MA 229/MA 235 - Lecture 15

IISc

Vector fields

æ

Recap

æ

• Defined manifolds, submanifolds, manifolds-with-boundary.

- Defined manifolds, submanifolds, manifolds-with-boundary.
- Tangent spaces and pushfowards.

- Defined manifolds, submanifolds, manifolds-with-boundary.
- Tangent spaces and pushfowards.
- Implicit, inverse, constant rank theorems. Regular values and Sard's theorem.

- Defined manifolds, submanifolds, manifolds-with-boundary.
- Tangent spaces and pushfowards.
- Implicit, inverse, constant rank theorems. Regular values and Sard's theorem.
- Partitions-of-unity, Whitney's embedding.

æ

Recall that

æ

• Recall that one of the points of studying tangent vectors

• Recall that one of the points of studying tangent vectors was to model particles flowing on a manifold.

- Recall that one of the points of studying tangent vectors was to model particles flowing on a manifold.
- For instance, suppose we take the flow of a fluid (maybe electrons or even water)

- Recall that one of the points of studying tangent vectors was to model particles flowing on a manifold.
- For instance, suppose we take the flow of a fluid (maybe electrons or even water) on a surface (like say the surface of a metallic ball).

- Recall that one of the points of studying tangent vectors was to model particles flowing on a manifold.
- For instance, suppose we take the flow of a fluid (maybe electrons or even water) on a surface (like say the surface of a metallic ball). The velocities of the particles vary smoothly.

- Recall that one of the points of studying tangent vectors was to model particles flowing on a manifold.
- For instance, suppose we take the flow of a fluid (maybe electrons or even water) on a surface (like say the surface of a metallic ball). The velocities of the particles vary smoothly.
- Moreover, suppose we consider the flow for one second.

- Recall that one of the points of studying tangent vectors was to model particles flowing on a manifold.
- For instance, suppose we take the flow of a fluid (maybe electrons or even water) on a surface (like say the surface of a metallic ball). The velocities of the particles vary smoothly.
- Moreover, suppose we consider the flow for one second. Then a particle at *p* goes to some other point.

- Recall that one of the points of studying tangent vectors was to model particles flowing on a manifold.
- For instance, suppose we take the flow of a fluid (maybe electrons or even water) on a surface (like say the surface of a metallic ball). The velocities of the particles vary smoothly.
- Moreover, suppose we consider the flow for one second. Then a particle at *p* goes to some other point. This operation is reversible.

- Recall that one of the points of studying tangent vectors was to model particles flowing on a manifold.
- For instance, suppose we take the flow of a fluid (maybe electrons or even water) on a surface (like say the surface of a metallic ball). The velocities of the particles vary smoothly.
- Moreover, suppose we consider the flow for one second. Then a particle at p goes to some other point. This operation is reversible. We can hope that it is a diffeomorphism of the manifold!

- Recall that one of the points of studying tangent vectors was to model particles flowing on a manifold.
- For instance, suppose we take the flow of a fluid (maybe electrons or even water) on a surface (like say the surface of a metallic ball). The velocities of the particles vary smoothly.
- Moreover, suppose we consider the flow for one second. Then a particle at p goes to some other point. This operation is reversible. We can hope that it is a diffeomorphism of the manifold!
- Lastly, suppose we cover the sphere S^2 with hair.

- Recall that one of the points of studying tangent vectors was to model particles flowing on a manifold.
- For instance, suppose we take the flow of a fluid (maybe electrons or even water) on a surface (like say the surface of a metallic ball). The velocities of the particles vary smoothly.
- Moreover, suppose we consider the flow for one second. Then a particle at p goes to some other point. This operation is reversible. We can hope that it is a diffeomorphism of the manifold!
- Lastly, suppose we cover the sphere S² with hair. Can we comb the sphere so that no hair sticks out completely?

- Recall that one of the points of studying tangent vectors was to model particles flowing on a manifold.
- For instance, suppose we take the flow of a fluid (maybe electrons or even water) on a surface (like say the surface of a metallic ball). The velocities of the particles vary smoothly.
- Moreover, suppose we consider the flow for one second. Then a particle at p goes to some other point. This operation is reversible. We can hope that it is a diffeomorphism of the manifold!
- Lastly, suppose we cover the sphere S² with hair. Can we comb the sphere so that no hair sticks out completely? The answer is no (the hairy ball theorem).

- Recall that one of the points of studying tangent vectors was to model particles flowing on a manifold.
- For instance, suppose we take the flow of a fluid (maybe electrons or even water) on a surface (like say the surface of a metallic ball). The velocities of the particles vary smoothly.
- Moreover, suppose we consider the flow for one second. Then a particle at p goes to some other point. This operation is reversible. We can hope that it is a diffeomorphism of the manifold!
- Lastly, suppose we cover the sphere S² with hair. Can we comb the sphere so that no hair sticks out completely? The answer is no (the hairy ball theorem).
- All of the above need a notion of

- Recall that one of the points of studying tangent vectors was to model particles flowing on a manifold.
- For instance, suppose we take the flow of a fluid (maybe electrons or even water) on a surface (like say the surface of a metallic ball). The velocities of the particles vary smoothly.
- Moreover, suppose we consider the flow for one second. Then a particle at p goes to some other point. This operation is reversible. We can hope that it is a diffeomorphism of the manifold!
- Lastly, suppose we cover the sphere S² with hair. Can we comb the sphere so that no hair sticks out completely? The answer is no (the hairy ball theorem).
- All of the above need a notion of smoothly varying tangent vectors

- Recall that one of the points of studying tangent vectors was to model particles flowing on a manifold.
- For instance, suppose we take the flow of a fluid (maybe electrons or even water) on a surface (like say the surface of a metallic ball). The velocities of the particles vary smoothly.
- Moreover, suppose we consider the flow for one second. Then a particle at p goes to some other point. This operation is reversible. We can hope that it is a diffeomorphism of the manifold!
- Lastly, suppose we cover the sphere S² with hair. Can we comb the sphere so that no hair sticks out completely? The answer is no (the hairy ball theorem).
- All of the above need a notion of smoothly varying tangent vectors (such an object is called a smooth vector field).

