MA 229/MA 235 - Lecture 21

IISc

Recap

Recap

- Tensor products.

Recap

- Tensor products.
- Types of tensors, symmetric and alternating tensors (forms). Symmetrisation, Anti-symmetrisation.

Tensor bundles and tensor fields

Tensor bundles and tensor fields

- Let $T_{p}^{k, l} M:=T_{p} M \otimes T_{p} M \ldots T_{p} M \otimes T_{p}^{*} M \otimes T_{p}^{*} M \ldots$.

Tensor bundles and tensor fields

- Let $T_{p}^{k, l} M:=T_{p} M \otimes T_{p} M \ldots T_{p} M \otimes T_{p}^{*} M \otimes T_{p}^{*} M \ldots$
- The disjoint union $T^{k, l} M=\cup_{p \in M} T_{p}^{k, l} M$
- Let $T_{p}^{k, l} M:=T_{p} M \otimes T_{p} M \ldots T_{p} M \otimes T_{p}^{*} M \otimes T_{p}^{*} M \ldots$.
- The disjoint union $T^{k, l} M=\cup_{p \in M} T_{p}^{k, l} M$ can be given a vector bundle structure over M.
- Let $T_{p}^{k, l} M:=T_{p} M \otimes T_{p} M \ldots T_{p} M \otimes T_{p}^{*} M \otimes T_{p}^{*} M \ldots$.
- The disjoint union $T^{k, l} M=\cup_{p \in M} T_{p}^{k, l} M$ can be given a vector bundle structure over M. This bundle is called the
- Let $T_{p}^{k, l} M:=T_{p} M \otimes T_{p} M \ldots T_{p} M \otimes T_{p}^{*} M \otimes T_{p}^{*} M \ldots$.
- The disjoint union $T^{k, l} M=\cup_{p \in M} T_{p}^{k, l} M$ can be given a vector bundle structure over M. This bundle is called the bundle of mixed (k, I)-tensors.
- Let $T_{p}^{k, l} M:=T_{p} M \otimes T_{p} M \ldots T_{p} M \otimes T_{p}^{*} M \otimes T_{p}^{*} M \ldots$.
- The disjoint union $T^{k, l} M=\cup_{p \in M} T_{p}^{k, l} M$ can be given a vector bundle structure over M. This bundle is called the bundle of mixed (k, l)-tensors. Smooth sections of this bundle
- Let $T_{p}^{k, l} M:=T_{p} M \otimes T_{p} M \ldots T_{p} M \otimes T_{p}^{*} M \otimes T_{p}^{*} M \ldots$.
- The disjoint union $T^{k, l} M=\cup_{p \in M} T_{p}^{k, l} M$ can be given a vector bundle structure over M. This bundle is called the bundle of mixed ($k, /$)-tensors. Smooth sections of this bundle are called smooth (k, l)-tensor fields, i.e.,
- Let $T_{p}^{k, l} M:=T_{p} M \otimes T_{p} M \ldots T_{p} M \otimes T_{p}^{*} M \otimes T_{p}^{*} M \ldots$.
- The disjoint union $T^{k, l} M=\cup_{p \in M} T_{p}^{k, l} M$ can be given a vector bundle structure over M. This bundle is called the bundle of mixed ($k, /$)-tensors. Smooth sections of this bundle are called smooth (k, l)-tensor fields, i.e., smoothly varying tensor fields.
- Let $T_{p}^{k, l} M:=T_{p} M \otimes T_{p} M \ldots T_{p} M \otimes T_{p}^{*} M \otimes T_{p}^{*} M \ldots$.
- The disjoint union $T^{k, l} M=\cup_{p \in M} T_{p}^{k, l} M$ can be given a vector bundle structure over M. This bundle is called the bundle of mixed (k, l)-tensors. Smooth sections of this bundle are called smooth (k, l)-tensor fields, i.e., smoothly varying tensor fields.
- Indeed, consider the obvious projection map to M.
- Let $T_{p}^{k, l} M:=T_{p} M \otimes T_{p} M \ldots T_{p} M \otimes T_{p}^{*} M \otimes T_{p}^{*} M \ldots$.
- The disjoint union $T^{k, l} M=\cup_{p \in M} T_{p}^{k, l} M$ can be given a vector bundle structure over M. This bundle is called the bundle of mixed ($k, /$)-tensors. Smooth sections of this bundle are called smooth (k, l)-tensor fields, i.e., smoothly varying tensor fields.
- Indeed, consider the obvious projection map to M. Each fibre is a vector space.
- Let $T_{p}^{k, l} M:=T_{p} M \otimes T_{p} M \ldots T_{p} M \otimes T_{p}^{*} M \otimes T_{p}^{*} M \ldots$.
- The disjoint union $T^{k, l} M=\cup_{p \in M} T_{p}^{k, l} M$ can be given a vector bundle structure over M. This bundle is called the bundle of mixed (k, l)-tensors. Smooth sections of this bundle are called smooth (k, l)-tensor fields, i.e., smoothly varying tensor fields.
- Indeed, consider the obvious projection map to M. Each fibre is a vector space. Suppose (U, x) is a coordinate chart.
- Let $T_{p}^{k, l} M:=T_{p} M \otimes T_{p} M \ldots T_{p} M \otimes T_{p}^{*} M \otimes T_{p}^{*} M \ldots$.
- The disjoint union $T^{k, l} M=\cup_{p \in M} T_{p}^{k, l} M$ can be given a vector bundle structure over M. This bundle is called the bundle of mixed ($k, /$)-tensors. Smooth sections of this bundle are called smooth (k, l)-tensor fields, i.e., smoothly varying tensor fields.
- Indeed, consider the obvious projection map to M. Each fibre is a vector space. Suppose (U, x) is a coordinate chart.
Consider the basis $\frac{\partial}{\partial x^{i_{1}}} \otimes \ldots \otimes \frac{\partial}{\partial x^{i_{k}}} \otimes d x^{j_{1}} \otimes d x^{j_{1}}$.
- Let $T_{p}^{k, l} M:=T_{p} M \otimes T_{p} M \ldots T_{p} M \otimes T_{p}^{*} M \otimes T_{p}^{*} M \ldots$.
- The disjoint union $T^{k, l} M=\cup_{p \in M} T_{p}^{k, l} M$ can be given a vector bundle structure over M. This bundle is called the bundle of mixed ($k, /$)-tensors. Smooth sections of this bundle are called smooth (k, l)-tensor fields, i.e., smoothly varying tensor fields.
- Indeed, consider the obvious projection map to M. Each fibre is a vector space. Suppose (U, x) is a coordinate chart. Consider the basis $\frac{\partial}{\partial x^{i_{1}}} \otimes \ldots \otimes \frac{\partial}{\partial x^{i_{k}}} \otimes d x^{j_{1}} \otimes d x^{j_{l}}$. This basis gives a local trivialisation $\pi^{-1}(U) \rightarrow U \times \mathbb{R}^{n(k+I)}$.
- Let $T_{p}^{k, l} M:=T_{p} M \otimes T_{p} M \ldots T_{p} M \otimes T_{p}^{*} M \otimes T_{p}^{*} M \ldots$.
- The disjoint union $T^{k, l} M=\cup_{p \in M} T_{p}^{k, l} M$ can be given a vector bundle structure over M. This bundle is called the bundle of mixed ($k, /$)-tensors. Smooth sections of this bundle are called smooth (k, l)-tensor fields, i.e., smoothly varying tensor fields.
- Indeed, consider the obvious projection map to M. Each fibre is a vector space. Suppose (U, x) is a coordinate chart. Consider the basis $\frac{\partial}{\partial x^{i_{1}}} \otimes \ldots \otimes \frac{\partial}{\partial x^{i_{k}}} \otimes d x^{j_{1}} \otimes d x^{j_{l}}$. This basis gives a local trivialisation $\pi^{-1}(U) \rightarrow U \times \mathbb{R}^{n(k+l)}$. We declare the topology and manifold structure
- Let $T_{p}^{k, l} M:=T_{p} M \otimes T_{p} M \ldots T_{p} M \otimes T_{p}^{*} M \otimes T_{p}^{*} M \ldots$.
- The disjoint union $T^{k, l} M=\cup_{p \in M} T_{p}^{k, l} M$ can be given a vector bundle structure over M. This bundle is called the bundle of mixed ($k, /$)-tensors. Smooth sections of this bundle are called smooth (k, l)-tensor fields, i.e., smoothly varying tensor fields.
- Indeed, consider the obvious projection map to M. Each fibre is a vector space. Suppose (U, x) is a coordinate chart. Consider the basis $\frac{\partial}{\partial x^{i_{1}}} \otimes \ldots \otimes \frac{\partial}{\partial x^{i_{k}}} \otimes d x^{j_{1}} \otimes d x^{j_{1}}$. This basis gives a local trivialisation $\pi^{-1}(U) \rightarrow U \times \mathbb{R}^{n(k+l)}$. We declare the topology and manifold structure such that these local trivialisations are diffeomorphisms (as usual).
- Let $T_{p}^{k, l} M:=T_{p} M \otimes T_{p} M \ldots T_{p} M \otimes T_{p}^{*} M \otimes T_{p}^{*} M \ldots$
- The disjoint union $T^{k, l} M=\cup_{p \in M} T_{p}^{k, l} M$ can be given a vector bundle structure over M. This bundle is called the bundle of mixed ($k, /$)-tensors. Smooth sections of this bundle are called smooth (k, l)-tensor fields, i.e., smoothly varying tensor fields.
- Indeed, consider the obvious projection map to M. Each fibre is a vector space. Suppose (U, x) is a coordinate chart. Consider the basis $\frac{\partial}{\partial x^{i_{1}}} \otimes \ldots \otimes \frac{\partial}{\partial x^{i_{k}}} \otimes d x^{j_{1}} \otimes d x^{j_{l}}$. This basis gives a local trivialisation $\pi^{-1}(U) \rightarrow U \times \mathbb{R}^{n(k+l)}$. We declare the topology and manifold structure such that these local trivialisations are diffeomorphisms (as usual).
- As a consequence,
- Let $T_{p}^{k, l} M:=T_{p} M \otimes T_{p} M \ldots T_{p} M \otimes T_{p}^{*} M \otimes T_{p}^{*} M \ldots$
- The disjoint union $T^{k, l} M=\cup_{p \in M} T_{p}^{k, l} M$ can be given a vector bundle structure over M. This bundle is called the bundle of mixed ($k, /$)-tensors. Smooth sections of this bundle are called smooth (k, l)-tensor fields, i.e., smoothly varying tensor fields.
- Indeed, consider the obvious projection map to M. Each fibre is a vector space. Suppose (U, x) is a coordinate chart. Consider the basis $\frac{\partial}{\partial x^{i_{1}}} \otimes \ldots \otimes \frac{\partial}{\partial x^{i_{k}}} \otimes d x^{j_{1}} \otimes d x^{j_{l}}$. This basis gives a local trivialisation $\pi^{-1}(U) \rightarrow U \times \mathbb{R}^{n(k+l)}$. We declare the topology and manifold structure such that these local trivialisations are diffeomorphisms (as usual).
- As a consequence, a tensor field is smooth iff
- Let $T_{p}^{k, l} M:=T_{p} M \otimes T_{p} M \ldots T_{p} M \otimes T_{p}^{*} M \otimes T_{p}^{*} M \ldots$.
- The disjoint union $T^{k, l} M=\cup_{p \in M} T_{p}^{k, l} M$ can be given a vector bundle structure over M. This bundle is called the bundle of mixed (k, l)-tensors. Smooth sections of this bundle are called smooth (k, l)-tensor fields, i.e., smoothly varying tensor fields.
- Indeed, consider the obvious projection map to M. Each fibre is a vector space. Suppose (U, x) is a coordinate chart. Consider the basis $\frac{\partial}{\partial x^{i_{1}}} \otimes \ldots \otimes \frac{\partial}{\partial x^{i k}} \otimes d x^{j_{1}} \otimes d x^{j_{1}}$. This basis gives a local trivialisation $\pi^{-1}(U) \rightarrow U \times \mathbb{R}^{n(k+l)}$. We declare the topology and manifold structure such that these local trivialisations are diffeomorphisms (as usual).
- As a consequence, a tensor field is smooth iff the coefficients in this trivialisation are smooth functions.

