MA 229/MA 235 - Lecture 21

IISc

Tensors

Recap

æ

• Tensor products.

æ

Э

- Tensor products.
- Types of tensors, symmetric and alternating tensors (forms). Symmetrisation, Anti-symmetrisation.

- < ロ > < 団 > < 豆 > < 豆 > < 豆 > < 回 > < 回 > <

• Let
$$T_p^{k,l}M := T_pM \otimes T_pM \dots T_pM \otimes T_p^*M \otimes T_p^*M \dots$$

- Let $T_p^{k,l}M := T_pM \otimes T_pM \dots T_pM \otimes T_p^*M \otimes T_p^*M \dots$
- The disjoint union $T^{k,l}M = \cup_{p \in M} T_p^{k,l}M$

- Let $T_p^{k,l}M := T_pM \otimes T_pM \dots T_pM \otimes T_p^*M \otimes T_p^*M \dots$
- The disjoint union $T^{k,l}M = \bigcup_{p \in M} T_p^{k,l}M$ can be given a vector bundle structure over M.

- Let $T_p^{k,l}M := T_pM \otimes T_pM \dots T_pM \otimes T_p^*M \otimes T_p^*M \dots$
- The disjoint union $T^{k,l}M = \bigcup_{p \in M} T_p^{k,l}M$ can be given a vector bundle structure over M. This bundle is called the

- Let $T_p^{k,l}M := T_pM \otimes T_pM \dots T_pM \otimes T_p^*M \otimes T_p^*M \dots$
- The disjoint union T^{k,l}M = ∪_{p∈M}T^{k,l}_pM can be given a vector bundle structure over M. This bundle is called the bundle of mixed (k, l)-tensors.

• Let
$$T_p^{k,l}M := T_pM \otimes T_pM \dots T_pM \otimes T_p^*M \otimes T_p^*M \dots$$

The disjoint union T^{k,I}M = ∪_{p∈M}T^{k,I}_pM can be given a vector bundle structure over M. This bundle is called the bundle of mixed (k, l)-tensors. Smooth sections of this bundle

- Let $T_p^{k,l}M := T_pM \otimes T_pM \dots T_pM \otimes T_p^*M \otimes T_p^*M \dots$
- The disjoint union T^{k,I}M = ∪_{p∈M}T^{k,I}_pM can be given a vector bundle structure over M. This bundle is called the bundle of mixed (k, l)-tensors. Smooth sections of this bundle are called smooth (k, l)-tensor fields, i.e.,

- Let $T_p^{k,l}M := T_pM \otimes T_pM \dots T_pM \otimes T_p^*M \otimes T_p^*M \dots$
- The disjoint union T^{k,I}M = ∪_{p∈M}T^{k,I}_pM can be given a vector bundle structure over M. This bundle is called the bundle of mixed (k, l)-tensors. Smooth sections of this bundle are called smooth (k, l)-tensor fields, i.e., smoothly varying tensor fields.

- Let $T_p^{k,l}M := T_pM \otimes T_pM \dots T_pM \otimes T_p^*M \otimes T_p^*M \dots$
- The disjoint union T^{k,I}M = ∪_{p∈M}T^{k,I}_pM can be given a vector bundle structure over M. This bundle is called the bundle of mixed (k, l)-tensors. Smooth sections of this bundle are called smooth (k, l)-tensor fields, i.e., smoothly varying tensor fields.
- Indeed, consider the obvious projection map to *M*.

- Let $T_p^{k,l}M := T_pM \otimes T_pM \dots T_pM \otimes T_p^*M \otimes T_p^*M \dots$
- The disjoint union T^{k,I}M = ∪_{p∈M}T^{k,I}_pM can be given a vector bundle structure over M. This bundle is called the bundle of mixed (k, l)-tensors. Smooth sections of this bundle are called smooth (k, l)-tensor fields, i.e., smoothly varying tensor fields.
- Indeed, consider the obvious projection map to *M*. Each fibre is a vector space.

- Let $T_p^{k,l}M := T_pM \otimes T_pM \dots T_pM \otimes T_p^*M \otimes T_p^*M \dots$
- The disjoint union T^{k,I}M = ∪_{p∈M}T^{k,I}_pM can be given a vector bundle structure over M. This bundle is called the bundle of mixed (k, l)-tensors. Smooth sections of this bundle are called smooth (k, l)-tensor fields, i.e., smoothly varying tensor fields.
- Indeed, consider the obvious projection map to M. Each fibre is a vector space. Suppose (U, x) is a coordinate chart.

- Let $T_p^{k,l}M := T_pM \otimes T_pM \dots T_pM \otimes T_p^*M \otimes T_p^*M \dots$
- The disjoint union T^{k,I}M = ∪_{p∈M}T^{k,I}_pM can be given a vector bundle structure over M. This bundle is called the bundle of mixed (k, l)-tensors. Smooth sections of this bundle are called smooth (k, l)-tensor fields, i.e., smoothly varying tensor fields.
- Indeed, consider the obvious projection map to M. Each fibre is a vector space. Suppose (U, x) is a coordinate chart. Consider the basis $\frac{\partial}{\partial x^{i_1}} \otimes \ldots \otimes \frac{\partial}{\partial x^{i_k}} \otimes dx^{j_1} \otimes dx^{j_l}$.

- Let $T_p^{k,l}M := T_pM \otimes T_pM \dots T_pM \otimes T_p^*M \otimes T_p^*M \dots$
- The disjoint union T^{k,I}M = ∪_{p∈M}T^{k,I}_pM can be given a vector bundle structure over M. This bundle is called the bundle of mixed (k, l)-tensors. Smooth sections of this bundle are called smooth (k, l)-tensor fields, i.e., smoothly varying tensor fields.
- Indeed, consider the obvious projection map to *M*. Each fibre is a vector space. Suppose (*U*, *x*) is a coordinate chart. Consider the basis ∂/∂xⁱ¹ ⊗ ... ⊗ ∂/∂x^{ik} ⊗ dx^{j1} ⊗ dx^{j1}. This basis gives a local trivialisation π⁻¹(*U*) → *U* × ℝ^{n(k+I)}.

• Let
$$T_p^{k,l}M := T_pM \otimes T_pM \dots T_pM \otimes T_p^*M \otimes T_p^*M \dots$$

- The disjoint union T^{k,I}M = ∪_{p∈M}T^{k,I}_pM can be given a vector bundle structure over M. This bundle is called the bundle of mixed (k, l)-tensors. Smooth sections of this bundle are called smooth (k, l)-tensor fields, i.e., smoothly varying tensor fields.
- Indeed, consider the obvious projection map to M. Each fibre is a vector space. Suppose (U, x) is a coordinate chart. Consider the basis $\frac{\partial}{\partial x^{i_1}} \otimes \ldots \otimes \frac{\partial}{\partial x^{i_k}} \otimes dx^{j_1} \otimes dx^{j_l}$. This basis gives a local trivialisation $\pi^{-1}(U) \to U \times \mathbb{R}^{n(k+l)}$. We declare the topology and manifold structure

- Let $T_p^{k,l}M := T_pM \otimes T_pM \dots T_pM \otimes T_p^*M \otimes T_p^*M \dots$
- The disjoint union T^{k,I}M = ∪_{p∈M}T^{k,I}_pM can be given a vector bundle structure over M. This bundle is called the bundle of mixed (k, l)-tensors. Smooth sections of this bundle are called smooth (k, l)-tensor fields, i.e., smoothly varying tensor fields.
- Indeed, consider the obvious projection map to M. Each fibre is a vector space. Suppose (U, x) is a coordinate chart. Consider the basis $\frac{\partial}{\partial x^{i_1}} \otimes \ldots \otimes \frac{\partial}{\partial x^{i_k}} \otimes dx^{j_1} \otimes dx^{j_l}$. This basis gives a local trivialisation $\pi^{-1}(U) \to U \times \mathbb{R}^{n(k+l)}$. We declare the topology and manifold structure such that these local trivialisations are diffeomorphisms (as usual).