Vector fields

포 > 표

• If a manifold M is a submanifold of \mathbb{R}^N ,

▶ < ≣ ▶ <

If a manifold *M* is a submanifold of ℝ^N, then we can easily define a notion of smoothly varying tangent vectors:

• If a manifold M is a submanifold of \mathbb{R}^N , then we can easily define a notion of smoothly varying tangent vectors: Simply take a smooth function $X : M \to \mathbb{R}^N$ such that

If a manifold M is a submanifold of ℝ^N, then we can easily define a notion of smoothly varying tangent vectors: Simply take a smooth function X : M → ℝ^N such that X(p) lies in the tangent plane at p.

- If a manifold M is a submanifold of ℝ^N, then we can easily define a notion of smoothly varying tangent vectors: Simply take a smooth function X : M → ℝ^N such that X(p) lies in the tangent plane at p.
- On paper,

- If a manifold M is a submanifold of ℝ^N, then we can easily define a notion of smoothly varying tangent vectors: Simply take a smooth function X : M → ℝ^N such that X(p) lies in the tangent plane at p.
- On paper, using Whitney embedding,

- If a manifold M is a submanifold of ℝ^N, then we can easily define a notion of smoothly varying tangent vectors: Simply take a smooth function X : M → ℝ^N such that X(p) lies in the tangent plane at p.
- On paper, using Whitney embedding, we can make this definition on any manifold.

- If a manifold M is a submanifold of ℝ^N, then we can easily define a notion of smoothly varying tangent vectors: Simply take a smooth function X : M → ℝ^N such that X(p) lies in the tangent plane at p.
- On paper, using Whitney embedding, we can make this definition on any manifold. But we want a more intrinsic definition (

- If a manifold M is a submanifold of ℝ^N, then we can easily define a notion of smoothly varying tangent vectors: Simply take a smooth function X : M → ℝ^N such that X(p) lies in the tangent plane at p.
- On paper, using Whitney embedding, we can make this definition on any manifold. But we want a more intrinsic definition (without reference to a particular embedding).

- If a manifold M is a submanifold of ℝ^N, then we can easily define a notion of smoothly varying tangent vectors: Simply take a smooth function X : M → ℝ^N such that X(p) lies in the tangent plane at p.
- On paper, using Whitney embedding, we can make this definition on any manifold. But we want a more intrinsic definition (without reference to a particular embedding).

• Let
$$TM = \bigcup_{p \in M} T_p M$$
.

- If a manifold M is a submanifold of ℝ^N, then we can easily define a notion of smoothly varying tangent vectors: Simply take a smooth function X : M → ℝ^N such that X(p) lies in the tangent plane at p.
- On paper, using Whitney embedding, we can make this definition on any manifold. But we want a more intrinsic definition (without reference to a particular embedding).
- Let $TM = \bigcup_{p \in M} T_p M$. A function $X : M \to TM$ such that

- If a manifold M is a submanifold of ℝ^N, then we can easily define a notion of smoothly varying tangent vectors: Simply take a smooth function X : M → ℝ^N such that X(p) lies in the tangent plane at p.
- On paper, using Whitney embedding, we can make this definition on any manifold. But we want a more intrinsic definition (without reference to a particular embedding).
- Let $TM = \bigcup_{p \in M} T_p M$. A function $X : M \to TM$ such that $X(p) \in T_p M$ is called a vector field.

Vector fields

- If a manifold M is a submanifold of ℝ^N, then we can easily define a notion of smoothly varying tangent vectors: Simply take a smooth function X : M → ℝ^N such that X(p) lies in the tangent plane at p.
- On paper, using Whitney embedding, we can make this definition on any manifold. But we want a more intrinsic definition (without reference to a particular embedding).
- Let $TM = \bigcup_{p \in M} T_p M$. A function $X : M \to TM$ such that $X(p) \in T_p M$ is called a vector field.
- We want to define a smooth vector field.

Vector fields

- If a manifold M is a submanifold of ℝ^N, then we can easily define a notion of smoothly varying tangent vectors: Simply take a smooth function X : M → ℝ^N such that X(p) lies in the tangent plane at p.
- On paper, using Whitney embedding, we can make this definition on any manifold. But we want a more intrinsic definition (without reference to a particular embedding).
- Let $TM = \bigcup_{p \in M} T_p M$. A function $X : M \to TM$ such that $X(p) \in T_p M$ is called a vector field.
- We want to define a smooth vector field. At least locally, can we come up with a reasonable *example* of a smooth vector field?

Vector fields

- If a manifold M is a submanifold of ℝ^N, then we can easily define a notion of smoothly varying tangent vectors: Simply take a smooth function X : M → ℝ^N such that X(p) lies in the tangent plane at p.
- On paper, using Whitney embedding, we can make this definition on any manifold. But we want a more intrinsic definition (without reference to a particular embedding).
- Let $TM = \bigcup_{p \in M} T_p M$. A function $X : M \to TM$ such that $X(p) \in T_p M$ is called a vector field.
- We want to define a smooth vector field. At least locally, can we come up with a reasonable *example* of a smooth vector field?
- A natural choice is the coordinate basis $\frac{\partial}{\partial x^i}$.

æ

• Def: Let *M* be a smooth manifold (with or without boundary).

Def: Let *M* be a smooth manifold (with or without boundary). A vector field X : M → TM is

 Def: Let *M* be a smooth manifold (with or without boundary). A vector field X : M → TM is smooth at p if

Def: Let *M* be a smooth manifold (with or without boundary). A vector field X : M → TM is smooth at p if there exists a coordinate chart (U, x) near p such that

Def: Let *M* be a smooth manifold (with or without boundary). A vector field X : M → TM is smooth at p if there exists a coordinate chart (U, x) near p such that X = Xⁱ ∂/∂xⁱ where the functions Xⁱ : U → ℝ

Def: Let *M* be a smooth manifold (with or without boundary). A vector field X : M → TM is smooth at p if there exists a coordinate chart (U, x) near p such that X = Xⁱ ∂/∂xⁱ where the functions Xⁱ : U → ℝ are smooth at p.

Def: Let *M* be a smooth manifold (with or without boundary). A vector field X : M → TM is smooth at p if there exists a coordinate chart (U, x) near p such that X = Xⁱ ∂/∂xⁱ where the functions Xⁱ : U → ℝ are smooth at p. A smooth vector field is one that is smooth at all points.