Riemannian metrics

Riemannian metrics

- An example of a

Riemannian metrics

- An example of a covariant symmetric 2-tensor field

Riemannian metrics

- An example of a covariant symmetric 2-tensor field is a Riemannian metric:

Riemannian metrics

- An example of a covariant symmetric 2-tensor field is a Riemannian metric: A Riemannian metric g on a smooth manifold M

Riemannian metrics

- An example of a covariant symmetric 2-tensor field is a Riemannian metric: A Riemannian metric g on a smooth manifold M is a covariant symmetric 2-tensor field that
- An example of a covariant symmetric 2-tensor field is a Riemannian metric: A Riemannian metric g on a smooth manifold M is a covariant symmetric 2-tensor field that defines an inner product on every tangent space.
- An example of a covariant symmetric 2-tensor field is a Riemannian metric: A Riemannian metric g on a smooth manifold M is a covariant symmetric 2-tensor field that defines an inner product on every tangent space.
- Example:

Riemannian metrics

- An example of a covariant symmetric 2-tensor field is a Riemannian metric: A Riemannian metric g on a smooth manifold M is a covariant symmetric 2-tensor field that defines an inner product on every tangent space.
- Example: The Euclidean metric $g=\left(d x^{1}\right) \otimes\left(d x^{1}\right)+\ldots+\left(d x^{n}\right) \otimes\left(d x^{n}\right)$ on \mathbb{R}^{n}.

Riemannian metrics

- An example of a covariant symmetric 2-tensor field is a Riemannian metric: A Riemannian metric g on a smooth manifold M is a covariant symmetric 2-tensor field that defines an inner product on every tangent space.
- Example: The Euclidean metric $g=\left(d x^{1}\right) \otimes\left(d x^{1}\right)+\ldots+\left(d x^{n}\right) \otimes\left(d x^{n}\right)$ on \mathbb{R}^{n}. A metric on $(0, \infty) \times(0,2 \pi)$:

Riemannian metrics

- An example of a covariant symmetric 2-tensor field is a Riemannian metric: A Riemannian metric g on a smooth manifold M is a covariant symmetric 2-tensor field that defines an inner product on every tangent space.
- Example: The Euclidean metric $g=\left(d x^{1}\right) \otimes\left(d x^{1}\right)+\ldots+\left(d x^{n}\right) \otimes\left(d x^{n}\right)$ on \mathbb{R}^{n}. A metric on $(0, \infty) \times(0,2 \pi): g=d r \otimes d r+r^{2} d \theta \otimes d \theta$.

Riemannian metrics

- An example of a covariant symmetric 2-tensor field is a Riemannian metric: A Riemannian metric g on a smooth manifold M is a covariant symmetric 2-tensor field that defines an inner product on every tangent space.
- Example: The Euclidean metric $g=\left(d x^{1}\right) \otimes\left(d x^{1}\right)+\ldots+\left(d x^{n}\right) \otimes\left(d x^{n}\right)$ on \mathbb{R}^{n}. A metric on $(0, \infty) \times(0,2 \pi): g=d r \otimes d r+r^{2} d \theta \otimes d \theta$. Note that this metric is

Riemannian metrics

- An example of a covariant symmetric 2-tensor field is a Riemannian metric: A Riemannian metric g on a smooth manifold M is a covariant symmetric 2-tensor field that defines an inner product on every tangent space.
- Example: The Euclidean metric $g=\left(d x^{1}\right) \otimes\left(d x^{1}\right)+\ldots+\left(d x^{n}\right) \otimes\left(d x^{n}\right)$ on \mathbb{R}^{n}. A metric on $(0, \infty) \times(0,2 \pi): g=d r \otimes d r+r^{2} d \theta \otimes d \theta$. Note that this metric is basically the Euclidean metric on \mathbb{R}^{2}

Riemannian metrics

- An example of a covariant symmetric 2-tensor field is a Riemannian metric: A Riemannian metric g on a smooth manifold M is a covariant symmetric 2-tensor field that defines an inner product on every tangent space.
- Example: The Euclidean metric $g=\left(d x^{1}\right) \otimes\left(d x^{1}\right)+\ldots+\left(d x^{n}\right) \otimes\left(d x^{n}\right)$ on \mathbb{R}^{n}. A metric on $(0, \infty) \times(0,2 \pi): g=d r \otimes d r+r^{2} d \theta \otimes d \theta$. Note that this metric is basically the Euclidean metric on \mathbb{R}^{2} but in different coordinates!

