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Recap

Defined manifolds, submanifolds, manifolds-with-boundary.

Tangent spaces and pushfowards.

Implicit, inverse, constant rank theorems. Regular values and
Sard’s theorem.

Partitions-of-unity, Whitney’s embedding.
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Need for smooth vector fields

Recall that one of the points of studying tangent vectors was
to model particles flowing on a manifold.

For instance, suppose we take the flow of a fluid (maybe
electrons or even water) on a surface (like say the surface of a
metallic ball). The velocities of the particles vary smoothly.

Moreover, suppose we consider the flow for one second. Then
a particle at p goes to some other point. This operation is
reversible. We can hope that it is a diffeomorphism of the
manifold!

Lastly, suppose we cover the sphere S2 with hair. Can we
comb the sphere so that no hair sticks out completely? The
answer is no (the hairy ball theorem).

All of the above need a notion of smoothly varying tangent
vectors (such an object is called a smooth vector field).
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Vector fields

If a manifold M is a submanifold of RN , then we can easily
define a notion of smoothly varying tangent vectors: Simply
take a smooth function X : M → RN such that X (p) lies in
the tangent plane at p.

On paper, using Whitney embedding, we can make this
definition on any manifold. But we want a more intrinsic
definition (without reference to a particular embedding).

Let TM = ∪p∈MTpM. A function X : M → TM such that
X (p) ∈ TpM is called a vector field.

We want to define a smooth vector field. At least locally, can
we come up with a reasonable example of a smooth vector
field?

A natural choice is the coordinate basis ∂
∂x i

.
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Smooth vector fields

Def: Let M be a smooth manifold (with or without
boundary). A vector field X : M → TM is smooth at p if
there exists a coordinate chart (U, x) near p such that
X = X i ∂

∂x i
where the functions X i : U → R are smooth at p.

A smooth vector field is one that is smooth at all points.

The definition of smoothness is independent of the choice of
coordinate chart: Suppose (Ũ, x̃) is another coordinate chart

around p, then on U ∩ Ũ, X̃ i = ∂x̃ i

∂x j
X j . Since the coefficients

are smooth, X̃ i is a linear combination of functions that are
smooth at p, and hence X̃ i are smooth at p.
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X j . Since the coefficients
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∂x j
X j .

Since the coefficients

are smooth, X̃ i is a linear combination of functions that are
smooth at p, and hence X̃ i are smooth at p.

Vector fields 5/9



Smooth vector fields

Def: Let M be a smooth manifold (with or without
boundary). A vector field X : M → TM is smooth at p if
there exists a coordinate chart (U, x) near p such that
X = X i ∂

∂x i
where the functions X i : U → R are smooth at p.

A smooth vector field is one that is smooth at all points.

The definition of smoothness is independent of the choice of
coordinate chart: Suppose (Ũ, x̃) is another coordinate chart

around p, then on U ∩ Ũ, X̃ i = ∂x̃ i
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Examples/Non-examples

Any collection of n smooth functions X i : Rn → R gives a
smooth vector field X = X iei on Rn.

Cover S1 with two coordinate charts given by the angles
0 < θ < 2π, 0 < ψ < 2π (anticlockwise made with the
positive x-axis and negative x-axis). Then on the intersection,
when π ≤ θ < 2π, ψ = θ − π. When 0 < θ < π, ψ = θ + π.
Thus ∂

∂θ = ∂
∂ψ on the intersection. Therefore, the vector field

given by ∂
∂θ on the θ-chart and ∂

∂ψ on the ψ-chart is a
well-defined smooth vector field. (In fact, this vector field
spans TpM at every point.) Likewise, we can come up with
n-smooth vector fields on the n-torus that span TpM at every
point.

The hairy ball theorem implies that there is no smooth vector
field on S2 that is nowhere vanishing. In particular, we cannot
come up with two smooth vector fields on S2 that span TpS

2

at every point.
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2

at every point.
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Examples/Non-examples

The vector field X = 0 is of course a smooth vector field on
any manifold (with or without boundary). This is a trivial
example.

Actually, on every manifold (with or without boundary), we
can come up with smooth non-trivial vector fields. Indeed,
take any coordinate unit ball (B, x) (around an interior point).
Take a bump function ρ : M → R such that supp(ρ) ⊂ B and
ρ = 1 on the ball of radius half. Then ρ ∂

∂x1 is an example of a
smooth vector field on M by extending it to be 0 outside B.
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Tangent bundle

Let M be a smooth manifold (without boundary). Can TM be
given the structure of a smooth manifold such that a smooth
vector field X is an example of a smooth map from M to
TM? We can. The resulting smooth manifold TM is called
the tangent bundle of M.

Consider the projection map π : TM → M given by
π(p, v) = p. Indeed, cover M with a countable collection of
coordinate charts (Uα, x

i
α). For each such chart consider

π−1(Uα) = ∪p∈UαTpM = ∪p∈UαTpUα = ∪p∈φα(Uα)TpRn.
This set is set-theoretically bijective to Uα × Rn by
Tα(x , v) = (x , v i ∂

∂x i
). We now take a countable basis Bα of

Uα × Rn and declare the collection Tα(Bα) over all α as a
countable basis for a topology for TpM. (So in particular, a
smooth vector field is a continuous function from M to TM
(why?).) This topology is not necessarily homeomorphic to
M × Rn. (Only locally, this sort of a statement is true.)
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Tangent bundle

TM is Hausdorff with this topology (why?)

Note tht the map T−1
α : π−1(Uα)→ Uα × Rn ⊂ R2n is a

homeomorphism to its image (why?) Thus TM is a
topological manifold of dimension 2n with these charts. In
fact, these charts are smoothly compatible: On π−1(Uα ∩Uβ),

the transition map is (xα, ~vα)→ (xβ, v
i
β =

∂x iβ

∂x jα
v jα) which is

smooth. Its inverse is also smooth.

Thus, considering the smooth structure induced by this
countable basis of smooth charts, we can make TM into a
smooth manifold.

A smooth vector field is a vector field that is also a smooth
map from M to TM (why?)

(HW) If M is a smooth manifold-with-boundary, TM can be
made into a smooth manifold-with-boundary such that
smooth vector fields are vector fields that define smooth maps
from M to TM.

Vector fields 9/9
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