- Def: Let *M* be a smooth manifold (with or without boundary). A vector field X : M → TM is smooth at p if there exists a coordinate chart (U, x) near p such that X = Xⁱ ∂/∂xⁱ where the functions Xⁱ : U → ℝ are smooth at p. A smooth vector field is one that is smooth at all points.
- The definition of smoothness is independent of the choice of coordinate chart:

- Def: Let *M* be a smooth manifold (with or without boundary). A vector field X : M → TM is smooth at p if there exists a coordinate chart (U, x) near p such that X = Xⁱ ∂/∂xⁱ where the functions Xⁱ : U → ℝ are smooth at p. A smooth vector field is one that is smooth at all points.
- The definition of smoothness is independent of the choice of coordinate chart: Suppose (*Ũ*, *x̃*) is another coordinate chart around *p*,

- Def: Let *M* be a smooth manifold (with or without boundary). A vector field X : M → TM is smooth at p if there exists a coordinate chart (U, x) near p such that X = Xⁱ ∂/∂xⁱ where the functions Xⁱ : U → ℝ are smooth at p. A smooth vector field is one that is smooth at all points.
- The definition of smoothness is independent of the choice of coordinate chart: Suppose (Ũ, x̃) is another coordinate chart around p, then on U ∩ Ũ,

- Def: Let *M* be a smooth manifold (with or without boundary). A vector field X : M → TM is smooth at p if there exists a coordinate chart (U, x) near p such that X = Xⁱ ∂/∂xⁱ where the functions Xⁱ : U → ℝ are smooth at p. A smooth vector field is one that is smooth at all points.
- The definition of smoothness is independent of the choice of coordinate chart: Suppose (Ũ, x̃) is another coordinate chart around p, then on U ∩ Ũ, X̃ⁱ = ∂xⁱ/∂x^jX^j.

- Def: Let *M* be a smooth manifold (with or without boundary). A vector field X : M → TM is smooth at p if there exists a coordinate chart (U, x) near p such that X = Xⁱ ∂/∂xⁱ where the functions Xⁱ : U → ℝ are smooth at p. A smooth vector field is one that is smooth at all points.
- The definition of smoothness is independent of the choice of coordinate chart: Suppose (Ũ, x̃) is another coordinate chart around p, then on U ∩ Ũ, X̃ⁱ = ∂xⁱ/∂x^jX^j. Since the coefficients are smooth, X̃ⁱ is a linear combination of functions that are smooth at p, and hence X̃ⁱ are smooth at p.

Vector fields

æ

• Any collection of *n* smooth functions $X^i : \mathbb{R}^n \to \mathbb{R}$

Any collection of n smooth functions Xⁱ : ℝⁿ → ℝ gives a smooth vector field X = Xⁱe_i on ℝⁿ.

- Any collection of n smooth functions Xⁱ : ℝⁿ → ℝ gives a smooth vector field X = Xⁱe_i on ℝⁿ.
- Cover S^1 with two coordinate charts given by

- Any collection of n smooth functions Xⁱ : ℝⁿ → ℝ gives a smooth vector field X = Xⁱe_i on ℝⁿ.
- Cover S^1 with two coordinate charts given by the angles $0 < \theta < 2\pi$, $0 < \psi < 2\pi$ (anticlockwise made with the positive x-axis and negative x-axis).

- Any collection of n smooth functions Xⁱ : ℝⁿ → ℝ gives a smooth vector field X = Xⁱe_i on ℝⁿ.
- Cover S^1 with two coordinate charts given by the angles $0 < \theta < 2\pi$, $0 < \psi < 2\pi$ (anticlockwise made with the positive x-axis and negative x-axis). Then on the intersection,

- Any collection of n smooth functions Xⁱ : ℝⁿ → ℝ gives a smooth vector field X = Xⁱe_i on ℝⁿ.
- Cover S^1 with two coordinate charts given by the angles $0 < \theta < 2\pi$, $0 < \psi < 2\pi$ (anticlockwise made with the positive x-axis and negative x-axis). Then on the intersection, when $\pi \le \theta < 2\pi$, $\psi = \theta \pi$.

- Any collection of n smooth functions Xⁱ : ℝⁿ → ℝ gives a smooth vector field X = Xⁱe_i on ℝⁿ.
- Cover S^1 with two coordinate charts given by the angles $0 < \theta < 2\pi$, $0 < \psi < 2\pi$ (anticlockwise made with the positive x-axis and negative x-axis). Then on the intersection, when $\pi \le \theta < 2\pi$, $\psi = \theta \pi$. When $0 < \theta < \pi$, $\psi = \theta + \pi$.

- Any collection of n smooth functions Xⁱ : ℝⁿ → ℝ gives a smooth vector field X = Xⁱe_i on ℝⁿ.
- Cover S^1 with two coordinate charts given by the angles $0 < \theta < 2\pi$, $0 < \psi < 2\pi$ (anticlockwise made with the positive x-axis and negative x-axis). Then on the intersection, when $\pi \le \theta < 2\pi$, $\psi = \theta \pi$. When $0 < \theta < \pi$, $\psi = \theta + \pi$. Thus $\frac{\partial}{\partial \theta} = \frac{\partial}{\partial \psi}$ on the intersection.

- Any collection of n smooth functions Xⁱ : ℝⁿ → ℝ gives a smooth vector field X = Xⁱe_i on ℝⁿ.
- Cover S^1 with two coordinate charts given by the angles $0 < \theta < 2\pi$, $0 < \psi < 2\pi$ (anticlockwise made with the positive x-axis and negative x-axis). Then on the intersection, when $\pi \le \theta < 2\pi$, $\psi = \theta - \pi$. When $0 < \theta < \pi$, $\psi = \theta + \pi$. Thus $\frac{\partial}{\partial \theta} = \frac{\partial}{\partial \psi}$ on the intersection. Therefore, the vector field given by

- Any collection of n smooth functions Xⁱ : ℝⁿ → ℝ gives a smooth vector field X = Xⁱe_i on ℝⁿ.
- Cover S^1 with two coordinate charts given by the angles $0 < \theta < 2\pi$, $0 < \psi < 2\pi$ (anticlockwise made with the positive x-axis and negative x-axis). Then on the intersection, when $\pi \le \theta < 2\pi$, $\psi = \theta - \pi$. When $0 < \theta < \pi$, $\psi = \theta + \pi$. Thus $\frac{\partial}{\partial \theta} = \frac{\partial}{\partial \psi}$ on the intersection. Therefore, the vector field given by $\frac{\partial}{\partial \theta}$ on the θ -chart and