Riemannian metrics

- An example of a covariant symmetric 2-tensor field is a Riemannian metric: A Riemannian metric g on a smooth manifold M is a covariant symmetric 2-tensor field that defines an inner product on every tangent space.
- Example: The Euclidean metric $g=\left(d x^{1}\right) \otimes\left(d x^{1}\right)+\ldots+\left(d x^{n}\right) \otimes\left(d x^{n}\right)$ on \mathbb{R}^{n}. A metric on $(0, \infty) \times(0,2 \pi): g=d r \otimes d r+r^{2} d \theta \otimes d \theta$. Note that this metric is basically the Euclidean metric on \mathbb{R}^{2} but in different coordinates! This raises a question:

Riemannian metrics

- An example of a covariant symmetric 2-tensor field is a Riemannian metric: A Riemannian metric g on a smooth manifold M is a covariant symmetric 2-tensor field that defines an inner product on every tangent space.
- Example: The Euclidean metric $g=\left(d x^{1}\right) \otimes\left(d x^{1}\right)+\ldots+\left(d x^{n}\right) \otimes\left(d x^{n}\right)$ on \mathbb{R}^{n}. A metric on $(0, \infty) \times(0,2 \pi): g=d r \otimes d r+r^{2} d \theta \otimes d \theta$. Note that this metric is basically the Euclidean metric on \mathbb{R}^{2} but in different coordinates! This raises a question: Is every metric on \mathbb{R}^{n} secretly the Euclidean metric locally in some coordinate chart?

Riemannian metrics

- An example of a covariant symmetric 2-tensor field is a Riemannian metric: A Riemannian metric g on a smooth manifold M is a covariant symmetric 2-tensor field that defines an inner product on every tangent space.
- Example: The Euclidean metric $g=\left(d x^{1}\right) \otimes\left(d x^{1}\right)+\ldots+\left(d x^{n}\right) \otimes\left(d x^{n}\right)$ on \mathbb{R}^{n}. A metric on $(0, \infty) \times(0,2 \pi): g=d r \otimes d r+r^{2} d \theta \otimes d \theta$. Note that this metric is basically the Euclidean metric on \mathbb{R}^{2} but in different coordinates! This raises a question: Is every metric on \mathbb{R}^{n} secretly the Euclidean metric locally in some coordinate chart? The answer is NO.
- An example of a covariant symmetric 2-tensor field is a Riemannian metric: A Riemannian metric g on a smooth manifold M is a covariant symmetric 2-tensor field that defines an inner product on every tangent space.
- Example: The Euclidean metric
$g=\left(d x^{1}\right) \otimes\left(d x^{1}\right)+\ldots+\left(d x^{n}\right) \otimes\left(d x^{n}\right)$ on \mathbb{R}^{n}. A metric on $(0, \infty) \times(0,2 \pi): g=d r \otimes d r+r^{2} d \theta \otimes d \theta$. Note that this metric is basically the Euclidean metric on \mathbb{R}^{2} but in different coordinates! This raises a question: Is every metric on \mathbb{R}^{n} secretly the Euclidean metric locally in some coordinate chart? The answer is NO. There is an obstruction called the Riemann curvature tensor.

Existence of Riemannian metrics

Existence of Riemannian metrics

- Theorem:

Existence of Riemannian metrics

- Theorem: Every smooth manifold (with or without boundary) admits a Riemannian metric.

Existence of Riemannian metrics

- Theorem: Every smooth manifold (with or without boundary) admits a Riemannian metric.
- Proof:

Existence of Riemannian metrics

- Theorem: Every smooth manifold (with or without boundary) admits a Riemannian metric.
- Proof: Cover the manifold by coordinate charts $\left(U_{\alpha}, x_{\alpha}\right)$.

Existence of Riemannian metrics

- Theorem: Every smooth manifold (with or without boundary) admits a Riemannian metric.
- Proof: Cover the manifold by coordinate charts $\left(U_{\alpha}, x_{\alpha}\right)$. Consider a partition-of-unity ρ_{α} subordinate to this cover.

Existence of Riemannian metrics

- Theorem: Every smooth manifold (with or without boundary) admits a Riemannian metric.
- Proof: Cover the manifold by coordinate charts $\left(U_{\alpha}, x_{\alpha}\right)$. Consider a partition-of-unity ρ_{α} subordinate to this cover. Now take the locally defined Riemannian metric

$$
g_{\alpha}=d x_{\alpha}^{1} \otimes d x_{\alpha}^{1}+\ldots+d x_{\alpha}^{n} \otimes d x_{\alpha}^{n}
$$

Existence of Riemannian metrics

- Theorem: Every smooth manifold (with or without boundary) admits a Riemannian metric.
- Proof: Cover the manifold by coordinate charts $\left(U_{\alpha}, x_{\alpha}\right)$. Consider a partition-of-unity ρ_{α} subordinate to this cover. Now take the locally defined Riemannian metric $g_{\alpha}=d x_{\alpha}^{1} \otimes d x_{\alpha}^{1}+\ldots+d x_{\alpha}^{n} \otimes d x_{\alpha}^{n}$ and define $g=\sum_{\alpha} \rho_{\alpha} g_{\alpha}$.

Existence of Riemannian metrics

- Theorem: Every smooth manifold (with or without boundary) admits a Riemannian metric.
- Proof: Cover the manifold by coordinate charts $\left(U_{\alpha}, x_{\alpha}\right)$. Consider a partition-of-unity ρ_{α} subordinate to this cover. Now take the locally defined Riemannian metric $g_{\alpha}=d x_{\alpha}^{1} \otimes d x_{\alpha}^{1}+\ldots+d x_{\alpha}^{n} \otimes d x_{\alpha}^{n}$ and define $g=\sum_{\alpha} \rho_{\alpha} g_{\alpha}$. This sum gives a well-defined smooth covariant symmetric 2-tensor.

Existence of Riemannian metrics

- Theorem: Every smooth manifold (with or without boundary) admits a Riemannian metric.
- Proof: Cover the manifold by coordinate charts $\left(U_{\alpha}, x_{\alpha}\right)$. Consider a partition-of-unity ρ_{α} subordinate to this cover. Now take the locally defined Riemannian metric $g_{\alpha}=d x_{\alpha}^{1} \otimes d x_{\alpha}^{1}+\ldots+d x_{\alpha}^{n} \otimes d x_{\alpha}^{n}$ and define $g=\sum_{\alpha} \rho_{\alpha} g_{\alpha}$. This sum gives a well-defined smooth covariant symmetric 2-tensor. It is positive-definite because

Existence of Riemannian metrics

- Theorem: Every smooth manifold (with or without boundary) admits a Riemannian metric.
- Proof: Cover the manifold by coordinate charts $\left(U_{\alpha}, x_{\alpha}\right)$. Consider a partition-of-unity ρ_{α} subordinate to this cover. Now take the locally defined Riemannian metric $g_{\alpha}=d x_{\alpha}^{1} \otimes d x_{\alpha}^{1}+\ldots+d x_{\alpha}^{n} \otimes d x_{\alpha}^{n}$ and define $g=\sum_{\alpha} \rho_{\alpha} g_{\alpha}$. This sum gives a well-defined smooth covariant symmetric 2-tensor. It is positive-definite because at least one of the ρ_{α} is non-zero at every point.

