A, then $\operatorname{det}(A)$ is a multilinear map from $\mathbb{R}^{n} \times \ldots$ to \mathbb{R}, i.e., a covariant tensor of type n. However, this one is antisymmetric/alternating, i.e., if you permute the elements, you pick up the sign of the permutation.

Symmetric and Alternating tensors

Symmetric and Alternating tensors

- Def:

Symmetric and Alternating tensors

- Def: A symmetric covariant tensor is one

Symmetric and Alternating tensors

- Def: A symmetric covariant tensor is one that is unchanged under a transposition of two of its entries (

Symmetric and Alternating tensors

- Def: A symmetric covariant tensor is one that is unchanged under a transposition of two of its entries (and hence under any permutation).

Symmetric and Alternating tensors

- Def: A symmetric covariant tensor is one that is unchanged under a transposition of two of its entries (and hence under any permutation). An alternating/antisymmetric covariant tensor changes sign

Symmetric and Alternating tensors

- Def: A symmetric covariant tensor is one that is unchanged under a transposition of two of its entries (and hence under any permutation). An alternating/antisymmetric covariant tensor changes sign under a transposition (

Symmetric and Alternating tensors

- Def: A symmetric covariant tensor is one that is unchanged under a transposition of two of its entries (and hence under any permutation). An alternating/antisymmetric covariant tensor changes sign under a transposition (and hence picks up the sign of the permutation).

Symmetric and Alternating tensors

- Def: A symmetric covariant tensor is one that is unchanged under a transposition of two of its entries (and hence under any permutation). An alternating/antisymmetric covariant tensor changes sign under a transposition (and hence picks up the sign of the permutation).
- Example:

Symmetric and Alternating tensors

- Def: A symmetric covariant tensor is one that is unchanged under a transposition of two of its entries (and hence under any permutation). An alternating/antisymmetric covariant tensor changes sign under a transposition (and hence picks up the sign of the permutation).
- Example: A (skew)symmetric matrix gives a (skew)symmetric tensor:

Symmetric and Alternating tensors

- Def: A symmetric covariant tensor is one that is unchanged under a transposition of two of its entries (and hence under any permutation). An alternating/antisymmetric covariant tensor changes sign under a transposition (and hence picks up the sign of the permutation).
- Example: A (skew)symmetric matrix gives a (skew)symmetric tensor: $A(v, w)=v^{\top} A w$.

Symmetric and Alternating tensors

- Def: A symmetric covariant tensor is one that is unchanged under a transposition of two of its entries (and hence under any permutation). An alternating/antisymmetric covariant tensor changes sign under a transposition (and hence picks up the sign of the permutation).
- Example: A (skew)symmetric matrix gives a (skew)symmetric tensor: $A(v, w)=v^{T} A w$. Now $A=\frac{A+A^{T}}{2}+\frac{A-A^{T}}{2}$, i.e.,

Symmetric and Alternating tensors

- Def: A symmetric covariant tensor is one that is unchanged under a transposition of two of its entries (and hence under any permutation). An alternating/antisymmetric covariant tensor changes sign under a transposition (and hence picks up the sign of the permutation).
- Example: A (skew)symmetric matrix gives a (skew)symmetric tensor: $A(v, w)=v^{T} A w$. Now $A=\frac{A+A^{T}}{2}+\frac{A-A^{T}}{2}$, i.e., every matrix is a sum of symmetric and antisymmetric matrices.

Symmetric and Alternating tensors

- Def: A symmetric covariant tensor is one that is unchanged under a transposition of two of its entries (and hence under any permutation). An alternating/antisymmetric covariant tensor changes sign under a transposition (and hence picks up the sign of the permutation).
- Example: A (skew)symmetric matrix gives a (skew)symmetric tensor: $A(v, w)=v^{T} A w$. Now $A=\frac{A+A^{T}}{2}+\frac{A-A^{T}}{2}$, i.e., every matrix is a sum of symmetric and antisymmetric matrices.
- Motivated by this construction,