- Let $T_p^{k,l}M := T_pM \otimes T_pM \dots T_pM \otimes T_p^*M \otimes T_p^*M \dots$
- The disjoint union T^{k,I}M = ∪_{p∈M}T^{k,I}_pM can be given a vector bundle structure over M. This bundle is called the bundle of mixed (k, l)-tensors. Smooth sections of this bundle are called smooth (k, l)-tensor fields, i.e., smoothly varying tensor fields.
- Indeed, consider the obvious projection map to M. Each fibre is a vector space. Suppose (U, x) is a coordinate chart. Consider the basis $\frac{\partial}{\partial x^{i_1}} \otimes \ldots \otimes \frac{\partial}{\partial x^{i_k}} \otimes dx^{j_1} \otimes dx^{j_l}$. This basis gives a local trivialisation $\pi^{-1}(U) \to U \times \mathbb{R}^{n(k+l)}$. We declare the topology and manifold structure such that these local trivialisations are diffeomorphisms (as usual).
- As a consequence,

- Let $T_p^{k,l}M := T_pM \otimes T_pM \dots T_pM \otimes T_p^*M \otimes T_p^*M \dots$
- The disjoint union T^{k,I}M = ∪_{p∈M}T^{k,I}_pM can be given a vector bundle structure over M. This bundle is called the bundle of mixed (k, l)-tensors. Smooth sections of this bundle are called smooth (k, l)-tensor fields, i.e., smoothly varying tensor fields.
- Indeed, consider the obvious projection map to M. Each fibre is a vector space. Suppose (U, x) is a coordinate chart. Consider the basis $\frac{\partial}{\partial x^{i_1}} \otimes \ldots \otimes \frac{\partial}{\partial x^{i_k}} \otimes dx^{j_1} \otimes dx^{j_l}$. This basis gives a local trivialisation $\pi^{-1}(U) \to U \times \mathbb{R}^{n(k+l)}$. We declare the topology and manifold structure such that these local trivialisations are diffeomorphisms (as usual).
- As a consequence, a tensor field is smooth iff

- Let $T_p^{k,l}M := T_pM \otimes T_pM \dots T_pM \otimes T_p^*M \otimes T_p^*M \dots$
- The disjoint union T^{k,I}M = ∪_{p∈M}T^{k,I}_pM can be given a vector bundle structure over M. This bundle is called the bundle of mixed (k, l)-tensors. Smooth sections of this bundle are called smooth (k, l)-tensor fields, i.e., smoothly varying tensor fields.
- Indeed, consider the obvious projection map to M. Each fibre is a vector space. Suppose (U, x) is a coordinate chart. Consider the basis $\frac{\partial}{\partial x^{i_1}} \otimes \ldots \otimes \frac{\partial}{\partial x^{i_k}} \otimes dx^{j_1} \otimes dx^{j_l}$. This basis gives a local trivialisation $\pi^{-1}(U) \to U \times \mathbb{R}^{n(k+l)}$. We declare the topology and manifold structure such that these local trivialisations are diffeomorphisms (as usual).
- As a consequence, a tensor field is smooth iff the coefficients in this trivialisation are smooth functions.

Riemannian metrics

|▲□▶▲圖▶▲圖▶▲圖▶ 圖 め∢ぐ

• An example of a

• An example of a covariant symmetric 2-tensor field

• An example of a covariant symmetric 2-tensor field is a Riemannian metric:

• An example of a covariant symmetric 2-tensor field is a Riemannian metric: A Riemannian metric g on a smooth manifold M

• An example of a covariant symmetric 2-tensor field is a Riemannian metric: A Riemannian metric g on a smooth manifold M is a covariant symmetric 2-tensor field that

• An example of a covariant symmetric 2-tensor field is a Riemannian metric: A Riemannian metric g on a smooth manifold M is a covariant symmetric 2-tensor field that defines an inner product on every tangent space.

- An example of a covariant symmetric 2-tensor field is a Riemannian metric: A Riemannian metric g on a smooth manifold M is a covariant symmetric 2-tensor field that defines an inner product on every tangent space.
- Example:

- An example of a covariant symmetric 2-tensor field is a Riemannian metric: A Riemannian metric g on a smooth manifold M is a covariant symmetric 2-tensor field that defines an inner product on every tangent space.
- Example: The Euclidean metric $g = (dx^1) \otimes (dx^1) + \ldots + (dx^n) \otimes (dx^n)$ on \mathbb{R}^n .

- An example of a covariant symmetric 2-tensor field is a Riemannian metric: A Riemannian metric g on a smooth manifold M is a covariant symmetric 2-tensor field that defines an inner product on every tangent space.
- Example: The Euclidean metric $g = (dx^1) \otimes (dx^1) + \ldots + (dx^n) \otimes (dx^n)$ on \mathbb{R}^n . A metric on $(0, \infty) \times (0, 2\pi)$:

- An example of a covariant symmetric 2-tensor field is a Riemannian metric: A Riemannian metric g on a smooth manifold M is a covariant symmetric 2-tensor field that defines an inner product on every tangent space.
- Example: The Euclidean metric $g = (dx^1) \otimes (dx^1) + \ldots + (dx^n) \otimes (dx^n)$ on \mathbb{R}^n . A metric on $(0, \infty) \times (0, 2\pi)$: $g = dr \otimes dr + r^2 d\theta \otimes d\theta$.

- An example of a covariant symmetric 2-tensor field is a Riemannian metric: A Riemannian metric g on a smooth manifold M is a covariant symmetric 2-tensor field that defines an inner product on every tangent space.
- Example: The Euclidean metric
 g = (dx¹) ⊗ (dx¹) + ... + (dxⁿ) ⊗ (dxⁿ) on ℝⁿ. A metric on
 (0,∞) × (0,2π): g = dr ⊗ dr + r²dθ ⊗ dθ. Note that this
 metric is

- An example of a covariant symmetric 2-tensor field is a Riemannian metric: A Riemannian metric g on a smooth manifold M is a covariant symmetric 2-tensor field that defines an inner product on every tangent space.
- Example: The Euclidean metric
 g = (dx¹) ⊗ (dx¹) + ... + (dxⁿ) ⊗ (dxⁿ) on ℝⁿ. A metric on
 (0,∞) × (0,2π): g = dr ⊗ dr + r²dθ ⊗ dθ. Note that this
 metric is basically the Euclidean metric on ℝ²

- An example of a covariant symmetric 2-tensor field is a Riemannian metric: A Riemannian metric g on a smooth manifold M is a covariant symmetric 2-tensor field that defines an inner product on every tangent space.
- Example: The Euclidean metric
 g = (dx¹) ⊗ (dx¹) + ... + (dxⁿ) ⊗ (dxⁿ) on ℝⁿ. A metric on
 (0,∞) × (0,2π): g = dr ⊗ dr + r²dθ ⊗ dθ. Note that this
 metric is basically the Euclidean metric on ℝ² but in different
 coordinates!