Existence of Riemannian metrics

- Theorem: Every smooth manifold (with or without boundary) admits a Riemannian metric.
- Proof: Cover the manifold by coordinate charts $\left(U_{\alpha}, x_{\alpha}\right)$. Consider a partition-of-unity ρ_{α} subordinate to this cover. Now take the locally defined Riemannian metric $g_{\alpha}=d x_{\alpha}^{1} \otimes d x_{\alpha}^{1}+\ldots+d x_{\alpha}^{n} \otimes d x_{\alpha}^{n}$ and define $g=\sum_{\alpha} \rho_{\alpha} g_{\alpha}$. This sum gives a well-defined smooth covariant symmetric 2-tensor. It is positive-definite because at least one of the ρ_{α} is non-zero at every point.
- Using Riemannian metrics, one can measure distances and so on.

Existence of Riemannian metrics

- Theorem: Every smooth manifold (with or without boundary) admits a Riemannian metric.
- Proof: Cover the manifold by coordinate charts $\left(U_{\alpha}, x_{\alpha}\right)$. Consider a partition-of-unity ρ_{α} subordinate to this cover. Now take the locally defined Riemannian metric $g_{\alpha}=d x_{\alpha}^{1} \otimes d x_{\alpha}^{1}+\ldots+d x_{\alpha}^{n} \otimes d x_{\alpha}^{n}$ and define $g=\sum_{\alpha} \rho_{\alpha} g_{\alpha}$. This sum gives a well-defined smooth covariant symmetric 2-tensor. It is positive-definite because at least one of the ρ_{α} is non-zero at every point.
- Using Riemannian metrics, one can measure distances and so on. One can also define the notion of an isomorphism in this category (Isometry).

More about alternating tensors

More about alternating tensors

Returning to alternating tensors,

More about alternating tensors

Returning to alternating tensors, here is a useful result:

More about alternating tensors

Returning to alternating tensors, here is a useful result: α is alternating iff

More about alternating tensors

Returning to alternating tensors, here is a useful result: α is alternating iff $\alpha\left(v_{1}, \ldots, v_{k}\right)=0$ whenever the collection v_{1}, \ldots, v_{k} is linearly dependent:

More about alternating tensors

Returning to alternating tensors, here is a useful result: α is alternating iff $\alpha\left(v_{1}, \ldots, v_{k}\right)=0$ whenever the collection v_{1}, \ldots, v_{k} is linearly dependent: Indeed, if the latter holds,

More about alternating tensors

Returning to alternating tensors, here is a useful result: α is alternating iff $\alpha\left(v_{1}, \ldots, v_{k}\right)=0$ whenever the collection v_{1}, \ldots, v_{k} is linearly dependent: Indeed, if the latter holds, in particular,

More about alternating tensors

Returning to alternating tensors, here is a useful result: α is alternating iff $\alpha\left(v_{1}, \ldots, v_{k}\right)=0$ whenever the collection v_{1}, \ldots, v_{k} is linearly dependent: Indeed, if the latter holds, in particular, if two of the v_{i} coincide,

More about alternating tensors

Returning to alternating tensors, here is a useful result: α is alternating iff $\alpha\left(v_{1}, \ldots, v_{k}\right)=0$ whenever the collection v_{1}, \ldots, v_{k} is linearly dependent: Indeed, if the latter holds, in particular, if two of the v_{i} coincide, $\alpha\left(v_{1}, \ldots, v_{k}\right)=0$.

More about alternating tensors

Returning to alternating tensors, here is a useful result: α is alternating iff $\alpha\left(v_{1}, \ldots, v_{k}\right)=0$ whenever the collection v_{1}, \ldots, v_{k} is linearly dependent: Indeed, if the latter holds, in particular, if two of the v_{i} coincide, $\alpha\left(v_{1}, \ldots, v_{k}\right)=0$. This means, $\alpha\left(v_{1}+v_{i}, \ldots, v_{i}+v_{1}, \ldots,\right)=0$.

More about alternating tensors

Returning to alternating tensors, here is a useful result: α is alternating iff $\alpha\left(v_{1}, \ldots, v_{k}\right)=0$ whenever the collection v_{1}, \ldots, v_{k} is linearly dependent: Indeed, if the latter holds, in particular, if two of the v_{i} coincide, $\alpha\left(v_{1}, \ldots, v_{k}\right)=0$. This means, $\alpha\left(v_{1}+v_{i}, \ldots, v_{i}+v_{1}, \ldots,\right)=0$. Thus, $\alpha\left(v_{1}, \ldots, v_{i}+v_{1}, \ldots\right)+\alpha\left(v_{i}, \ldots, v_{i}+v_{1}, \ldots\right)=0$.

More about alternating tensors

Returning to alternating tensors, here is a useful result: α is alternating iff $\alpha\left(v_{1}, \ldots, v_{k}\right)=0$ whenever the collection v_{1}, \ldots, v_{k} is linearly dependent: Indeed, if the latter holds, in particular, if two of the v_{i} coincide, $\alpha\left(v_{1}, \ldots, v_{k}\right)=0$. This means, $\alpha\left(v_{1}+v_{i}, \ldots, v_{i}+v_{1}, \ldots,\right)=0$. Thus, $\alpha\left(v_{1}, \ldots, v_{i}+v_{1}, \ldots\right)+\alpha\left(v_{i}, \ldots, v_{i}+v_{1}, \ldots\right)=0$. Thus $\alpha\left(v_{1}, \ldots, v_{i}, \ldots\right)=-\alpha\left(v_{i}, \ldots, v_{1}, \ldots\right)$ and hence α is alternating.

More about alternating tensors

Returning to alternating tensors, here is a useful result: α is alternating iff $\alpha\left(v_{1}, \ldots, v_{k}\right)=0$ whenever the collection v_{1}, \ldots, v_{k} is linearly dependent: Indeed, if the latter holds, in particular, if two of the v_{i} coincide, $\alpha\left(v_{1}, \ldots, v_{k}\right)=0$. This means, $\alpha\left(v_{1}+v_{i}, \ldots, v_{i}+v_{1}, \ldots,\right)=0$. Thus, $\alpha\left(v_{1}, \ldots, v_{i}+v_{1}, \ldots\right)+\alpha\left(v_{i}, \ldots, v_{i}+v_{1}, \ldots\right)=0$. Thus $\alpha\left(v_{1}, \ldots, v_{i}, \ldots\right)=-\alpha\left(v_{i}, \ldots, v_{1}, \ldots\right)$ and hence α is alternating. Conversely, if α is alternating,

More about alternating tensors

Returning to alternating tensors, here is a useful result: α is alternating iff $\alpha\left(v_{1}, \ldots, v_{k}\right)=0$ whenever the collection v_{1}, \ldots, v_{k} is linearly dependent: Indeed, if the latter holds, in particular, if two of the v_{i} coincide, $\alpha\left(v_{1}, \ldots, v_{k}\right)=0$. This means, $\alpha\left(v_{1}+v_{i}, \ldots, v_{i}+v_{1}, \ldots,\right)=0$. Thus, $\alpha\left(v_{1}, \ldots, v_{i}+v_{1}, \ldots\right)+\alpha\left(v_{i}, \ldots, v_{i}+v_{1}, \ldots\right)=0$. Thus $\alpha\left(v_{1}, \ldots, v_{i}, \ldots\right)=-\alpha\left(v_{i}, \ldots, v_{1}, \ldots\right)$ and hence α is alternating. Conversely, if α is alternating, and $\sum_{i} c_{i} v_{i}=0$ with $c_{1} \neq 0$ WLOG,

More about alternating tensors

Returning to alternating tensors, here is a useful result: α is alternating iff $\alpha\left(v_{1}, \ldots, v_{k}\right)=0$ whenever the collection v_{1}, \ldots, v_{k} is linearly dependent: Indeed, if the latter holds, in particular, if two of the v_{i} coincide, $\alpha\left(v_{1}, \ldots, v_{k}\right)=0$. This means, $\alpha\left(v_{1}+v_{i}, \ldots, v_{i}+v_{1}, \ldots,\right)=0$. Thus, $\alpha\left(v_{1}, \ldots, v_{i}+v_{1}, \ldots\right)+\alpha\left(v_{i}, \ldots, v_{i}+v_{1}, \ldots\right)=0$. Thus $\alpha\left(v_{1}, \ldots, v_{i}, \ldots\right)=-\alpha\left(v_{i}, \ldots, v_{1}, \ldots\right)$ and hence α is alternating. Conversely, if α is alternating, and $\sum_{i} c_{i} v_{i}=0$ with $c_{1} \neq 0$ WLOG, then firstly,