Symmetric and Alternating tensors

- Def: A symmetric covariant tensor is one that is unchanged under a transposition of two of its entries (and hence under any permutation). An alternating/antisymmetric covariant tensor changes sign under a transposition (and hence picks up the sign of the permutation).
- Example: A (skew)symmetric matrix gives a (skew)symmetric tensor: $A(v, w)=v^{T} A w$. Now $A=\frac{A+A^{T}}{2}+\frac{A-A^{T}}{2}$, i.e., every matrix is a sum of symmetric and antisymmetric matrices.
- Motivated by this construction, define the symmetrisation of a k-covariant tensor α as

Symmetric and Alternating tensors

- Def: A symmetric covariant tensor is one that is unchanged under a transposition of two of its entries (and hence under any permutation). An alternating/antisymmetric covariant tensor changes sign under a transposition (and hence picks up the sign of the permutation).
- Example: A (skew)symmetric matrix gives a (skew)symmetric tensor: $A(v, w)=v^{T} A w$. Now $A=\frac{A+A^{T}}{2}+\frac{A-A^{T}}{2}$, i.e., every matrix is a sum of symmetric and antisymmetric matrices.
- Motivated by this construction, define the symmetrisation of a k-covariant tensor α as
$\operatorname{Sym}(\alpha)\left(v_{1}, \ldots, v_{k}\right)=\frac{1}{k!} \sum_{\sigma \in S_{k}} \alpha\left(v_{\sigma(1)}, \ldots\right)$.

Symmetric and Alternating tensors

- Def: A symmetric covariant tensor is one that is unchanged under a transposition of two of its entries (and hence under any permutation). An alternating/antisymmetric covariant tensor changes sign under a transposition (and hence picks up the sign of the permutation).
- Example: A (skew)symmetric matrix gives a (skew)symmetric tensor: $A(v, w)=v^{T} A w$. Now $A=\frac{A+A^{T}}{2}+\frac{A-A^{T}}{2}$, i.e., every matrix is a sum of symmetric and antisymmetric matrices.
- Motivated by this construction, define the symmetrisation of a k-covariant tensor α as
$\operatorname{Sym}(\alpha)\left(v_{1}, \ldots, v_{k}\right)=\frac{1}{k!} \sum_{\sigma \in S_{k}} \alpha\left(v_{\sigma(1)}, \ldots\right)$. It is symmetric and

Symmetric and Alternating tensors

- Def: A symmetric covariant tensor is one that is unchanged under a transposition of two of its entries (and hence under any permutation). An alternating/antisymmetric covariant tensor changes sign under a transposition (and hence picks up the sign of the permutation).
- Example: A (skew)symmetric matrix gives a (skew)symmetric tensor: $A(v, w)=v^{T} A w$. Now $A=\frac{A+A^{T}}{2}+\frac{A-A^{T}}{2}$, i.e., every matrix is a sum of symmetric and antisymmetric matrices.
- Motivated by this construction, define the symmetrisation of a k-covariant tensor α as
$\operatorname{Sym}(\alpha)\left(v_{1}, \ldots, v_{k}\right)=\frac{1}{k!} \sum_{\sigma \in S_{k}} \alpha\left(v_{\sigma(1)}, \ldots\right)$. It is symmetric and $\operatorname{Sym}(\alpha)=\alpha$ iff α is symmetric.

Symmetric and Alternating tensors

- Def: A symmetric covariant tensor is one that is unchanged under a transposition of two of its entries (and hence under any permutation). An alternating/antisymmetric covariant tensor changes sign under a transposition (and hence picks up the sign of the permutation).
- Example: A (skew)symmetric matrix gives a (skew)symmetric tensor: $A(v, w)=v^{T} A w$. Now $A=\frac{A+A^{T}}{2}+\frac{A-A^{T}}{2}$, i.e., every matrix is a sum of symmetric and antisymmetric matrices.
- Motivated by this construction, define the symmetrisation of a k-covariant tensor α as
$\operatorname{Sym}(\alpha)\left(v_{1}, \ldots, v_{k}\right)=\frac{1}{k!} \sum_{\sigma \in S_{k}} \alpha\left(v_{\sigma(1)}, \ldots\right)$. It is symmetric and $\operatorname{Sym}(\alpha)=\alpha$ iff α is symmetric.
- The antisymmetrisation/alternation is defined as