- An example of a covariant symmetric 2-tensor field is a Riemannian metric: A Riemannian metric g on a smooth manifold M is a covariant symmetric 2-tensor field that defines an inner product on every tangent space.
- Example: The Euclidean metric
 g = (dx¹) ⊗ (dx¹) + ... + (dxⁿ) ⊗ (dxⁿ) on ℝⁿ. A metric on
 (0,∞) × (0,2π): g = dr ⊗ dr + r²dθ ⊗ dθ. Note that this
 metric is basically the Euclidean metric on ℝ² but in different
 coordinates! This raises a question:

- An example of a covariant symmetric 2-tensor field is a Riemannian metric: A Riemannian metric g on a smooth manifold M is a covariant symmetric 2-tensor field that defines an inner product on every tangent space.
- Example: The Euclidean metric
 g = (dx¹) ⊗ (dx¹) + ... + (dxⁿ) ⊗ (dxⁿ) on ℝⁿ. A metric on
 (0,∞) × (0,2π): g = dr ⊗ dr + r²dθ ⊗ dθ. Note that this
 metric is basically the Euclidean metric on ℝ² but in different
 coordinates! This raises a question: Is every metric on ℝⁿ
 secretly the Euclidean metric locally in some coordinate chart?

- An example of a covariant symmetric 2-tensor field is a Riemannian metric: A Riemannian metric g on a smooth manifold M is a covariant symmetric 2-tensor field that defines an inner product on every tangent space.
- Example: The Euclidean metric
 g = (dx¹) ⊗ (dx¹) + ... + (dxⁿ) ⊗ (dxⁿ) on ℝⁿ. A metric on
 (0,∞) × (0,2π): g = dr ⊗ dr + r²dθ ⊗ dθ. Note that this
 metric is basically the Euclidean metric on ℝ² but in different
 coordinates! This raises a question: Is every metric on ℝⁿ
 secretly the Euclidean metric locally in some coordinate chart?
 The answer is NO.

- An example of a covariant symmetric 2-tensor field is a Riemannian metric: A Riemannian metric g on a smooth manifold M is a covariant symmetric 2-tensor field that defines an inner product on every tangent space.
- Example: The Euclidean metric
 g = (dx¹) ⊗ (dx¹) + ... + (dxⁿ) ⊗ (dxⁿ) on ℝⁿ. A metric on
 (0,∞) × (0,2π): g = dr ⊗ dr + r²dθ ⊗ dθ. Note that this
 metric is basically the Euclidean metric on ℝ² but in different
 coordinates! This raises a question: Is every metric on ℝⁿ
 secretly the Euclidean metric locally in some coordinate chart?
 The answer is NO. There is an obstruction called the Riemann
 curvature tensor.

• Theorem:

• Theorem: Every smooth manifold (with or without boundary) admits a Riemannian metric.

- Theorem: Every smooth manifold (with or without boundary) admits a Riemannian metric.
- Proof:

- Theorem: Every smooth manifold (with or without boundary) admits a Riemannian metric.
- Proof: Cover the manifold by coordinate charts (U_{α}, x_{α}) .

- Theorem: Every smooth manifold (with or without boundary) admits a Riemannian metric.
- Proof: Cover the manifold by coordinate charts (U_α, x_α).
 Consider a partition-of-unity ρ_α subordinate to this cover.

- Theorem: Every smooth manifold (with or without boundary) admits a Riemannian metric.
- Proof: Cover the manifold by coordinate charts (U_α, x_α). Consider a partition-of-unity ρ_α subordinate to this cover. Now take the locally defined Riemannian metric g_α = dx¹_α ⊗ dx¹_α + ... + dxⁿ_α ⊗ dxⁿ_α

- Theorem: Every smooth manifold (with or without boundary) admits a Riemannian metric.
- Proof: Cover the manifold by coordinate charts (U_α, x_α). Consider a partition-of-unity ρ_α subordinate to this cover. Now take the locally defined Riemannian metric g_α = dx¹_α ⊗ dx¹_α + ... + dxⁿ_α ⊗ dxⁿ_α and define g = ∑_α ρ_αg_α.

- Theorem: Every smooth manifold (with or without boundary) admits a Riemannian metric.
- Proof: Cover the manifold by coordinate charts (U_α, x_α). Consider a partition-of-unity ρ_α subordinate to this cover. Now take the locally defined Riemannian metric g_α = dx¹_α ⊗ dx¹_α + ... + dxⁿ_α ⊗ dxⁿ_α and define g = ∑_α ρ_αg_α. This sum gives a well-defined smooth covariant symmetric 2-tensor.

- Theorem: Every smooth manifold (with or without boundary) admits a Riemannian metric.
- Proof: Cover the manifold by coordinate charts (U_α, x_α). Consider a partition-of-unity ρ_α subordinate to this cover. Now take the locally defined Riemannian metric g_α = dx¹_α ⊗ dx¹_α + ... + dxⁿ_α ⊗ dxⁿ_α and define g = ∑_α ρ_αg_α. This sum gives a well-defined smooth covariant symmetric 2-tensor. It is positive-definite because

- Theorem: Every smooth manifold (with or without boundary) admits a Riemannian metric.
- Proof: Cover the manifold by coordinate charts (U_α, x_α). Consider a partition-of-unity ρ_α subordinate to this cover. Now take the locally defined Riemannian metric g_α = dx¹_α ⊗ dx¹_α + ... + dxⁿ_α ⊗ dxⁿ_α and define g = ∑_α ρ_αg_α. This sum gives a well-defined smooth covariant symmetric 2-tensor. It is positive-definite because at least one of the ρ_α is non-zero at every point.

- Theorem: Every smooth manifold (with or without boundary) admits a Riemannian metric.
- Proof: Cover the manifold by coordinate charts (U_α, x_α). Consider a partition-of-unity ρ_α subordinate to this cover. Now take the locally defined Riemannian metric g_α = dx¹_α ⊗ dx¹_α + ... + dxⁿ_α ⊗ dxⁿ_α and define g = ∑_α ρ_αg_α. This sum gives a well-defined smooth covariant symmetric 2-tensor. It is positive-definite because at least one of the ρ_α is non-zero at every point.
- Using Riemannian metrics, one can measure distances and so on.

- Theorem: Every smooth manifold (with or without boundary) admits a Riemannian metric.
- Proof: Cover the manifold by coordinate charts (U_α, x_α). Consider a partition-of-unity ρ_α subordinate to this cover. Now take the locally defined Riemannian metric g_α = dx¹_α ⊗ dx¹_α + ... + dxⁿ_α ⊗ dxⁿ_α and define g = ∑_α ρ_αg_α. This sum gives a well-defined smooth covariant symmetric 2-tensor. It is positive-definite because at least one of the ρ_α is non-zero at every point.
- Using Riemannian metrics, one can measure distances and so on. One can also define the notion of an isomorphism in this category (Isometry).