- Any collection of n smooth functions Xⁱ : ℝⁿ → ℝ gives a smooth vector field X = Xⁱe_i on ℝⁿ.
- Cover S^1 with two coordinate charts given by the angles $0 < \theta < 2\pi$, $0 < \psi < 2\pi$ (anticlockwise made with the positive x-axis and negative x-axis). Then on the intersection, when $\pi \le \theta < 2\pi$, $\psi = \theta \pi$. When $0 < \theta < \pi$, $\psi = \theta + \pi$. Thus $\frac{\partial}{\partial \theta} = \frac{\partial}{\partial \psi}$ on the intersection. Therefore, the vector field given by $\frac{\partial}{\partial \theta}$ on the θ -chart and $\frac{\partial}{\partial \psi}$ on the ψ -chart is a well-defined smooth vector field. (

- Any collection of n smooth functions Xⁱ : ℝⁿ → ℝ gives a smooth vector field X = Xⁱe_i on ℝⁿ.
- Cover S^1 with two coordinate charts given by the angles $0 < \theta < 2\pi$, $0 < \psi < 2\pi$ (anticlockwise made with the positive x-axis and negative x-axis). Then on the intersection, when $\pi \le \theta < 2\pi$, $\psi = \theta \pi$. When $0 < \theta < \pi$, $\psi = \theta + \pi$. Thus $\frac{\partial}{\partial \theta} = \frac{\partial}{\partial \psi}$ on the intersection. Therefore, the vector field given by $\frac{\partial}{\partial \theta}$ on the θ -chart and $\frac{\partial}{\partial \psi}$ on the ψ -chart is a well-defined smooth vector field. (In fact, this vector field

- Any collection of n smooth functions Xⁱ : ℝⁿ → ℝ gives a smooth vector field X = Xⁱe_i on ℝⁿ.
- Cover S^1 with two coordinate charts given by the angles $0 < \theta < 2\pi$, $0 < \psi < 2\pi$ (anticlockwise made with the positive x-axis and negative x-axis). Then on the intersection, when $\pi \le \theta < 2\pi$, $\psi = \theta - \pi$. When $0 < \theta < \pi$, $\psi = \theta + \pi$. Thus $\frac{\partial}{\partial \theta} = \frac{\partial}{\partial \psi}$ on the intersection. Therefore, the vector field given by $\frac{\partial}{\partial \theta}$ on the θ -chart and $\frac{\partial}{\partial \psi}$ on the ψ -chart is a well-defined smooth vector field. (In fact, this vector field spans T_pM at every point.)

- Any collection of n smooth functions Xⁱ : ℝⁿ → ℝ gives a smooth vector field X = Xⁱe_i on ℝⁿ.
- Cover S^1 with two coordinate charts given by the angles $0 < \theta < 2\pi$, $0 < \psi < 2\pi$ (anticlockwise made with the positive x-axis and negative x-axis). Then on the intersection, when $\pi \le \theta < 2\pi$, $\psi = \theta - \pi$. When $0 < \theta < \pi$, $\psi = \theta + \pi$. Thus $\frac{\partial}{\partial \theta} = \frac{\partial}{\partial \psi}$ on the intersection. Therefore, the vector field given by $\frac{\partial}{\partial \theta}$ on the θ -chart and $\frac{\partial}{\partial \psi}$ on the ψ -chart is a well-defined smooth vector field. (In fact, this vector field spans $T_p M$ at every point.) Likewise, we can come up with

- Any collection of n smooth functions Xⁱ : ℝⁿ → ℝ gives a smooth vector field X = Xⁱe_i on ℝⁿ.
- Cover S^1 with two coordinate charts given by the angles $0 < \theta < 2\pi$, $0 < \psi < 2\pi$ (anticlockwise made with the positive x-axis and negative x-axis). Then on the intersection, when $\pi \le \theta < 2\pi$, $\psi = \theta - \pi$. When $0 < \theta < \pi$, $\psi = \theta + \pi$. Thus $\frac{\partial}{\partial \theta} = \frac{\partial}{\partial \psi}$ on the intersection. Therefore, the vector field given by $\frac{\partial}{\partial \theta}$ on the θ -chart and $\frac{\partial}{\partial \psi}$ on the ψ -chart is a well-defined smooth vector field. (In fact, this vector field spans T_pM at every point.) Likewise, we can come up with *n*-smooth vector fields on the *n*-torus

- Any collection of n smooth functions Xⁱ : ℝⁿ → ℝ gives a smooth vector field X = Xⁱe_i on ℝⁿ.
- Cover S^1 with two coordinate charts given by the angles $0 < \theta < 2\pi$, $0 < \psi < 2\pi$ (anticlockwise made with the positive x-axis and negative x-axis). Then on the intersection, when $\pi \leq \theta < 2\pi$, $\psi = \theta - \pi$. When $0 < \theta < \pi$, $\psi = \theta + \pi$. Thus $\frac{\partial}{\partial \theta} = \frac{\partial}{\partial w}$ on the intersection. Therefore, the vector field given by $\frac{\partial}{\partial \theta}$ on the θ -chart and $\frac{\partial}{\partial \psi}$ on the ψ -chart is a well-defined smooth vector field. (In fact, this vector field spans T_pM at every point.) Likewise, we can come up with *n*-smooth vector fields on the *n*-torus that span T_pM at every point.

- Any collection of n smooth functions Xⁱ : ℝⁿ → ℝ gives a smooth vector field X = Xⁱe_i on ℝⁿ.
- Cover S^1 with two coordinate charts given by the angles $0 < \theta < 2\pi$, $0 < \psi < 2\pi$ (anticlockwise made with the positive x-axis and negative x-axis). Then on the intersection, when $\pi \leq \theta < 2\pi$, $\psi = \theta - \pi$. When $0 < \theta < \pi$, $\psi = \theta + \pi$. Thus $\frac{\partial}{\partial \theta} = \frac{\partial}{\partial w}$ on the intersection. Therefore, the vector field given by $\frac{\partial}{\partial \theta}$ on the θ -chart and $\frac{\partial}{\partial \psi}$ on the ψ -chart is a well-defined smooth vector field. (In fact, this vector field spans $T_p M$ at every point.) Likewise, we can come up with *n*-smooth vector fields on the *n*-torus that span T_pM at every point.
- The hairy ball theorem implies that