More about alternating tensors

Returning to alternating tensors, here is a useful result: α is alternating iff $\alpha\left(v_{1}, \ldots, v_{k}\right)=0$ whenever the collection v_{1}, \ldots, v_{k} is linearly dependent: Indeed, if the latter holds, in particular, if two of the v_{i} coincide, $\alpha\left(v_{1}, \ldots, v_{k}\right)=0$. This means, $\alpha\left(v_{1}+v_{i}, \ldots, v_{i}+v_{1}, \ldots,\right)=0$. Thus, $\alpha\left(v_{1}, \ldots, v_{i}+v_{1}, \ldots\right)+\alpha\left(v_{i}, \ldots, v_{i}+v_{1}, \ldots\right)=0$. Thus $\alpha\left(v_{1}, \ldots, v_{i}, \ldots\right)=-\alpha\left(v_{i}, \ldots, v_{1}, \ldots\right)$ and hence α is alternating. Conversely, if α is alternating, and $\sum_{i} c_{i} v_{i}=0$ with $c_{1} \neq 0$ WLOG, then firstly, $\alpha\left(v_{1}, \ldots, v_{k}\right)=0$ whenever two of the v_{i} coincide (why?)

More about alternating tensors

Returning to alternating tensors, here is a useful result: α is alternating iff $\alpha\left(v_{1}, \ldots, v_{k}\right)=0$ whenever the collection v_{1}, \ldots, v_{k} is linearly dependent: Indeed, if the latter holds, in particular, if two of the v_{i} coincide, $\alpha\left(v_{1}, \ldots, v_{k}\right)=0$. This means, $\alpha\left(v_{1}+v_{i}, \ldots, v_{i}+v_{1}, \ldots,\right)=0$. Thus, $\alpha\left(v_{1}, \ldots, v_{i}+v_{1}, \ldots\right)+\alpha\left(v_{i}, \ldots, v_{i}+v_{1}, \ldots\right)=0$. Thus $\alpha\left(v_{1}, \ldots, v_{i}, \ldots\right)=-\alpha\left(v_{i}, \ldots, v_{1}, \ldots\right)$ and hence α is alternating.
Conversely, if α is alternating, and $\sum_{i} c_{i} v_{i}=0$ with $c_{1} \neq 0$ WLOG, then firstly, $\alpha\left(v_{1}, \ldots, v_{k}\right)=0$ whenever two of the v_{i} coincide (why?) and hence $\alpha\left(c_{1} v_{1}, \ldots, v_{k}\right)=\alpha\left(c_{1} v_{1}+c_{2} v_{2}+\ldots, v_{2}, \ldots\right)=0(w h y ?)$

More about alternating tensors

Returning to alternating tensors, here is a useful result: α is alternating iff $\alpha\left(v_{1}, \ldots, v_{k}\right)=0$ whenever the collection v_{1}, \ldots, v_{k} is linearly dependent: Indeed, if the latter holds, in particular, if two of the v_{i} coincide, $\alpha\left(v_{1}, \ldots, v_{k}\right)=0$. This means, $\alpha\left(v_{1}+v_{i}, \ldots, v_{i}+v_{1}, \ldots,\right)=0$. Thus, $\alpha\left(v_{1}, \ldots, v_{i}+v_{1}, \ldots\right)+\alpha\left(v_{i}, \ldots, v_{i}+v_{1}, \ldots\right)=0$. Thus $\alpha\left(v_{1}, \ldots, v_{i}, \ldots\right)=-\alpha\left(v_{i}, \ldots, v_{1}, \ldots\right)$ and hence α is alternating. Conversely, if α is alternating, and $\sum_{i} c_{i} v_{i}=0$ with $c_{1} \neq 0$ WLOG, then firstly, $\alpha\left(v_{1}, \ldots, v_{k}\right)=0$ whenever two of the v_{i} coincide (why?) and hence $\alpha\left(c_{1} v_{1}, \ldots, v_{k}\right)=\alpha\left(c_{1} v_{1}+c_{2} v_{2}+\ldots, v_{2}, \ldots\right)=0$ (why?) Thus $\alpha\left(v_{1}, \ldots, v_{k}\right)=0$ whenever they are linearly dependent.

Elementary alternating tensors (to get a basis)

Elementary alternating tensors (to get a basis)

- Let V be a f.d. vector space

Elementary alternating tensors (to get a basis)

- Let V be a f.d. vector space with a basis e_{1}, \ldots, e_{n}.

Elementary alternating tensors (to get a basis)