More about alternating tensors

- < ロ > < 団 > < 豆 > < 豆 > < 豆 > < 回 > < 回 > <

Returning to alternating tensors,

Returning to alternating tensors, here is a useful result:

Returning to alternating tensors, here is a useful result: $\boldsymbol{\alpha}$ is alternating iff

Returning to alternating tensors, here is a useful result: α is alternating iff $\alpha(v_1, \ldots, v_k) = 0$ whenever the collection v_1, \ldots, v_k is linearly dependent:

Returning to alternating tensors, here is a useful result: α is alternating iff $\alpha(v_1, \ldots, v_k) = 0$ whenever the collection v_1, \ldots, v_k is linearly dependent: Indeed, if the latter holds,

Returning to alternating tensors, here is a useful result: α is alternating iff $\alpha(v_1, \ldots, v_k) = 0$ whenever the collection v_1, \ldots, v_k is linearly dependent: Indeed, if the latter holds, in particular,

Returning to alternating tensors, here is a useful result: α is alternating iff $\alpha(v_1, \ldots, v_k) = 0$ whenever the collection v_1, \ldots, v_k is linearly dependent: Indeed, if the latter holds, in particular, if two of the v_i coincide,

Returning to alternating tensors, here is a useful result: α is alternating iff $\alpha(v_1, \ldots, v_k) = 0$ whenever the collection v_1, \ldots, v_k is linearly dependent: Indeed, if the latter holds, in particular, if two of the v_i coincide, $\alpha(v_1, \ldots, v_k) = 0$.

Returning to alternating tensors, here is a useful result: α is alternating iff $\alpha(v_1, \ldots, v_k) = 0$ whenever the collection v_1, \ldots, v_k is linearly dependent: Indeed, if the latter holds, in particular, if two of the v_i coincide, $\alpha(v_1, \ldots, v_k) = 0$. This means, $\alpha(v_1 + v_i, \ldots, v_i + v_1, \ldots,) = 0$.

Returning to alternating tensors, here is a useful result: α is alternating iff $\alpha(v_1, \ldots, v_k) = 0$ whenever the collection v_1, \ldots, v_k is linearly dependent: Indeed, if the latter holds, in particular, if two of the v_i coincide, $\alpha(v_1, \ldots, v_k) = 0$. This means, $\alpha(v_1 + v_i, \ldots, v_i + v_1, \ldots,) = 0$. Thus, $\alpha(v_1, \ldots, v_i + v_1, \ldots) + \alpha(v_i, \ldots, v_i + v_1, \ldots) = 0$.

Returning to alternating tensors, here is a useful result: α is alternating iff $\alpha(v_1, \ldots, v_k) = 0$ whenever the collection v_1, \ldots, v_k is linearly dependent: Indeed, if the latter holds, in particular, if two of the v_i coincide, $\alpha(v_1, \ldots, v_k) = 0$. This means, $\alpha(v_1 + v_i, \ldots, v_i + v_1, \ldots) = 0$. Thus, $\alpha(v_1, \ldots, v_i + v_1, \ldots) + \alpha(v_i, \ldots, v_i + v_1, \ldots) = 0$. Thus $\alpha(v_1, \ldots, v_i, \ldots) = -\alpha(v_i, \ldots, v_1, \ldots)$ and hence α is alternating.

Returning to alternating tensors, here is a useful result: α is alternating iff $\alpha(v_1, \ldots, v_k) = 0$ whenever the collection v_1, \ldots, v_k is linearly dependent: Indeed, if the latter holds, in particular, if two of the v_i coincide, $\alpha(v_1, \ldots, v_k) = 0$. This means, $\alpha(v_1 + v_i, \ldots, v_i + v_1, \ldots) = 0$. Thus, $\alpha(v_1, \ldots, v_i + v_1, \ldots) + \alpha(v_i, \ldots, v_i + v_1, \ldots) = 0$. Thus $\alpha(v_1, \ldots, v_i, \ldots) = -\alpha(v_i, \ldots, v_1, \ldots)$ and hence α is alternating. Conversely, if α is alternating,

Returning to alternating tensors, here is a useful result: α is alternating iff $\alpha(v_1, \ldots, v_k) = 0$ whenever the collection v_1, \ldots, v_k is linearly dependent: Indeed, if the latter holds, in particular, if two of the v_i coincide, $\alpha(v_1, \ldots, v_k) = 0$. This means, $\alpha(v_1 + v_i, \ldots, v_i + v_1, \ldots) = 0$. Thus, $\alpha(v_1, \ldots, v_i + v_1, \ldots) + \alpha(v_i, \ldots, v_i + v_1, \ldots) = 0$. Thus $\alpha(v_1, \ldots, v_i, \ldots) = -\alpha(v_i, \ldots, v_1, \ldots)$ and hence α is alternating. Conversely, if α is alternating, and $\sum_i c_i v_i = 0$ with $c_1 \neq 0$ WLOG,

Returning to alternating tensors, here is a useful result: α is alternating iff $\alpha(v_1, \ldots, v_k) = 0$ whenever the collection v_1, \ldots, v_k is linearly dependent: Indeed, if the latter holds, in particular, if two of the v_i coincide, $\alpha(v_1, \ldots, v_k) = 0$. This means, $\alpha(v_1 + v_i, \ldots, v_i + v_1, \ldots) = 0$. Thus, $\alpha(v_1, \ldots, v_i + v_1, \ldots) + \alpha(v_i, \ldots, v_i + v_1, \ldots) = 0$. Thus $\alpha(v_1, \ldots, v_i, \ldots) = -\alpha(v_i, \ldots, v_1, \ldots)$ and hence α is alternating. Conversely, if α is alternating, and $\sum_i c_i v_i = 0$ with $c_1 \neq 0$ WLOG, then firstly,

Returning to alternating tensors, here is a useful result: α is alternating iff $\alpha(v_1, \ldots, v_k) = 0$ whenever the collection v_1, \ldots, v_k is linearly dependent: Indeed, if the latter holds, in particular, if two of the v_i coincide, $\alpha(v_1, \ldots, v_k) = 0$. This means, $\alpha(v_1 + v_i, \ldots, v_i + v_1, \ldots) = 0$. Thus, $\alpha(v_1, \ldots, v_i + v_1, \ldots) + \alpha(v_i, \ldots, v_i + v_1, \ldots) = 0$. Thus $\alpha(v_1, \ldots, v_i, \ldots) = -\alpha(v_i, \ldots, v_1, \ldots)$ and hence α is alternating. Conversely, if α is alternating, and $\sum_i c_i v_i = 0$ with $c_1 \neq 0$ WLOG, then firstly, $\alpha(v_1, \ldots, v_k) = 0$ whenever two of the v_i coincide (why?)