- Any collection of n smooth functions Xⁱ : ℝⁿ → ℝ gives a smooth vector field X = Xⁱe_i on ℝⁿ.
- Cover S^1 with two coordinate charts given by the angles $0 < \theta < 2\pi$, $0 < \psi < 2\pi$ (anticlockwise made with the positive x-axis and negative x-axis). Then on the intersection, when $\pi < \theta < 2\pi$, $\psi = \theta - \pi$. When $0 < \theta < \pi$, $\psi = \theta + \pi$. Thus $\frac{\partial}{\partial \theta} = \frac{\partial}{\partial w}$ on the intersection. Therefore, the vector field given by $\frac{\partial}{\partial \theta}$ on the θ -chart and $\frac{\partial}{\partial \psi}$ on the ψ -chart is a well-defined smooth vector field. (In fact, this vector field spans T_pM at every point.) Likewise, we can come up with *n*-smooth vector fields on the *n*-torus that span T_pM at every point.
- The hairy ball theorem implies that there is no smooth vector field on S² that is

- Any collection of n smooth functions Xⁱ : ℝⁿ → ℝ gives a smooth vector field X = Xⁱe_i on ℝⁿ.
- Cover S^1 with two coordinate charts given by the angles $0 < \theta < 2\pi$, $0 < \psi < 2\pi$ (anticlockwise made with the positive x-axis and negative x-axis). Then on the intersection, when $\pi < \theta < 2\pi$, $\psi = \theta - \pi$. When $0 < \theta < \pi$, $\psi = \theta + \pi$. Thus $\frac{\partial}{\partial \theta} = \frac{\partial}{\partial w}$ on the intersection. Therefore, the vector field given by $\frac{\partial}{\partial \theta}$ on the θ -chart and $\frac{\partial}{\partial \psi}$ on the ψ -chart is a well-defined smooth vector field. (In fact, this vector field spans T_pM at every point.) Likewise, we can come up with *n*-smooth vector fields on the *n*-torus that span T_pM at every point.
- The hairy ball theorem implies that there is no smooth vector field on S² that is *nowhere* vanishing.

- Any collection of n smooth functions Xⁱ : ℝⁿ → ℝ gives a smooth vector field X = Xⁱe_i on ℝⁿ.
- Cover S^1 with two coordinate charts given by the angles $0 < \theta < 2\pi$, $0 < \psi < 2\pi$ (anticlockwise made with the positive x-axis and negative x-axis). Then on the intersection, when $\pi < \theta < 2\pi$, $\psi = \theta - \pi$. When $0 < \theta < \pi$, $\psi = \theta + \pi$. Thus $\frac{\partial}{\partial \theta} = \frac{\partial}{\partial w}$ on the intersection. Therefore, the vector field given by $\frac{\partial}{\partial \theta}$ on the θ -chart and $\frac{\partial}{\partial \psi}$ on the ψ -chart is a well-defined smooth vector field. (In fact, this vector field spans T_pM at every point.) Likewise, we can come up with *n*-smooth vector fields on the *n*-torus that span $T_n M$ at every point.
- The hairy ball theorem implies that there is no smooth vector field on S² that is *nowhere* vanishing. In particular, we cannot come up with

- Any collection of n smooth functions Xⁱ : ℝⁿ → ℝ gives a smooth vector field X = Xⁱe_i on ℝⁿ.
- Cover S^1 with two coordinate charts given by the angles $0 < \theta < 2\pi$, $0 < \psi < 2\pi$ (anticlockwise made with the positive x-axis and negative x-axis). Then on the intersection, when $\pi < \theta < 2\pi$, $\psi = \theta - \pi$. When $0 < \theta < \pi$, $\psi = \theta + \pi$. Thus $\frac{\partial}{\partial \theta} = \frac{\partial}{\partial w}$ on the intersection. Therefore, the vector field given by $\frac{\partial}{\partial \theta}$ on the θ -chart and $\frac{\partial}{\partial \psi}$ on the ψ -chart is a well-defined smooth vector field. (In fact, this vector field spans $T_p M$ at every point.) Likewise, we can come up with *n*-smooth vector fields on the *n*-torus that span $T_n M$ at every point.
- The hairy ball theorem implies that there is no smooth vector field on S^2 that is *nowhere* vanishing. In particular, we cannot come up with two smooth vector fields on S^2 that span

- Any collection of n smooth functions Xⁱ : ℝⁿ → ℝ gives a smooth vector field X = Xⁱe_i on ℝⁿ.
- Cover S^1 with two coordinate charts given by the angles $0 < \theta < 2\pi$, $0 < \psi < 2\pi$ (anticlockwise made with the positive x-axis and negative x-axis). Then on the intersection, when $\pi < \theta < 2\pi$, $\psi = \theta - \pi$. When $0 < \theta < \pi$, $\psi = \theta + \pi$. Thus $\frac{\partial}{\partial \theta} = \frac{\partial}{\partial w}$ on the intersection. Therefore, the vector field given by $\frac{\partial}{\partial \theta}$ on the θ -chart and $\frac{\partial}{\partial \psi}$ on the ψ -chart is a well-defined smooth vector field. (In fact, this vector field spans $T_p M$ at every point.) Likewise, we can come up with *n*-smooth vector fields on the *n*-torus that span $T_n M$ at every point.
- The hairy ball theorem implies that there is no smooth vector field on S^2 that is *nowhere* vanishing. In particular, we cannot come up with two smooth vector fields on S^2 that span $T_p S^2$ at every point.

Vector fields

7/9

æ

• The vector field X = 0 is of course a smooth vector field on any manifold (with or without boundary).

• The vector field X = 0 is of course a smooth vector field on any manifold (with or without boundary). This is a trivial example.

- The vector field X = 0 is of course a smooth vector field on any manifold (with or without boundary). This is a trivial example.
- Actually, on every manifold (with or without boundary),

- The vector field X = 0 is of course a smooth vector field on any manifold (with or without boundary). This is a trivial example.
- Actually, on every manifold (with or without boundary), we can come up with smooth non-trivial vector fields.

- The vector field X = 0 is of course a smooth vector field on any manifold (with or without boundary). This is a trivial example.
- Actually, on every manifold (with or without boundary), we can come up with smooth non-trivial vector fields. Indeed, take any coordinate unit ball (B, x) (around an interior point).

