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Recap

More examples of smooth maps.

Manifolds (with or without boundary) have compact
exhausations.

Manifolds (with or without boundary) are paracompact.
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Partition-of-unity

Let χ = {Uα} be an open cover of M. A partition-of-unity
subordinate to χ is a family of smooth functions
ρα : Uα → R≥0 such that 0 ≤ ρα ≤ 1, supp(ρα) ⊂ Uα, the
supports are locally finite, i.e. every point has a
neighbourhood intersecting only finitely many of them,∑

α ρα = 1.

Theorem: Suppose M is a smooth manifold with or without
boundary. Let χ be an open cover of M. Then there exists a
smooth partition of unity subordinate to it. There also exists
a partition-of-unity consisting of compact supports
subordinate to a locally finite countable open refinement.

Proof: Assume that M does not have boundary. (The general
case is similar.) Each Uα is a smooth manifold, and hence has
a basis Bα of coordinate balls (such that each ball is
contained in a larger one). B = ∪αBα is a basis for M. Thus
there is a countable locally finite refinement Bi from B. The
closed cover B̄i is also locally finite (why?).
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Partition-of-unity

Consider a smooth bump function fi that is > 0 on Bi and
whose support is equal to B̄i .

Define f (x) =
∑

i fi (x). The local finiteness of the cover
implies that only finitely many fi are non-zero near every
point. Moreover, since Bi cover M, f > 0 on M.

Define gi = fi∑
i fi

. Note that gi form a partition-of-unity with

compact supports subordinate to Bi .

For every i , choose an index a(i) so that B̄i ⊂ Ua(i). For each

α, define ρα =
∑

a(i)=α gi . supp(ρα) = ∪i :a(i)=αB̄i ⊂ Uα.
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Applications

General bump functions: Let M be a smooth manifold (with
or without boundary). For any closed A ⊂ M and any open
A ⊂ U, there is a smooth function ψ : M → [0, 1] such that
ψ ≡ 1 on A and supp(ψ) ⊂ U.
Proof: Consider the open cover of M given by U and Ac . Let
ρU , 1− ρU be a partition-of-unity subordinate to this cover.
Now ψ = ρU is supported in U and equals 1 away from Ac ,
i.e., on A.

Extension of smooth functions: Let A ⊂ M be closed and
f : A→ Rk be smooth. Then for any open U containing A,
there is a smooth f̃ : M → Rk such that f̃ |A = f and
supp(f̃ ) ⊂ U.
Proof: For each p ∈ A, choose a neighbourhood Wp ⊂ U and
a smooth f̃p : Wp → Rk extending f from A ∩Wp (by
definition). The sets Wp,A

c form an open cover. Let ψp, ψ0

be a smooth partition of unity. Define f̃ =
∑

p ψp f̃p. f̃ is the
desired extension (why?).
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Applications

Existence of smooth exhaustion functions: Every smooth
manifold (with or without boundary) admits a smooth positive
exhaustion function, i.e., a smooth function f : M → R such
that f > 0, f −1((−∞, c]) is compact for all c ∈ R. (The sets
f −1((−∞, n]) form an exhaustion.)
Proof: Let Vj be any countable pre-compact open cover. Let
ψj be a smooth partition of unity subordinate to Vj . Define
f =

∑
j jψj . This function is smooth and positive (why?) If

c ∈ R, choose an integer N > c . If p /∈ ∪Nj=1V̄j , then
ψj(p) = 0 for all j ≤ N. Thus f (p) > c (why?). We are done
(why?)

Level sets of smooth functions (proof omitted): Let M be a
smooth manifold. If K ⊂ M is closed, there is a smooth
f : M → [0,∞) such that f −1(0) = K .
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Tangent vectors

Recall that we want to optimise smooth functions over
manifolds. Naively, we might expect some sort of Lagrange’s
multipliers theorem but for that one might need to make
sense of vectors “tangent” to the manifold.

Another reason to study tangent vectors is that suppose we
want to look at the motion of a ring on a wire or electrons on
a two-dim surface for instance, then their velocities are
constrained to be “tangent” to the constraining surfaces.

What is a vector “tangent” to a sphere Sn at p ∈ Sn?
Presumably it is the velocity of a particle moving on it. In
other words, a tangent vector lies on a tangent plane but the
plane keeps moving from point to point. So we have several
“tangent spaces” that vary from point to point.

Unfortunately, a general manifold is not defined as “sitting
inside” RN like Sn is. So how can we define “tangent
vectors”? There is a way to do it using velocities of curves,
but we shall come to it later.
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What is a vector “tangent” to a sphere Sn at p ∈ Sn?
Presumably it is the velocity of a particle moving on it. In
other words, a tangent vector lies on a tangent plane but the
plane keeps moving from point to point. So we have several
“tangent spaces” that vary from point to point.

Unfortunately, a general manifold is not defined as “sitting
inside” RN like Sn is. So how can we define “tangent
vectors”? There is a way to do it using velocities of curves,
but we shall come to it later.
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Tangent vectors through functions

The only way to “probe” a manifold is by means of smooth
functions.

The point of the tangent plane/tangent vectors is to provide a
linear approximation to the manifold. Likewise, can we hope
that tangent vectors can be deduced by knowing linear
approximations of smooth functions?

For instance, in Rn, the linear approximation of a smooth
function can be deduced if we know all directional derivatives.
The directional derivative Da,v f = ∂f

∂x i
(a)v i . So we can “read

off” the components of tangent vectors from directional
derivatives of smooth functions.

So what properties characterise directional derivatives?
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derivatives of smooth functions.
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Characterising directional derivatives

A directional derivative Da,v takes smooth functions on Rn to
numbers in a linear manner.

But the crucial point is that functions can be multiplied.
Da,v (fg) = f (a)Da,vg + Da,v fg(a).

Are these properties enough?

Def: A derivation D at a ∈ Rn is a linear map over R
D : C∞(Rn)→ R such that D(fg) = f (a)Dg + Dfg(a).

Da,v is an example of a derivation.
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Derivations

Proposition: Derivations form a vector space TaRn, every
derivation is of the form D(f ) = Da,v f for some v , and
v → Da,v is a linear isomorphism between Rn and TaRn.

Proof: Define the vector space structure as
(αD1 + βD2)f = αD1f + βD2f . Given D, define v i = D(x i ).
Consider the derivation w = D − Da,v . w(x i ) = 0. Moreover,
D(1.1) = 2.D(1) and hence D(1) = 0. If c is a constant,
D(c) = cD(1) = 0. Moreover,
f = f (a) + ∂f

∂x i
(a)(x i − ai ) + hi ,j(x , a)(x i − ai )(x j − aj) for

some smooth hi ,j . Thus,
w(f ) = w(hi ,j(x , a)(x i − ai )(x j − aj)) which equals 0 (why?)
Thus, D = Da,v . The map v → Da,v is clearly linear (why?)
and onto. Moreover, if Da,v f = 0 for all smooth f , then
v = Da,v (x i )ei = 0. Thus it is a linear isomorphism.

Corollary: The derivations ∂
∂x i
|a defined by ∂

∂x i
|af = ∂f

∂x i
(a)

form a basis for TaRn.
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