- Let V be a f.d. vector space with a basis e_{1}, \ldots, e_{n}. Let $\epsilon^{1}, \ldots, \epsilon^{n}$ be the dual basis for V^{*}.
- Let V be a f.d. vector space with a basis e_{1}, \ldots, e_{n}. Let $\epsilon^{1}, \ldots, \epsilon^{n}$ be the dual basis for V^{*}. Given a multi-index $I=\left(i_{1}, \ldots, i_{k}\right)$,
- Let V be a f.d. vector space with a basis e_{1}, \ldots, e_{n}. Let $\epsilon^{1}, \ldots, \epsilon^{n}$ be the dual basis for V^{*}. Given a multi-index $I=\left(i_{1}, \ldots, i_{k}\right)$, consider the k-covariant tensor
- Let V be a f.d. vector space with a basis e_{1}, \ldots, e_{n}. Let $\epsilon^{1}, \ldots, \epsilon^{n}$ be the dual basis for V^{*}. Given a multi-index $I=\left(i_{1}, \ldots, i_{k}\right)$, consider the k-covariant tensor $\epsilon^{\prime}\left(v_{1}, \ldots, v_{k}\right)=\operatorname{det}\left(\begin{array}{ccc}\epsilon^{i_{1}}\left(v_{1}\right) & \ldots & \epsilon^{i_{1}}\left(v_{k}\right) \\ \vdots & \ddots & \vdots \\ \epsilon^{i_{k}}\left(v_{1}\right) & \ldots & \epsilon^{i_{k}}\left(v_{k}\right)\end{array}\right)=$ $\left(\begin{array}{ccc}v_{1}^{i_{1}} & \ldots & v_{k}^{i_{1}} \\ \vdots & \ddots & \vdots \\ v_{1}^{i_{k}} & \ldots & v_{k}^{i_{k}}\end{array}\right)$, that is,
- Let V be a f.d. vector space with a basis e_{1}, \ldots, e_{n}. Let $\epsilon^{1}, \ldots, \epsilon^{n}$ be the dual basis for V^{*}. Given a multi-index $I=\left(i_{1}, \ldots, i_{k}\right)$, consider the k-covariant tensor $\epsilon^{\prime}\left(v_{1}, \ldots, v_{k}\right)=\operatorname{det}\left(\begin{array}{ccc}\epsilon^{i_{1}}\left(v_{1}\right) & \ldots & \epsilon^{i_{1}}\left(v_{k}\right) \\ \vdots & \ddots & \vdots \\ \epsilon^{i_{k}}\left(v_{1}\right) & \ldots & \epsilon^{i_{k}}\left(v_{k}\right)\end{array}\right)=$ $\left(\begin{array}{ccc}v_{1}^{i_{1}} & \ldots & v_{k}^{i_{1}} \\ \vdots & \ddots & \vdots \\ v_{1}^{i_{k}} & \ldots & v_{k}^{i_{k}}\end{array}\right)$, that is, $\epsilon^{\prime}\left(v_{1}, \ldots, v_{k}\right)$ is a
- Let V be a f.d. vector space with a basis e_{1}, \ldots, e_{n}. Let $\epsilon^{1}, \ldots, \epsilon^{n}$ be the dual basis for V^{*}. Given a multi-index $I=\left(i_{1}, \ldots, i_{k}\right)$, consider the k-covariant tensor $\epsilon^{\prime}\left(v_{1}, \ldots, v_{k}\right)=\operatorname{det}\left(\begin{array}{ccc}\epsilon^{i_{1}}\left(v_{1}\right) & \ldots & \epsilon^{i_{1}}\left(v_{k}\right) \\ \vdots & \ddots & \vdots \\ \epsilon^{i_{k}}\left(v_{1}\right) & \ldots & \epsilon^{i_{k}}\left(v_{k}\right)\end{array}\right)=$
$\left(\begin{array}{ccc}v_{1}^{i_{1}} & \ldots & v_{k}^{i_{1}} \\ \vdots & \ddots & \vdots \\ v_{1}^{i_{k}} & \ldots & v_{k}^{i_{k}}\end{array}\right)$, that is, $\epsilon^{\prime}\left(v_{1}, \ldots, v_{k}\right)$ is a minor of a matrix.
- Let V be a f.d. vector space with a basis e_{1}, \ldots, e_{n}. Let $\epsilon^{1}, \ldots, \epsilon^{n}$ be the dual basis for V^{*}. Given a multi-index $I=\left(i_{1}, \ldots, i_{k}\right)$, consider the k-covariant tensor $\epsilon^{\prime}\left(v_{1}, \ldots, v_{k}\right)=\operatorname{det}\left(\begin{array}{ccc}\epsilon^{i_{1}}\left(v_{1}\right) & \ldots & \epsilon^{i_{1}}\left(v_{k}\right) \\ \vdots & \ddots & \vdots \\ \epsilon^{i_{k}}\left(v_{1}\right) & \ldots & \epsilon^{i_{k}}\left(v_{k}\right)\end{array}\right)=$
$\left(\begin{array}{ccc}v_{1}^{i_{1}} & \ldots & v_{k}^{i_{1}} \\ \vdots & \ddots & \vdots \\ v_{1}^{i_{k}} & \ldots & v_{k}^{i_{k}}\end{array}\right)$, that is, $\epsilon^{\prime}\left(v_{1}, \ldots, v_{k}\right)$ is a minor of a matrix.
- These ϵ^{l} are called elementary alternating k-tensors or
- Let V be a f.d. vector space with a basis e_{1}, \ldots, e_{n}. Let $\epsilon^{1}, \ldots, \epsilon^{n}$ be the dual basis for V^{*}. Given a multi-index $I=\left(i_{1}, \ldots, i_{k}\right)$, consider the k-covariant tensor $\epsilon^{\prime}\left(v_{1}, \ldots, v_{k}\right)=\operatorname{det}\left(\begin{array}{ccc}\epsilon^{i_{1}}\left(v_{1}\right) & \ldots & \epsilon^{i_{1}}\left(v_{k}\right) \\ \vdots & \ddots & \vdots \\ \epsilon^{i_{k}}\left(v_{1}\right) & \ldots & \epsilon^{i_{k}}\left(v_{k}\right)\end{array}\right)=$
$\left(\begin{array}{ccc}v_{1}^{i_{1}} & \ldots & v_{k}^{i_{1}} \\ \vdots & \ddots & \vdots \\ v_{1}^{i_{k}} & \ldots & v_{k}^{i_{k}}\end{array}\right)$, that is, $\epsilon^{\prime}\left(v_{1}, \ldots, v_{k}\right)$ is a minor of a matrix.
- These ϵ^{l} are called elementary alternating k-tensors or elementary k-forms.
- Let V be a f.d. vector space with a basis e_{1}, \ldots, e_{n}. Let $\epsilon^{1}, \ldots, \epsilon^{n}$ be the dual basis for V^{*}. Given a multi-index $I=\left(i_{1}, \ldots, i_{k}\right)$, consider the k-covariant tensor $\epsilon^{\prime}\left(v_{1}, \ldots, v_{k}\right)=\operatorname{det}\left(\begin{array}{ccc}\epsilon^{i_{1}}\left(v_{1}\right) & \ldots & \epsilon^{i_{1}}\left(v_{k}\right) \\ \vdots & \ddots & \vdots \\ \epsilon^{i_{k}}\left(v_{1}\right) & \ldots & \epsilon^{i_{k}}\left(v_{k}\right)\end{array}\right)=$ $\left(\begin{array}{ccc}v_{1}^{i_{1}} & \ldots & v_{k}^{i_{1}} \\ \vdots & \ddots & \vdots \\ v_{1}^{i_{k}} & \ldots & v_{k}^{i_{k}}\end{array}\right)$, that is, $\epsilon^{\prime}\left(v_{1}, \ldots, v_{k}\right)$ is a minor of a matrix.
- These ϵ^{l} are called elementary alternating k-tensors or elementary k-forms. They are suppose to be
- Let V be a f.d. vector space with a basis e_{1}, \ldots, e_{n}. Let $\epsilon^{1}, \ldots, \epsilon^{n}$ be the dual basis for V^{*}. Given a multi-index $I=\left(i_{1}, \ldots, i_{k}\right)$, consider the k-covariant tensor $\epsilon^{\prime}\left(v_{1}, \ldots, v_{k}\right)=\operatorname{det}\left(\begin{array}{ccc}\epsilon^{i_{1}}\left(v_{1}\right) & \ldots & \epsilon^{i_{1}}\left(v_{k}\right) \\ \vdots & \ddots & \vdots \\ \epsilon^{i_{k}}\left(v_{1}\right) & \ldots & \epsilon^{i_{k}}\left(v_{k}\right)\end{array}\right)=$ $\left(\begin{array}{ccc}v_{1}^{i_{1}} & \ldots & v_{k}^{i_{1}} \\ \vdots & \ddots & \vdots \\ v_{1}^{i_{k}} & \ldots & v_{k}^{i_{k}}\end{array}\right)$, that is, $\epsilon^{\prime}\left(v_{1}, \ldots, v_{k}\right)$ is a minor of a matrix.
- These ϵ^{l} are called elementary alternating k-tensors or elementary k-forms. They are suppose to be (signed) volumes of some generalised parallelopipeds (as we shall see later on).
- Let V be a f.d. vector space with a basis e_{1}, \ldots, e_{n}. Let $\epsilon^{1}, \ldots, \epsilon^{n}$ be the dual basis for V^{*}. Given a multi-index $I=\left(i_{1}, \ldots, i_{k}\right)$, consider the k-covariant tensor $\epsilon^{\prime}\left(v_{1}, \ldots, v_{k}\right)=\operatorname{det}\left(\begin{array}{ccc}\epsilon^{i_{1}}\left(v_{1}\right) & \ldots & \epsilon^{i_{1}}\left(v_{k}\right) \\ \vdots & \ddots & \vdots \\ \epsilon^{i_{k}}\left(v_{1}\right) & \ldots & \epsilon^{i_{k}}\left(v_{k}\right)\end{array}\right)=$ $\left(\begin{array}{ccc}v_{1}^{i_{1}} & \ldots & v_{k}^{i_{1}} \\ \vdots & \ddots & \vdots \\ v_{1}^{i_{k}} & \ldots & v_{k}^{i_{k}}\end{array}\right)$, that is, $\epsilon^{\prime}\left(v_{1}, \ldots, v_{k}\right)$ is a minor of a matrix.
- These ϵ^{l} are called elementary alternating k-tensors or elementary k-forms. They are suppose to be (signed) volumes of some generalised parallelopipeds (as we shall see later on).
- For future use,
- Let V be a f.d. vector space with a basis e_{1}, \ldots, e_{n}. Let $\epsilon^{1}, \ldots, \epsilon^{n}$ be the dual basis for V^{*}. Given a multi-index $I=\left(i_{1}, \ldots, i_{k}\right)$, consider the k-covariant tensor $\epsilon^{\prime}\left(v_{1}, \ldots, v_{k}\right)=\operatorname{det}\left(\begin{array}{ccc}\epsilon^{i_{1}}\left(v_{1}\right) & \ldots & \epsilon^{i_{1}}\left(v_{k}\right) \\ \vdots & \ddots & \vdots \\ \epsilon^{i_{k}}\left(v_{1}\right) & \ldots & \epsilon^{i_{k}}\left(v_{k}\right)\end{array}\right)=$ $\left(\begin{array}{ccc}v_{1}^{i_{1}} & \ldots & v_{k}^{i_{1}} \\ \vdots & \ddots & \vdots \\ v_{1}^{i_{k}} & \ldots & v_{k}^{i_{k}}\end{array}\right)$, that is, $\epsilon^{\prime}\left(v_{1}, \ldots, v_{k}\right)$ is a minor of a matrix.
- These ϵ^{\prime} are called elementary alternating k-tensors or elementary k-forms. They are suppose to be (signed) volumes of some generalised parallelopipeds (as we shall see later on).
- For future use, if I, J are multiindices of size k,
- Let V be a f.d. vector space with a basis e_{1}, \ldots, e_{n}. Let $\epsilon^{1}, \ldots, \epsilon^{n}$ be the dual basis for V^{*}. Given a multi-index $I=\left(i_{1}, \ldots, i_{k}\right)$, consider the k-covariant tensor