Returning to alternating tensors, here is a useful result: α is alternating iff $\alpha(v_1, \ldots, v_k) = 0$ whenever the collection v_1, \ldots, v_k is linearly dependent: Indeed, if the latter holds, in particular, if two of the v_i coincide, $\alpha(v_1, \ldots, v_k) = 0$. This means, $\alpha(v_1 + v_i, \dots, v_i + v_1, \dots,) = 0$. Thus, $\alpha(v_1, \ldots, v_i + v_1, \ldots) + \alpha(v_i, \ldots, v_i + v_1, \ldots) = 0$. Thus $\alpha(\mathbf{v}_1,\ldots,\mathbf{v}_i,\ldots) = -\alpha(\mathbf{v}_i,\ldots,\mathbf{v}_1,\ldots)$ and hence α is alternating. Conversely, if α is alternating, and $\sum_i c_i v_i = 0$ with $c_1 \neq 0$ WLOG, then firstly, $\alpha(v_1, \ldots, v_k) = 0$ whenever two of the v_i coincide (why?) and hence $\alpha(c_1v_1,\ldots,v_k) = \alpha(c_1v_1 + c_2v_2 + \ldots,v_2,\ldots) = 0 \text{ (why?)}$

Returning to alternating tensors, here is a useful result: α is alternating iff $\alpha(v_1, \ldots, v_k) = 0$ whenever the collection v_1, \ldots, v_k is linearly dependent: Indeed, if the latter holds, in particular, if two of the v_i coincide, $\alpha(v_1, \ldots, v_k) = 0$. This means, $\alpha(v_1 + v_i, \dots, v_i + v_1, \dots,) = 0$. Thus, $\alpha(v_1, \ldots, v_i + v_1, \ldots) + \alpha(v_i, \ldots, v_i + v_1, \ldots) = 0$. Thus $\alpha(\mathbf{v}_1,\ldots,\mathbf{v}_i,\ldots) = -\alpha(\mathbf{v}_i,\ldots,\mathbf{v}_1,\ldots)$ and hence α is alternating. Conversely, if α is alternating, and $\sum_i c_i v_i = 0$ with $c_1 \neq 0$ WLOG, then firstly, $\alpha(v_1, \ldots, v_k) = 0$ whenever two of the v_i coincide (why?) and hence $\alpha(c_1v_1, \ldots, v_k) = \alpha(c_1v_1 + c_2v_2 + \ldots, v_2, \ldots) = 0$ (why?) Thus $\alpha(v_1,\ldots,v_k) = 0$ whenever they are linearly dependent.

• Let V be a f.d. vector space

• Let V be a f.d. vector space with a basis e_1, \ldots, e_n .

• Let V be a f.d. vector space with a basis e_1, \ldots, e_n . Let $\epsilon^1, \ldots, \epsilon^n$ be the dual basis for V^* .

• Let V be a f.d. vector space with a basis e_1, \ldots, e_n . Let $\epsilon^1, \ldots, \epsilon^n$ be the dual basis for V^* . Given a multi-index $I = (i_1, \ldots, i_k)$,

• Let V be a f.d. vector space with a basis e_1, \ldots, e_n . Let $\epsilon^1, \ldots, \epsilon^n$ be the dual basis for V^* . Given a multi-index $I = (i_1, \ldots, i_k)$, consider the k-covariant tensor

• Let V be a f.d. vector space with a basis e_1, \ldots, e_n . Let $\epsilon^1, \ldots, \epsilon^n$ be the dual basis for V^* . Given a multi-index $I = (i_1, \ldots, i_k)$, consider the k-covariant tensor $\epsilon^I(v_1, \ldots, v_k) = \det \begin{pmatrix} \epsilon^{i_1}(v_1) & \ldots & \epsilon^{i_1}(v_k) \\ \vdots & \ddots & \vdots \\ \epsilon^{i_k}(v_1) & \ldots & \epsilon^{i_k}(v_k) \end{pmatrix} = \begin{pmatrix} v_1^{i_1} & \ldots & v_k^{i_1} \\ \vdots & \ddots & \vdots \\ v_1^{i_k} & \ldots & v_k^{i_k} \end{pmatrix}$, that is,

• Let V be a f.d. vector space with a basis e_1, \ldots, e_n . Let $\epsilon^1, \ldots, \epsilon^n$ be the dual basis for V^* . Given a multi-index $I = (i_1, \ldots, i_k)$, consider the k-covariant tensor $\epsilon^{i}(v_{1},\ldots,v_{k}) = \det \begin{pmatrix} \epsilon^{i_{1}}(v_{1}) & \ldots & \epsilon^{i_{1}}(v_{k}) \\ \vdots & \ddots & \vdots \\ \epsilon^{i_{k}}(v_{1}) & \ldots & \epsilon^{i_{k}}(v_{k}) \end{pmatrix} =$ $\begin{pmatrix} v_1^{i_1} & \dots & v_k^{i_1} \\ \vdots & \ddots & \vdots \\ v_1^{i_k} & \dots & v_k^{i_k} \end{pmatrix}$, that is, $\epsilon^l(v_1, \dots, v_k)$ is a

• Let V be a f.d. vector space with a basis e_1, \ldots, e_n . Let $\epsilon^1, \ldots, \epsilon^n$ be the dual basis for V^* . Given a multi-index $I = (i_1, \dots, i_k), \text{ consider the } k\text{-covariant tensor}$ $\epsilon^{i}(v_1, \dots, v_k) = \det \begin{pmatrix} \epsilon^{i_1}(v_1) & \dots & \epsilon^{i_1}(v_k) \\ \vdots & \ddots & \vdots \\ \epsilon^{i_k}(v_1) & \dots & \epsilon^{i_k}(v_k) \end{pmatrix} =$ $\begin{pmatrix} v_1^{i_1} & \dots & v_k^{i_1} \\ \vdots & \ddots & \vdots \\ v_1^{i_k} & \dots & v_k^{i_k} \end{pmatrix}$, that is, $\epsilon^I(v_1, \dots, v_k)$ is a minor of a matrix

- Let V be a f.d. vector space with a basis e_1, \ldots, e_n . Let $\epsilon^1, \ldots, \epsilon^n$ be the dual basis for V^* . Given a multi-index $I = (i_1, \dots, i_k), \text{ consider the } k\text{-covariant tensor}$ $\epsilon^{I}(v_1, \dots, v_k) = \det \begin{pmatrix} \epsilon^{i_1}(v_1) & \dots & \epsilon^{i_1}(v_k) \\ \vdots & \ddots & \vdots \\ \epsilon^{i_k}(v_1) & \dots & \epsilon^{i_k}(v_k) \end{pmatrix} =$ $\begin{pmatrix} v_1^{i_1} & \dots & v_k^{i_1} \\ \vdots & \ddots & \vdots \\ v_1^{i_k} & \dots & v_k^{i_k} \end{pmatrix}$, that is, $\epsilon^I(v_1, \dots, v_k)$ is a minor of a matrix.
- These ϵ^{l} are called elementary alternating k-tensors or

- Let V be a f.d. vector space with a basis e_1, \ldots, e_n . Let $\epsilon^1, \ldots, \epsilon^n$ be the dual basis for V^* . Given a multi-index $I = (i_1, \dots, i_k), \text{ consider the } k\text{-covariant tensor}$ $\epsilon^{I}(v_1, \dots, v_k) = \det \begin{pmatrix} \epsilon^{i_1}(v_1) & \dots & \epsilon^{i_1}(v_k) \\ \vdots & \ddots & \vdots \\ \epsilon^{i_k}(v_1) & \dots & \epsilon^{i_k}(v_k) \end{pmatrix} =$ $\begin{pmatrix} v_1^{i_1} & \dots & v_k^{i_1} \\ \vdots & \ddots & \vdots \\ v_1^{i_k} & \dots & v_k^{i_k} \end{pmatrix}$, that is, $\epsilon^l(v_1, \dots, v_k)$ is a minor of a matrix.
- These ϵ^{l} are called elementary alternating k-tensors or elementary k-forms.