- The vector field X = 0 is of course a smooth vector field on any manifold (with or without boundary). This is a trivial example.
- Actually, on every manifold (with or without boundary), we can come up with smooth non-trivial vector fields. Indeed, take any coordinate unit ball (B, x) (around an interior point). Take a bump function ρ : M → ℝ such that supp(ρ) ⊂ B and ρ = 1 on the ball of radius half.

- The vector field X = 0 is of course a smooth vector field on any manifold (with or without boundary). This is a trivial example.
- Actually, on every manifold (with or without boundary), we can come up with smooth non-trivial vector fields. Indeed, take any coordinate unit ball (B, x) (around an interior point). Take a bump function ρ : M → ℝ such that supp(ρ) ⊂ B and ρ = 1 on the ball of radius half. Then ρ∂∂/∂x¹ is an example of a

- The vector field X = 0 is of course a smooth vector field on any manifold (with or without boundary). This is a trivial example.
- Actually, on every manifold (with or without boundary), we can come up with smooth non-trivial vector fields. Indeed, take any coordinate unit ball (B, x) (around an interior point). Take a bump function ρ : M → ℝ such that supp(ρ) ⊂ B and ρ = 1 on the ball of radius half. Then ρ∂/∂x¹ is an example of a smooth vector field on M by extending it to be 0 outside B.

æ

• Let *M* be a smooth manifold (without boundary).

• Let *M* be a smooth manifold (without boundary). Can *TM* be given the structure

• Let *M* be a smooth manifold (without boundary). Can *TM* be given the structure of a smooth manifold

• Let *M* be a smooth manifold (without boundary). Can *TM* be given the structure of a smooth manifold such that a smooth vector field *X* is an example

• Let *M* be a smooth manifold (without boundary). Can *TM* be given the structure of a smooth manifold such that a smooth vector field *X* is an example of a smooth map from *M* to *TM*?

• Let *M* be a smooth manifold (without boundary). Can *TM* be given the structure of a smooth manifold such that a smooth vector field *X* is an example of a smooth map from *M* to *TM*? We can. The resulting smooth manifold *TM* is called the *tangent bundle* of *M*.

- Let *M* be a smooth manifold (without boundary). Can *TM* be given the structure of a smooth manifold such that a smooth vector field *X* is an example of a smooth map from *M* to *TM*? We can. The resulting smooth manifold *TM* is called the *tangent bundle* of *M*.
- Consider the projection map $\pi : TM \to M$ given by $\pi(\rho, v) = \rho$.

- Let *M* be a smooth manifold (without boundary). Can *TM* be given the structure of a smooth manifold such that a smooth vector field *X* is an example of a smooth map from *M* to *TM*? We can. The resulting smooth manifold *TM* is called the *tangent bundle* of *M*.
- Consider the projection map π : TM → M given by π(p, v) = p. Indeed, cover M with a countable collection of coordinate charts (U_α, xⁱ_α).

- Let *M* be a smooth manifold (without boundary). Can *TM* be given the structure of a smooth manifold such that a smooth vector field *X* is an example of a smooth map from *M* to *TM*? We can. The resulting smooth manifold *TM* is called the *tangent bundle* of *M*.
- Consider the projection map π : TM → M given by π(p, v) = p. Indeed, cover M with a countable collection of coordinate charts (U_α, xⁱ_α). For each such chart consider π⁻¹(U_α) = ∪_{p∈U_α}T_pM = ∪_{p∈U_α}T_pU_α = ∪_{p∈φ_α(U_α)}T_pℝⁿ.

- Let *M* be a smooth manifold (without boundary). Can *TM* be given the structure of a smooth manifold such that a smooth vector field *X* is an example of a smooth map from *M* to *TM*? We can. The resulting smooth manifold *TM* is called the *tangent bundle* of *M*.
- Consider the projection map π : TM → M given by π(p, v) = p. Indeed, cover M with a countable collection of coordinate charts (U_α, xⁱ_α). For each such chart consider π⁻¹(U_α) = ∪_{p∈U_α} T_pM = ∪_{p∈U_α} T_pU_α = ∪_{p∈φ_α(U_α)} T_pℝⁿ. This set is set-theoretically bijective to

- Let *M* be a smooth manifold (without boundary). Can *TM* be given the structure of a smooth manifold such that a smooth vector field *X* is an example of a smooth map from *M* to *TM*? We can. The resulting smooth manifold *TM* is called the *tangent bundle* of *M*.
- Consider the projection map π : TM → M given by π(p, v) = p. Indeed, cover M with a countable collection of coordinate charts (U_α, xⁱ_α). For each such chart consider π⁻¹(U_α) = ∪_{p∈U_α}T_pM = ∪_{p∈U_α}T_pU_α = ∪_{p∈φ_α(U_α)}T_pℝⁿ. This set is set-theoretically bijective to U_α × ℝⁿ by T_α(x, v) = (x, vⁱ ∂/∂xⁱ).

- Let *M* be a smooth manifold (without boundary). Can *TM* be given the structure of a smooth manifold such that a smooth vector field *X* is an example of a smooth map from *M* to *TM*? We can. The resulting smooth manifold *TM* is called the *tangent bundle* of *M*.
- Consider the projection map π : TM → M given by π(p, v) = p. Indeed, cover M with a countable collection of coordinate charts (U_α, xⁱ_α). For each such chart consider π⁻¹(U_α) = ∪_{p∈U_α}T_pM = ∪_{p∈U_α}T_pU_α = ∪_{p∈φ_α(U_α)}T_pℝⁿ. This set is set-theoretically bijective to U_α × ℝⁿ by T_α(x, v) = (x, vⁱ ∂/∂xⁱ). We now take a countable basis B_α of U_α × ℝⁿ and declare

- Let *M* be a smooth manifold (without boundary). Can *TM* be given the structure of a smooth manifold such that a smooth vector field *X* is an example of a smooth map from *M* to *TM*? We can. The resulting smooth manifold *TM* is called the *tangent bundle* of *M*.
- Consider the projection map π : TM → M given by π(p, v) = p. Indeed, cover M with a countable collection of coordinate charts (U_α, xⁱ_α). For each such chart consider π⁻¹(U_α) = ∪_{p∈U_α}T_pM = ∪_{p∈U_α}T_pU_α = ∪_{p∈φ_α(U_α)}T_pℝⁿ. This set is set-theoretically bijective to U_α × ℝⁿ by T_α(x, v) = (x, vⁱ ∂/∂xⁱ). We now take a countable basis B_α of U_α × ℝⁿ and declare the collection T_α(B_α) over all α as a countable basis for a topology for T_pM. (