$$
\begin{aligned}
& \epsilon^{\prime}\left(v_{1}, \ldots, v_{k}\right)=\operatorname{det}\left(\begin{array}{ccc}
\epsilon^{i_{1}}\left(v_{1}\right) & \ldots & \epsilon^{i_{1}}\left(v_{k}\right) \\
\vdots & \ddots & \vdots \\
\epsilon^{i_{k}}\left(v_{1}\right) & \ldots & \epsilon^{i_{k}}\left(v_{k}\right)
\end{array}\right)= \\
& \left(\begin{array}{ccc}
v_{1}^{i_{1}} & \ldots & v_{k}^{i_{1}} \\
\vdots & \ddots & \vdots \\
v_{1}^{i_{k}} & \ldots & v_{k}^{i_{k}}
\end{array}\right) \text {, that is, } \epsilon^{\prime}\left(v_{1}, \ldots, v_{k}\right) \text { is a minor of a }
\end{aligned}
$$ matrix.

- These ϵ^{l} are called elementary alternating k-tensors or elementary k-forms. They are suppose to be (signed) volumes of some generalised parallelopipeds (as we shall see later on).
- For future use, if I, J are multiindices of size k, then we define δ_{J}^{\prime} as a determinant
- Let V be a f.d. vector space with a basis e_{1}, \ldots, e_{n}. Let $\epsilon^{1}, \ldots, \epsilon^{n}$ be the dual basis for V^{*}. Given a multi-index $I=\left(i_{1}, \ldots, i_{k}\right)$, consider the k-covariant tensor

$$
\epsilon^{\prime}\left(v_{1}, \ldots, v_{k}\right)=\operatorname{det}\left(\begin{array}{ccc}
\epsilon^{i_{1}}\left(v_{1}\right) & \ldots & \epsilon^{i_{1}}\left(v_{k}\right) \\
\vdots & \ddots & \vdots \\
\epsilon_{k}\left(v_{1}\right) & \ldots & \epsilon^{i_{k}}\left(v_{k}\right)
\end{array}\right)=
$$

$$
\left(\begin{array}{ccc}
v_{1}^{i_{1}} & \ldots & v_{k}^{i_{1}} \\
\vdots & \ddots & \vdots \\
v_{1}^{i_{k}} & \ldots & v_{k}^{i_{k}}
\end{array}\right) \text {, that is, } \epsilon^{\prime}\left(v_{1}, \ldots, v_{k}\right) \text { is a minor of a }
$$ matrix.

- These ϵ^{l} are called elementary alternating k-tensors or elementary k-forms. They are suppose to be (signed) volumes of some generalised parallelopipeds (as we shall see later on).
- For future use, if I, J are multiindices of size k, then we define δ_{J}^{\prime} as a determinant of a matrix $A_{a b}=(\delta)_{j_{b}}^{i_{a}}$.
- Let V be a f.d. vector space with a basis e_{1}, \ldots, e_{n}. Let $\epsilon^{1}, \ldots, \epsilon^{n}$ be the dual basis for V^{*}. Given a multi-index $I=\left(i_{1}, \ldots, i_{k}\right)$, consider the k-covariant tensor

$$
\epsilon^{\prime}\left(v_{1}, \ldots, v_{k}\right)=\operatorname{det}\left(\begin{array}{ccc}
\epsilon^{i_{1}}\left(v_{1}\right) & \ldots & \epsilon^{i_{1}}\left(v_{k}\right) \\
\vdots & \ddots & \vdots \\
\epsilon^{i_{k}}\left(v_{1}\right) & \ldots & \epsilon^{i_{k}}\left(v_{k}\right)
\end{array}\right)=
$$

$$
\left(\begin{array}{ccc}
v_{1}^{i_{1}} & \ldots & v_{k}^{i_{1}} \\
\vdots & \ddots & \vdots \\
v_{1}^{i_{k}} & \ldots & v_{k}^{i_{k}}
\end{array}\right) \text {, that is, } \epsilon^{\prime}\left(v_{1}, \ldots, v_{k}\right) \text { is a minor of a }
$$ matrix.

- These ϵ^{l} are called elementary alternating k-tensors or elementary k-forms. They are suppose to be (signed) volumes of some generalised parallelopipeds (as we shall see later on).
- For future use, if I, J are multiindices of size k, then we define δ_{J}^{\prime} as a determinant of a matrix $A_{a b}=(\delta)_{j_{b}}^{i_{a}}$. $\delta_{J}^{l}=\operatorname{sgn}(\sigma)$ if $J=I_{\sigma}$ and no repetitions
- Let V be a f.d. vector space with a basis e_{1}, \ldots, e_{n}. Let $\epsilon^{1}, \ldots, \epsilon^{n}$ be the dual basis for V^{*}. Given a multi-index $I=\left(i_{1}, \ldots, i_{k}\right)$, consider the k-covariant tensor

$$
\epsilon^{\prime}\left(v_{1}, \ldots, v_{k}\right)=\operatorname{det}\left(\begin{array}{ccc}
\epsilon^{i_{1}}\left(v_{1}\right) & \ldots & \epsilon^{i_{1}}\left(v_{k}\right) \\
\vdots & \ddots & \vdots \\
\epsilon^{i_{k}}\left(v_{1}\right) & \ldots & \epsilon^{i_{k}}\left(v_{k}\right)
\end{array}\right)=
$$

$$
\left(\begin{array}{ccc}
v_{1}^{i_{1}} & \ldots & v_{k}^{i_{1}} \\
\vdots & \ddots & \vdots \\
v_{1}^{i_{k}} & \ldots & v_{k}^{i_{k}}
\end{array}\right) \text {, that is, } \epsilon^{\prime}\left(v_{1}, \ldots, v_{k}\right) \text { is a minor of a }
$$ matrix.

- These ϵ^{l} are called elementary alternating k-tensors or elementary k-forms. They are suppose to be (signed) volumes of some generalised parallelopipeds (as we shall see later on).
- For future use, if I, J are multiindices of size k, then we define δ_{J}^{\prime} as a determinant of a matrix $A_{a b}=(\delta)_{j_{b}}^{i_{a}}$. $\delta_{J}^{\prime}=\operatorname{sgn}(\sigma)$ if $J=I_{\sigma}$ and no repetitions and 0 otherwise.

Elementary alternating tensors-Properties

Elementary alternating tensors-Properties

- If I has a repeated index,

Elementary alternating tensors-Properties

- If I has a repeated index, $\epsilon^{I}=0$ (why?).

Elementary alternating tensors-Properties

- If I has a repeated index, $\epsilon^{I}=0$ (why?).
- If $J=I_{\sigma}$, then $\epsilon^{\prime}=\operatorname{sgn}(\sigma) \epsilon^{J}$ (why?).

Elementary alternating tensors-Properties

- If I has a repeated index, $\epsilon^{I}=0$ (why?).
- If $J=I_{\sigma}$, then $\epsilon^{\prime}=\operatorname{sgn}(\sigma) \epsilon^{J}$ (why?).
- $\epsilon^{\prime}\left(e_{j_{1}}, \ldots, e_{j_{k}}\right)=\delta_{J}^{\prime}$ (why?).

Increasing multi-index elementary forms

Increasing multi-index elementary forms

- Consider the vector space $\Lambda^{k}\left(V^{*}\right)$ - the space of

Increasing multi-index elementary forms

- Consider the vector space $\Lambda^{k}\left(V^{*}\right)$ - the space of alternating covariant k-tensors/k-forms on V.