- Let V be a f.d. vector space with a basis e_1, \ldots, e_n . Let $\epsilon^1, \ldots, \epsilon^n$ be the dual basis for V^* . Given a multi-index $I = (i_1, \dots, i_k), \text{ consider the } k \text{-covariant tensor}$ $\epsilon^I(v_1, \dots, v_k) = \det \begin{pmatrix} \epsilon^{i_1}(v_1) & \dots & \epsilon^{i_1}(v_k) \\ \vdots & \ddots & \vdots \\ \epsilon^{i_k}(v_1) & \dots & \epsilon^{i_k}(v_k) \end{pmatrix} =$ $\begin{pmatrix} v_1^{i_1} & \dots & v_k^{i_1} \\ \vdots & \ddots & \vdots \\ v_1^{i_k} & \dots & v_k^{i_k} \end{pmatrix}$, that is, $\epsilon^I(v_1, \dots, v_k)$ is a minor of a matrix.
- These
 e^l are called elementary alternating k-tensors or elementary k-forms. They are suppose to be

- Let V be a f.d. vector space with a basis e_1, \ldots, e_n . Let $\epsilon^1, \ldots, \epsilon^n$ be the dual basis for V^* . Given a multi-index $I = (i_1, \ldots, i_k)$, consider the k-covariant tensor $\epsilon^{i}(v_{1},\ldots,v_{k}) = \det \begin{pmatrix} \epsilon^{i_{1}}(v_{1}) & \ldots & \epsilon^{i_{1}}(v_{k}) \\ \vdots & \ddots & \vdots \\ \epsilon^{i_{k}}(v_{1}) & \ldots & \epsilon^{i_{k}}(v_{k}) \end{pmatrix} =$ $\begin{pmatrix} v_1^{i_1} & \dots & v_k^{i_1} \\ \vdots & \ddots & \vdots \\ v_1^{i_k} & \dots & v_k^{i_k} \end{pmatrix}$, that is, $\epsilon^I(v_1, \dots, v_k)$ is a minor of a matrix.
- These ε^l are called elementary alternating k-tensors or elementary k-forms. They are suppose to be (signed) volumes of some generalised parallelopipeds (as we shall see later on).

- Let V be a f.d. vector space with a basis e_1, \ldots, e_n . Let $\epsilon^1, \ldots, \epsilon^n$ be the dual basis for V^* . Given a multi-index $I = (i_1, \dots, i_k)$, consider the k-covariant tensor $\epsilon^{i}(v_{1},\ldots,v_{k}) = \det \begin{pmatrix} \epsilon^{i_{1}}(v_{1}) & \ldots & \epsilon^{i_{1}}(v_{k}) \\ \vdots & \ddots & \vdots \\ \epsilon^{i_{k}}(v_{1}) & \ldots & \epsilon^{i_{k}}(v_{k}) \end{pmatrix} =$ $\begin{pmatrix} v_1^{i_1} & \dots & v_k^{i_1} \\ \vdots & \ddots & \vdots \\ v_1^{i_k} & \dots & v_k^{i_k} \end{pmatrix}$, that is, $\epsilon^l(v_1, \dots, v_k)$ is a minor of a matrix.
- These e¹ are called elementary alternating k-tensors or elementary k-forms. They are suppose to be (signed) volumes of some generalised parallelopipeds (as we shall see later on).
 For future use,

- Let V be a f.d. vector space with a basis e_1, \ldots, e_n . Let $\epsilon^1, \ldots, \epsilon^n$ be the dual basis for V^* . Given a multi-index $I = (i_1, \dots, i_k)$, consider the k-covariant tensor $\epsilon^{i}(v_{1},\ldots,v_{k}) = \det \begin{pmatrix} \epsilon^{i_{1}}(v_{1}) & \ldots & \epsilon^{i_{1}}(v_{k}) \\ \vdots & \ddots & \vdots \\ \epsilon^{i_{k}}(v_{1}) & \ldots & \epsilon^{i_{k}}(v_{k}) \end{pmatrix} =$ $\begin{pmatrix} v_1^{i_1} & \dots & v_k^{i_1} \\ \vdots & \ddots & \vdots \\ v_1^{i_k} & \dots & v_k^{i_k} \end{pmatrix}$, that is, $\epsilon^l(v_1, \dots, v_k)$ is a minor of a matrix.
- These ε^l are called elementary alternating k-tensors or elementary k-forms. They are suppose to be (signed) volumes of some generalised parallelopipeds (as we shall see later on).
- For future use, if I, J are multiindices of size k,

- Let V be a f.d. vector space with a basis e_1, \ldots, e_n . Let $\epsilon^1, \ldots, \epsilon^n$ be the dual basis for V^* . Given a multi-index $I = (i_1, \dots, i_k)$, consider the k-covariant tensor $\epsilon^{i}(v_{1},\ldots,v_{k}) = \det \begin{pmatrix} \epsilon^{i_{1}}(v_{1}) & \ldots & \epsilon^{i_{1}}(v_{k}) \\ \vdots & \ddots & \vdots \\ \epsilon^{i_{k}}(v_{1}) & \ldots & \epsilon^{i_{k}}(v_{k}) \end{pmatrix} =$ $\begin{pmatrix} v_1^{i_1} & \dots & v_k^{i_1} \\ \vdots & \ddots & \vdots \\ v_k^{i_k} & v_k^{i_k} \end{pmatrix}$, that is, $\epsilon^l(v_1, \dots, v_k)$ is a minor of a matrix.
- These ε^l are called elementary alternating k-tensors or elementary k-forms. They are suppose to be (signed) volumes of some generalised parallelopipeds (as we shall see later on).
- For future use, if I, J are multiindices of size k, then we define δ_J^I as a determinant

- Let V be a f.d. vector space with a basis e_1, \ldots, e_n . Let $\epsilon^1, \ldots, \epsilon^n$ be the dual basis for V^* . Given a multi-index $I = (i_1, \ldots, i_k)$, consider the k-covariant tensor $\epsilon^{i}(v_{1},\ldots,v_{k}) = \det \begin{pmatrix} \epsilon^{i_{1}}(v_{1}) & \ldots & \epsilon^{i_{1}}(v_{k}) \\ \vdots & \ddots & \vdots \\ \epsilon^{i_{k}}(v_{1}) & \ldots & \epsilon^{i_{k}}(v_{k}) \end{pmatrix} =$ $\begin{pmatrix} v_1^{i_1} & \dots & v_k^{i_1} \\ \vdots & \ddots & \vdots \\ v_r^{i_k} & \dots & v_r^{i_k} \end{pmatrix}$, that is, $\epsilon^l(v_1, \dots, v_k)$ is a minor of a matrix.
- These ε^l are called elementary alternating k-tensors or elementary k-forms. They are suppose to be (signed) volumes of some generalised parallelopipeds (as we shall see later on).
- For future use, if I, J are multiindices of size k, then we define δ'_J as a determinant of a matrix $A_{ab} = (\delta)^{i_a}_{j_b}$.