- Let *M* be a smooth manifold (without boundary). Can *TM* be given the structure of a smooth manifold such that a smooth vector field *X* is an example of a smooth map from *M* to *TM*? We can. The resulting smooth manifold *TM* is called the *tangent bundle* of *M*.
- Consider the projection map π : TM → M given by π(p, v) = p. Indeed, cover M with a countable collection of coordinate charts (U_α, xⁱ_α). For each such chart consider π⁻¹(U_α) = ∪_{p∈U_α} T_pM = ∪_{p∈U_α} T_pU_α = ∪_{p∈φ_α(U_α)} T_pℝⁿ. This set is set-theoretically bijective to U_α × ℝⁿ by T_α(x, v) = (x, vⁱ ∂/∂xⁱ). We now take a countable basis B_α of U_α × ℝⁿ and declare the collection T_α(B_α) over all α as a countable basis for a topology for T_pM. (So in particular, a smooth vector field

- Let *M* be a smooth manifold (without boundary). Can *TM* be given the structure of a smooth manifold such that a smooth vector field *X* is an example of a smooth map from *M* to *TM*? We can. The resulting smooth manifold *TM* is called the *tangent bundle* of *M*.
- Consider the projection map $\pi: TM \to M$ given by $\pi(p, v) = p$. Indeed, cover M with a countable collection of coordinate charts $(U_{\alpha}, x_{\alpha}^{i})$. For each such chart consider $\pi^{-1}(U_{\alpha}) = \bigcup_{p \in U_{\alpha}} T_p M = \bigcup_{p \in U_{\alpha}} T_p U_{\alpha} = \bigcup_{p \in \phi_{\alpha}} (U_{\alpha}) T_p \mathbb{R}^n.$ This set is set-theoretically bijective to $U_{\alpha} \times \mathbb{R}^n$ by $T_{\alpha}(x,v) = (x, v^{i} \frac{\partial}{\partial v^{i}})$. We now take a countable basis \mathcal{B}_{α} of $U_{\alpha} \times \mathbb{R}^n$ and declare the collection $T_{\alpha}(\mathcal{B}_{\alpha})$ over all α as a countable basis for a topology for $T_{\mu}M$. (So in particular, a smooth vector field is a continuous function from M to TM(why?).)

- Let *M* be a smooth manifold (without boundary). Can *TM* be given the structure of a smooth manifold such that a smooth vector field *X* is an example of a smooth map from *M* to *TM*? We can. The resulting smooth manifold *TM* is called the *tangent bundle* of *M*.
- Consider the projection map $\pi: TM \to M$ given by $\pi(p, v) = p$. Indeed, cover M with a countable collection of coordinate charts $(U_{\alpha}, x_{\alpha}^{i})$. For each such chart consider $\pi^{-1}(U_{\alpha}) = \bigcup_{p \in U_{\alpha}} T_p M = \bigcup_{p \in U_{\alpha}} T_p U_{\alpha} = \bigcup_{p \in \phi_{\alpha}} (U_{\alpha}) T_p \mathbb{R}^n.$ This set is set-theoretically bijective to $U_{\alpha} \times \mathbb{R}^n$ by $T_{\alpha}(x,v) = (x, v^{i} \frac{\partial}{\partial v^{i}})$. We now take a countable basis \mathcal{B}_{α} of $U_{\alpha} \times \mathbb{R}^n$ and declare the collection $T_{\alpha}(\mathcal{B}_{\alpha})$ over all α as a countable basis for a topology for $T_{\mu}M$. (So in particular, a smooth vector field is a continuous function from M to TM(why?).) This topology is not necessarily homeomorphic to $M \times \mathbb{R}^n$. (

- Let *M* be a smooth manifold (without boundary). Can *TM* be given the structure of a smooth manifold such that a smooth vector field *X* is an example of a smooth map from *M* to *TM*? We can. The resulting smooth manifold *TM* is called the *tangent bundle* of *M*.
- Consider the projection map $\pi: TM \to M$ given by $\pi(p, v) = p$. Indeed, cover M with a countable collection of coordinate charts $(U_{\alpha}, x_{\alpha}^{i})$. For each such chart consider $\pi^{-1}(U_{\alpha}) = \bigcup_{p \in U_{\alpha}} T_p M = \bigcup_{p \in U_{\alpha}} T_p U_{\alpha} = \bigcup_{p \in \phi_{\alpha}} (U_{\alpha}) T_p \mathbb{R}^n.$ This set is set-theoretically bijective to $U_{\alpha} \times \mathbb{R}^n$ by $T_{\alpha}(x,v) = (x, v^{i} \frac{\partial}{\partial x^{i}})$. We now take a countable basis \mathcal{B}_{α} of $U_{\alpha} \times \mathbb{R}^n$ and declare the collection $T_{\alpha}(\mathcal{B}_{\alpha})$ over all α as a countable basis for a topology for $T_{\mu}M$. (So in particular, a smooth vector field is a continuous function from M to TM(why?).) This topology is not necessarily homeomorphic to $M \times \mathbb{R}^n$. (Only locally, this sort of a statement is true.)

► < E > E

æ

• TM is Hausdorff with this topology (why?)

- TM is Hausdorff with this topology (why?)
- Note tht the map T⁻¹_α: π⁻¹(U_α) → U_α × ℝⁿ ⊂ ℝ²ⁿ is a homeomorphism to its image (why?)

- TM is Hausdorff with this topology (why?)
- Note tht the map T⁻¹_α: π⁻¹(U_α) → U_α × ℝⁿ ⊂ ℝ²ⁿ is a homeomorphism to its image (why?) Thus TM is a topological manifold of dimension 2n with these charts.

- TM is Hausdorff with this topology (why?)
- Note tht the map T⁻¹_α: π⁻¹(U_α) → U_α × ℝⁿ ⊂ ℝ²ⁿ is a homeomorphism to its image (why?) Thus TM is a topological manifold of dimension 2n with these charts. In fact, these charts are smoothly compatible:

- TM is Hausdorff with this topology (why?)
- Note tht the map T⁻¹_α: π⁻¹(U_α) → U_α × ℝⁿ ⊂ ℝ²ⁿ is a homeomorphism to its image (why?) Thus TM is a topological manifold of dimension 2n with these charts. In fact, these charts are smoothly compatible: On π⁻¹(U_α ∩ U_β),

the transition map is

- TM is Hausdorff with this topology (why?)
- Note tht the map T⁻¹_α: π⁻¹(U_α) → U_α × ℝⁿ ⊂ ℝ²ⁿ is a homeomorphism to its image (why?) Thus TM is a topological manifold of dimension 2n with these charts. In fact, these charts are smoothly compatible: On π⁻¹(U_α ∩ U_β), the transition map is (x_α, v_α) → (x_β, v_βⁱ = ∂x_βⁱ/∂x_αⁱ, v_β^j) which is smooth.