Symmetric and Alternating tensors

- Def: A symmetric covariant tensor is one that is unchanged under a transposition of two of its entries (and hence under any permutation). An alternating/antisymmetric covariant tensor changes sign under a transposition (and hence picks up the sign of the permutation).
- Example: A (skew)symmetric matrix gives a (skew)symmetric tensor: $A(v, w)=v^{T} A w$. Now $A=\frac{A+A^{T}}{2}+\frac{A-A^{T}}{2}$, i.e., every matrix is a sum of symmetric and antisymmetric matrices.
- Motivated by this construction, define the symmetrisation of a k-covariant tensor α as
$\operatorname{Sym}(\alpha)\left(v_{1}, \ldots, v_{k}\right)=\frac{1}{k!} \sum_{\sigma \in S_{k}} \alpha\left(v_{\sigma(1)}, \ldots\right)$. It is symmetric and $\operatorname{Sym}(\alpha)=\alpha$ iff α is symmetric.
- The antisymmetrisation/alternation is defined as Alt $(\alpha)\left(\left(v_{1}, \ldots, v_{k}\right)=\frac{1}{k!} \sum_{\sigma \in S_{k}} \operatorname{sgn}(\sigma) \alpha\left(v_{\sigma(1)}, \ldots\right)\right.$.

Symmetric and Alternating tensors

- Def: A symmetric covariant tensor is one that is unchanged under a transposition of two of its entries (and hence under any permutation). An alternating/antisymmetric covariant tensor changes sign under a transposition (and hence picks up the sign of the permutation).
- Example: A (skew)symmetric matrix gives a (skew)symmetric tensor: $A(v, w)=v^{T} A w$. Now $A=\frac{A+A^{T}}{2}+\frac{A-A^{T}}{2}$, i.e., every matrix is a sum of symmetric and antisymmetric matrices.
- Motivated by this construction, define the symmetrisation of a k-covariant tensor α as
$\operatorname{Sym}(\alpha)\left(v_{1}, \ldots, v_{k}\right)=\frac{1}{k!} \sum_{\sigma \in S_{k}} \alpha\left(v_{\sigma(1)}, \ldots\right)$. It is symmetric and $\operatorname{Sym}(\alpha)=\alpha$ iff α is symmetric.
- The antisymmetrisation/alternation is defined as Alt $(\alpha)\left(\left(v_{1}, \ldots, v_{k}\right)=\frac{1}{k!} \sum_{\sigma \in S_{k}} \operatorname{sgn}(\sigma) \alpha\left(v_{\sigma(1)}, \ldots\right)\right.$. It is alternating and

Symmetric and Alternating tensors

- Def: A symmetric covariant tensor is one that is unchanged under a transposition of two of its entries (and hence under any permutation). An alternating/antisymmetric covariant tensor changes sign under a transposition (and hence picks up the sign of the permutation).
- Example: A (skew)symmetric matrix gives a (skew)symmetric tensor: $A(v, w)=v^{T} A w$. Now $A=\frac{A+A^{T}}{2}+\frac{A-A^{T}}{2}$, i.e., every matrix is a sum of symmetric and antisymmetric matrices.
- Motivated by this construction, define the symmetrisation of a k-covariant tensor α as
$\operatorname{Sym}(\alpha)\left(v_{1}, \ldots, v_{k}\right)=\frac{1}{k!} \sum_{\sigma \in S_{k}} \alpha\left(v_{\sigma(1)}, \ldots\right)$. It is symmetric and $\operatorname{Sym}(\alpha)=\alpha$ iff α is symmetric.
- The antisymmetrisation/alternation is defined as Alt $(\alpha)\left(\left(v_{1}, \ldots, v_{k}\right)=\frac{1}{k!} \sum_{\sigma \in S_{k}} \operatorname{sgn}(\sigma) \alpha\left(v_{\sigma(1)}, \ldots\right)\right.$. It is alternating and $\operatorname{Alt}(\alpha)=\alpha$ iff α is alternating.