- Let V be a f.d. vector space with a basis e_1, \ldots, e_n . Let $\epsilon^1, \ldots, \epsilon^n$ be the dual basis for V^* . Given a multi-index $I = (i_1, \ldots, i_k)$, consider the k-covariant tensor $\epsilon^{i}(v_{1},\ldots,v_{k}) = \det \begin{pmatrix} \epsilon^{i_{1}}(v_{1}) & \ldots & \epsilon^{i_{1}}(v_{k}) \\ \vdots & \ddots & \vdots \\ \epsilon^{i_{k}}(v_{1}) & \ldots & \epsilon^{i_{k}}(v_{k}) \end{pmatrix} =$ $\begin{pmatrix} v_1^{i_1} & \dots & v_k^{i_1} \\ \vdots & \ddots & \vdots \\ v_r^{i_k} & \dots & v_r^{i_k} \end{pmatrix}$, that is, $\epsilon^l(v_1, \dots, v_k)$ is a minor of a matrix.
- These ε^l are called elementary alternating k-tensors or elementary k-forms. They are suppose to be (signed) volumes of some generalised parallelopipeds (as we shall see later on).
- For future use, if *I*, *J* are multiindices of size *k*, then we define δ_J^I as a determinant of a matrix $A_{ab} = (\delta)_{j_b}^{i_a}$. $\delta_J^I = sgn(\sigma)$ if $J = I_{\sigma}$ and no repetitions

- Let V be a f.d. vector space with a basis e_1, \ldots, e_n . Let $\epsilon^1, \ldots, \epsilon^n$ be the dual basis for V^* . Given a multi-index $I = (i_1, \ldots, i_k)$, consider the k-covariant tensor $\epsilon^{i}(v_{1},\ldots,v_{k}) = \det \begin{pmatrix} \epsilon^{i_{1}}(v_{1}) & \ldots & \epsilon^{i_{1}}(v_{k}) \\ \vdots & \ddots & \vdots \\ \epsilon^{i_{k}}(v_{1}) & \ldots & \epsilon^{i_{k}}(v_{k}) \end{pmatrix} =$ $\begin{pmatrix} v_1^{i_1} & \dots & v_k^{i_1} \\ \vdots & \ddots & \vdots \\ v_r^{i_k} & \dots & v_r^{i_k} \end{pmatrix}$, that is, $\epsilon^l(v_1, \dots, v_k)$ is a minor of a matrix.
- These ε^l are called elementary alternating k-tensors or elementary k-forms. They are suppose to be (signed) volumes of some generalised parallelopipeds (as we shall see later on).
- For future use, if *I*, *J* are multiindices of size *k*, then we define δ_J^I as a determinant of a matrix $A_{ab} = (\delta)_{jb}^{ia}$. $\delta_J^I = sgn(\sigma)$ if $J = I_{\sigma}$ and no repetitions and 0 otherwise.

Elementary alternating tensors-Properties

· (미) (한) (분) (분) (분) (한) ()

Elementary alternating tensors-Properties

• If I has a repeated index,

• If I has a repeated index, $\epsilon^{I} = 0$ (why?).

- If I has a repeated index, $\epsilon^{I} = 0$ (why?).
- If $J = I_{\sigma}$, then $\epsilon^{I} = sgn(\sigma)\epsilon^{J}$ (why?).

• If I has a repeated index, $\epsilon' = 0$ (why?).

• If
$$J = I_{\sigma}$$
, then $\epsilon^{I} = sgn(\sigma)\epsilon^{J}$ (why?).

•
$$\epsilon'(e_{j_1},\ldots,e_{j_k})=\delta'_J$$
 (why?).

(4日) (型) (当) (当) (1) (1)

• Consider the vector space $\Lambda^k(V^*)$ - the space of

Consider the vector space Λ^k(V^{*}) - the space of alternating covariant k-tensors/k-forms on V.

Consider the vector space Λ^k(V^{*}) - the space of alternating covariant k-tensors/k-forms on V. We want a basis of this space.

- Consider the vector space Λ^k(V^{*}) the space of alternating covariant k-tensors/k-forms on V. We want a basis of this space.
- Consider "increasing" multiindices, $i_1 < i_2 < \ldots$

- Consider the vector space Λ^k(V^{*}) the space of alternating covariant k-tensors/k-forms on V. We want a basis of this space.
- Consider "increasing" multiindices, $i_1 < i_2 < \dots$ For increasing-index-summation, we put a prime sign.

- Consider the vector space Λ^k(V^{*}) the space of alternating covariant k-tensors/k-forms on V. We want a basis of this space.
- Consider "increasing" multiindices, $i_1 < i_2 < \dots$ For increasing-index-summation, we put a prime sign.
- Theorem:

- Consider the vector space Λ^k(V^{*}) the space of alternating covariant k-tensors/k-forms on V. We want a basis of this space.
- Consider "increasing" multiindices, $i_1 < i_2 < \dots$ For increasing-index-summation, we put a prime sign.
- Theorem: Increasing-index elementary forms form a basis.

- Consider the vector space Λ^k(V^{*}) the space of alternating covariant k-tensors/k-forms on V. We want a basis of this space.
- Consider "increasing" multiindices, $i_1 < i_2 < \dots$ For increasing-index-summation, we put a prime sign.
- Theorem: Increasing-index elementary forms form a basis. As a consequence, $dim(\Lambda^k) = \binom{n}{k}$ when $k \le n$ and 0 otherwise.

- Consider the vector space Λ^k(V^{*}) the space of alternating covariant k-tensors/k-forms on V. We want a basis of this space.
- Consider "increasing" multiindices, $i_1 < i_2 < \dots$ For increasing-index-summation, we put a prime sign.
- Theorem: Increasing-index elementary forms form a basis. As a consequence, $dim(\Lambda^k) = \binom{n}{k}$ when $k \le n$ and 0 otherwise.
- Proof:

- Consider the vector space Λ^k(V^{*}) the space of alternating covariant k-tensors/k-forms on V. We want a basis of this space.
- Consider "increasing" multiindices, $i_1 < i_2 < \dots$ For increasing-index-summation, we put a prime sign.
- Theorem: Increasing-index elementary forms form a basis. As a consequence, $dim(\Lambda^k) = \binom{n}{k}$ when $k \le n$ and 0 otherwise.
- Proof: If k > n, then by previous results,

- Consider the vector space Λ^k(V^{*}) the space of alternating covariant k-tensors/k-forms on V. We want a basis of this space.
- Consider "increasing" multiindices, $i_1 < i_2 < \dots$ For increasing-index-summation, we put a prime sign.
- Theorem: Increasing-index elementary forms form a basis. As a consequence, $dim(\Lambda^k) = \binom{n}{k}$ when $k \le n$ and 0 otherwise.
- Proof: If k > n, then by previous results, Λ^k is the trivial vector space (why?)