- TM is Hausdorff with this topology (why?)
- Note tht the map T⁻¹_α: π⁻¹(U_α) → U_α × ℝⁿ ⊂ ℝ²ⁿ is a homeomorphism to its image (why?) Thus TM is a topological manifold of dimension 2n with these charts. In fact, these charts are smoothly compatible: On π⁻¹(U_α ∩ U_β), the transition map is (x_α, v_α) → (x_β, v_βⁱ = ∂x_βⁱ/∂x_αⁱ, v_β^j) which is smooth. Its inverse is also smooth.

- TM is Hausdorff with this topology (why?)
- Note tht the map T⁻¹_α: π⁻¹(U_α) → U_α × ℝⁿ ⊂ ℝ²ⁿ is a homeomorphism to its image (why?) Thus TM is a topological manifold of dimension 2n with these charts. In fact, these charts are smoothly compatible: On π⁻¹(U_α ∩ U_β), the transition map is (x_α, v_α) → (x_β, v_βⁱ = ∂xⁱ_β/∂x^j_α v^j_α) which is smooth. Its inverse is also smooth.
- Thus, considering the smooth structure induced by this countable basis of smooth charts,

- TM is Hausdorff with this topology (why?)
- Note tht the map T⁻¹_α: π⁻¹(U_α) → U_α × ℝⁿ ⊂ ℝ²ⁿ is a homeomorphism to its image (why?) Thus TM is a topological manifold of dimension 2n with these charts. In fact, these charts are smoothly compatible: On π⁻¹(U_α ∩ U_β), the transition map is (x_α, v_α) → (x_β, v_βⁱ = ∂xⁱ_β/∂x^j_α v^j_α) which is smooth. Its inverse is also smooth.
- Thus, considering the smooth structure induced by this countable basis of smooth charts, we can make *TM* into a smooth manifold.

- TM is Hausdorff with this topology (why?)
- Note tht the map T⁻¹_α: π⁻¹(U_α) → U_α × ℝⁿ ⊂ ℝ²ⁿ is a homeomorphism to its image (why?) Thus TM is a topological manifold of dimension 2n with these charts. In fact, these charts are smoothly compatible: On π⁻¹(U_α ∩ U_β), the transition map is (x_α, v_α) → (x_β, v_βⁱ = ∂xⁱ_β/∂x^j_α v^j_α) which is smooth. Its inverse is also smooth.
- Thus, considering the smooth structure induced by this countable basis of smooth charts, we can make *TM* into a smooth manifold.
- A smooth vector field

- TM is Hausdorff with this topology (why?)
- Note tht the map T⁻¹_α: π⁻¹(U_α) → U_α × ℝⁿ ⊂ ℝ²ⁿ is a homeomorphism to its image (why?) Thus TM is a topological manifold of dimension 2n with these charts. In fact, these charts are smoothly compatible: On π⁻¹(U_α ∩ U_β), the transition map is (x_α, v_α) → (x_β, v_βⁱ = ∂x_αⁱ/∂x_α^j v_α^j) which is smooth. Its inverse is also smooth.
- Thus, considering the smooth structure induced by this countable basis of smooth charts, we can make *TM* into a smooth manifold.
- A smooth vector field is a vector field that is also a smooth map from *M* to *TM* (why?)

- TM is Hausdorff with this topology (why?)
- Note tht the map T⁻¹_α: π⁻¹(U_α) → U_α × ℝⁿ ⊂ ℝ²ⁿ is a homeomorphism to its image (why?) Thus TM is a topological manifold of dimension 2n with these charts. In fact, these charts are smoothly compatible: On π⁻¹(U_α ∩ U_β), the transition map is (x_α, v_α) → (x_β, v_βⁱ = ∂x_αⁱ/∂x_α^j v_α^j) which is smooth. Its inverse is also smooth.
- Thus, considering the smooth structure induced by this countable basis of smooth charts, we can make *TM* into a smooth manifold.
- A smooth vector field is a vector field that is also a smooth map from *M* to *TM* (why?)
- (HW) If M is a smooth manifold-with-boundary,

- TM is Hausdorff with this topology (why?)
- Note tht the map T⁻¹_α: π⁻¹(U_α) → U_α × ℝⁿ ⊂ ℝ²ⁿ is a homeomorphism to its image (why?) Thus TM is a topological manifold of dimension 2n with these charts. In fact, these charts are smoothly compatible: On π⁻¹(U_α ∩ U_β), the transition map is (x_α, v_α) → (x_β, v_βⁱ = ∂xⁱ_β/∂x^j_α v^j_α) which is smooth. Its inverse is also smooth.
- Thus, considering the smooth structure induced by this countable basis of smooth charts, we can make *TM* into a smooth manifold.
- A smooth vector field is a vector field that is also a smooth map from *M* to *TM* (why?)
- (HW) If *M* is a smooth manifold-with-boundary, *TM* can be made into a smooth manifold-with-boundary such that smooth vector fields are

- TM is Hausdorff with this topology (why?)
- Note tht the map T⁻¹_α: π⁻¹(U_α) → U_α × ℝⁿ ⊂ ℝ²ⁿ is a homeomorphism to its image (why?) Thus TM is a topological manifold of dimension 2n with these charts. In fact, these charts are smoothly compatible: On π⁻¹(U_α ∩ U_β), the transition map is (x_α, v_α) → (x_β, v_βⁱ = ∂xⁱ_β/∂x^j_α v^j_α) which is smooth. Its inverse is also smooth.
- Thus, considering the smooth structure induced by this countable basis of smooth charts, we can make *TM* into a smooth manifold.
- A smooth vector field is a vector field that is also a smooth map from *M* to *TM* (why?)
- (HW) If *M* is a smooth manifold-with-boundary, *TM* can be made into a smooth manifold-with-boundary such that smooth vector fields are vector fields that define smooth maps from *M* to *TM*.