- Consider the vector space Λ^k(V^{*}) the space of alternating covariant k-tensors/k-forms on V. We want a basis of this space.
- Consider "increasing" multiindices, $i_1 < i_2 < \dots$ For increasing-index-summation, we put a prime sign.
- Theorem: Increasing-index elementary forms form a basis. As a consequence, $dim(\Lambda^k) = \binom{n}{k}$ when $k \le n$ and 0 otherwise.
- Proof: If k > n, then by previous results, Λ^k is the trivial vector space (why?) So assume k ≤ n.

- Consider the vector space Λ^k(V^{*}) the space of alternating covariant k-tensors/k-forms on V. We want a basis of this space.
- Consider "increasing" multiindices, $i_1 < i_2 < \dots$ For increasing-index-summation, we put a prime sign.
- Theorem: Increasing-index elementary forms form a basis. As a consequence, $dim(\Lambda^k) = \binom{n}{k}$ when $k \le n$ and 0 otherwise.
- Proof: If k > n, then by previous results, Λ^k is the trivial vector space (why?) So assume k ≤ n.
- Firstly, the ϵ^{I} are linearly independent:

- Consider the vector space Λ^k(V^{*}) the space of alternating covariant k-tensors/k-forms on V. We want a basis of this space.
- Consider "increasing" multiindices, $i_1 < i_2 < \dots$ For increasing-index-summation, we put a prime sign.
- Theorem: Increasing-index elementary forms form a basis. As a consequence, $dim(\Lambda^k) = \binom{n}{k}$ when $k \le n$ and 0 otherwise.
- Proof: If k > n, then by previous results, Λ^k is the trivial vector space (why?) So assume k ≤ n.
- Firstly, the ϵ' are linearly independent: If $\sum' c_I \epsilon' = 0$, then

- Consider the vector space Λ^k(V^{*}) the space of alternating covariant k-tensors/k-forms on V. We want a basis of this space.
- Consider "increasing" multiindices, $i_1 < i_2 < \dots$ For increasing-index-summation, we put a prime sign.
- Theorem: Increasing-index elementary forms form a basis. As a consequence, $dim(\Lambda^k) = \binom{n}{k}$ when $k \le n$ and 0 otherwise.
- Proof: If k > n, then by previous results, Λ^k is the trivial vector space (why?) So assume k ≤ n.
- Firstly, the ϵ' are linearly independent: If $\sum' c_I \epsilon' = 0$, then consider $0 = \sum' c_I \epsilon' (e_{j_1}, e_{j_2}, ...) = \sum' c_I \delta'_J = c_J$ (why?)

- Consider the vector space Λ^k(V^{*}) the space of alternating covariant k-tensors/k-forms on V. We want a basis of this space.
- Consider "increasing" multiindices, $i_1 < i_2 < \dots$ For increasing-index-summation, we put a prime sign.
- Theorem: Increasing-index elementary forms form a basis. As a consequence, $dim(\Lambda^k) = \binom{n}{k}$ when $k \le n$ and 0 otherwise.
- Proof: If k > n, then by previous results, Λ^k is the trivial vector space (why?) So assume k ≤ n.
- Firstly, the ϵ' are linearly independent: If $\sum' c_I \epsilon' = 0$, then consider $0 = \sum' c_I \epsilon' (e_{j_1}, e_{j_2}, ...) = \sum' c_I \delta'_J = c_J$ (why?)
- Secondly, they span the space:

- Consider the vector space Λ^k(V^{*}) the space of alternating covariant k-tensors/k-forms on V. We want a basis of this space.
- Consider "increasing" multiindices, $i_1 < i_2 < \dots$ For increasing-index-summation, we put a prime sign.
- Theorem: Increasing-index elementary forms form a basis. As a consequence, $dim(\Lambda^k) = \binom{n}{k}$ when $k \le n$ and 0 otherwise.
- Proof: If k > n, then by previous results, Λ^k is the trivial vector space (why?) So assume k ≤ n.
- Firstly, the ϵ' are linearly independent: If $\sum' c_I \epsilon' = 0$, then consider $0 = \sum' c_I \epsilon' (e_{j_1}, e_{j_2}, ...) = \sum' c_I \delta'_J = c_J$ (why?)
- Secondly, they span the space: Let $\alpha \in \Lambda^k$.

- Consider the vector space Λ^k(V^{*}) the space of alternating covariant k-tensors/k-forms on V. We want a basis of this space.
- Consider "increasing" multiindices, $i_1 < i_2 < \dots$ For increasing-index-summation, we put a prime sign.
- Theorem: Increasing-index elementary forms form a basis. As a consequence, $dim(\Lambda^k) = \binom{n}{k}$ when $k \le n$ and 0 otherwise.
- Proof: If k > n, then by previous results, Λ^k is the trivial vector space (why?) So assume k ≤ n.
- Firstly, the ϵ' are linearly independent: If $\sum' c_I \epsilon' = 0$, then consider $0 = \sum' c_I \epsilon' (e_{j_1}, e_{j_2}, ...) = \sum' c_I \delta'_J = c_J$ (why?)
- Secondly, they span the space: Let $\alpha \in \Lambda^k$. Then let $\alpha_I = \alpha(e_{i_1}, \ldots)$.

- Consider the vector space Λ^k(V^{*}) the space of alternating covariant k-tensors/k-forms on V. We want a basis of this space.
- Consider "increasing" multiindices, $i_1 < i_2 < \dots$ For increasing-index-summation, we put a prime sign.
- Theorem: Increasing-index elementary forms form a basis. As a consequence, $dim(\Lambda^k) = \binom{n}{k}$ when $k \le n$ and 0 otherwise.
- Proof: If k > n, then by previous results, Λ^k is the trivial vector space (why?) So assume k ≤ n.
- Firstly, the ϵ' are linearly independent: If $\sum' c_I \epsilon' = 0$, then consider $0 = \sum' c_I \epsilon' (e_{j_1}, e_{j_2}, ...) = \sum' c_I \delta'_J = c_J$ (why?)
- Secondly, they span the space: Let $\alpha \in \Lambda^k$. Then let $\alpha_I = \alpha(e_{i_1}, \ldots)$. Thus $(\alpha \sum' \alpha_I \epsilon^I)(e_{j_1}, \ldots, e_{j_n}) = 0$ (why?) and

- Consider the vector space Λ^k(V^{*}) the space of alternating covariant k-tensors/k-forms on V. We want a basis of this space.
- Consider "increasing" multiindices, $i_1 < i_2 < \dots$ For increasing-index-summation, we put a prime sign.
- Theorem: Increasing-index elementary forms form a basis. As a consequence, $dim(\Lambda^k) = \binom{n}{k}$ when $k \le n$ and 0 otherwise.
- Proof: If k > n, then by previous results, Λ^k is the trivial vector space (why?) So assume k ≤ n.
- Firstly, the ϵ' are linearly independent: If $\sum' c_I \epsilon' = 0$, then consider $0 = \sum' c_I \epsilon' (e_{j_1}, e_{j_2}, \ldots) = \sum' c_I \delta'_J = c_J$ (why?)
- Secondly, they span the space: Let α ∈ Λ^k. Then let α_I = α(e_{i1},...). Thus (α Σ' α_Iε^I)(e_{j1},..., e_{jn}) = 0 (why?) and hence we are done (why?).