Increasing multi-index elementary forms

- Consider the vector space $\Lambda^{k}\left(V^{*}\right)$ - the space of alternating covariant k-tensors $/ k$-forms on V. We want a basis of this space.

Increasing multi-index elementary forms

- Consider the vector space $\Lambda^{k}\left(V^{*}\right)$ - the space of alternating covariant k-tensors $/ k$-forms on V. We want a basis of this space.
- Consider "increasing" multiindices, $i_{1}<i_{2}<\ldots$.

Increasing multi-index elementary forms

- Consider the vector space $\Lambda^{k}\left(V^{*}\right)$ - the space of alternating covariant k-tensors $/ k$-forms on V. We want a basis of this space.
- Consider "increasing" multiindices, $i_{1}<i_{2}<\ldots$. For increasing-index-summation, we put a prime sign.

Increasing multi-index elementary forms

- Consider the vector space $\Lambda^{k}\left(V^{*}\right)$ - the space of alternating covariant k-tensors $/ k$-forms on V. We want a basis of this space.
- Consider "increasing" multiindices, $i_{1}<i_{2}<\ldots$. For increasing-index-summation, we put a prime sign.
- Theorem:

Increasing multi-index elementary forms

- Consider the vector space $\Lambda^{k}\left(V^{*}\right)$ - the space of alternating covariant k-tensors $/ k$-forms on V. We want a basis of this space.
- Consider "increasing" multiindices, $i_{1}<i_{2}<\ldots$. For increasing-index-summation, we put a prime sign.
- Theorem: Increasing-index elementary forms form a basis.

Increasing multi-index elementary forms

- Consider the vector space $\Lambda^{k}\left(V^{*}\right)$ - the space of alternating covariant k-tensors $/ k$-forms on V. We want a basis of this space.
- Consider "increasing" multiindices, $i_{1}<i_{2}<\ldots$. For increasing-index-summation, we put a prime sign.
- Theorem: Increasing-index elementary forms form a basis. As a consequence, $\operatorname{dim}\left(\Lambda^{k}\right)=\binom{n}{k}$ when $k \leq n$ and 0 otherwise.

Increasing multi-index elementary forms

- Consider the vector space $\Lambda^{k}\left(V^{*}\right)$ - the space of alternating covariant k-tensors $/ k$-forms on V. We want a basis of this space.
- Consider "increasing" multiindices, $i_{1}<i_{2}<\ldots$. For increasing-index-summation, we put a prime sign.
- Theorem: Increasing-index elementary forms form a basis. As a consequence, $\operatorname{dim}\left(\Lambda^{k}\right)=\binom{n}{k}$ when $k \leq n$ and 0 otherwise.
- Proof:

Increasing multi-index elementary forms

- Consider the vector space $\Lambda^{k}\left(V^{*}\right)$ - the space of alternating covariant k-tensors $/ k$-forms on V. We want a basis of this space.
- Consider "increasing" multiindices, $i_{1}<i_{2}<\ldots$. For increasing-index-summation, we put a prime sign.
- Theorem: Increasing-index elementary forms form a basis. As a consequence, $\operatorname{dim}\left(\Lambda^{k}\right)=\binom{n}{k}$ when $k \leq n$ and 0 otherwise.
- Proof: If $k>n$, then by previous results,

Increasing multi-index elementary forms

- Consider the vector space $\Lambda^{k}\left(V^{*}\right)$ - the space of alternating covariant k-tensors $/ k$-forms on V. We want a basis of this space.
- Consider "increasing" multiindices, $i_{1}<i_{2}<\ldots$. For increasing-index-summation, we put a prime sign.
- Theorem: Increasing-index elementary forms form a basis. As a consequence, $\operatorname{dim}\left(\Lambda^{k}\right)=\binom{n}{k}$ when $k \leq n$ and 0 otherwise.
- Proof: If $k>n$, then by previous results, Λ^{k} is the trivial vector space (why?)

Increasing multi-index elementary forms

- Consider the vector space $\Lambda^{k}\left(V^{*}\right)$ - the space of alternating covariant k-tensors $/ k$-forms on V. We want a basis of this space.
- Consider "increasing" multiindices, $i_{1}<i_{2}<\ldots$. For increasing-index-summation, we put a prime sign.
- Theorem: Increasing-index elementary forms form a basis. As a consequence, $\operatorname{dim}\left(\Lambda^{k}\right)=\binom{n}{k}$ when $k \leq n$ and 0 otherwise.
- Proof: If $k>n$, then by previous results, Λ^{k} is the trivial vector space (why?) So assume $k \leq n$.

Increasing multi-index elementary forms

- Consider the vector space $\Lambda^{k}\left(V^{*}\right)$ - the space of alternating covariant k-tensors $/ k$-forms on V. We want a basis of this space.
- Consider "increasing" multiindices, $i_{1}<i_{2}<\ldots$. For increasing-index-summation, we put a prime sign.
- Theorem: Increasing-index elementary forms form a basis. As a consequence, $\operatorname{dim}\left(\Lambda^{k}\right)=\binom{n}{k}$ when $k \leq n$ and 0 otherwise.
- Proof: If $k>n$, then by previous results, Λ^{k} is the trivial vector space (why?) So assume $k \leq n$.
- Firstly, the ϵ^{\prime} are linearly independent:

Increasing multi-index elementary forms

- Consider the vector space $\Lambda^{k}\left(V^{*}\right)$ - the space of alternating covariant k-tensors $/ k$-forms on V. We want a basis of this space.
- Consider "increasing" multiindices, $i_{1}<i_{2}<\ldots$. For increasing-index-summation, we put a prime sign.
- Theorem: Increasing-index elementary forms form a basis. As a consequence, $\operatorname{dim}\left(\Lambda^{k}\right)=\binom{n}{k}$ when $k \leq n$ and 0 otherwise.
- Proof: If $k>n$, then by previous results, Λ^{k} is the trivial vector space (why?) So assume $k \leq n$.
- Firstly, the ϵ^{\prime} are linearly independent: If $\sum^{\prime} c_{l} \epsilon^{\prime}=0$, then

Increasing multi-index elementary forms

- Consider the vector space $\Lambda^{k}\left(V^{*}\right)$ - the space of alternating covariant k-tensors $/ k$-forms on V. We want a basis of this space.
- Consider "increasing" multiindices, $i_{1}<i_{2}<\ldots$. For increasing-index-summation, we put a prime sign.
- Theorem: Increasing-index elementary forms form a basis. As a consequence, $\operatorname{dim}\left(\Lambda^{k}\right)=\binom{n}{k}$ when $k \leq n$ and 0 otherwise.
- Proof: If $k>n$, then by previous results, Λ^{k} is the trivial vector space (why?) So assume $k \leq n$.
- Firstly, the ϵ^{\prime} are linearly independent: If $\sum^{\prime} c_{l} \epsilon^{\prime}=0$, then consider $0=\sum^{\prime} c_{l} \epsilon^{\prime}\left(e_{j_{1}}, e_{j_{2}}, \ldots\right)=\sum^{\prime} c_{l} \delta_{J}^{\prime}=c_{J}($ why? $)$

Increasing multi-index elementary forms

- Consider the vector space $\Lambda^{k}\left(V^{*}\right)$ - the space of alternating covariant k-tensors $/ k$-forms on V. We want a basis of this space.
- Consider "increasing" multiindices, $i_{1}<i_{2}<\ldots$. For increasing-index-summation, we put a prime sign.
- Theorem: Increasing-index elementary forms form a basis. As a consequence, $\operatorname{dim}\left(\Lambda^{k}\right)=\binom{n}{k}$ when $k \leq n$ and 0 otherwise.
- Proof: If $k>n$, then by previous results, Λ^{k} is the trivial vector space (why?) So assume $k \leq n$.
- Firstly, the ϵ^{\prime} are linearly independent: If $\sum^{\prime} c_{l} \epsilon^{\prime}=0$, then consider $0=\sum^{\prime} c_{l} \epsilon^{\prime}\left(e_{j_{1}}, e_{j_{2}}, \ldots\right)=\sum^{\prime} c_{l} \delta_{J}^{\prime}=c_{J}(w h y ?)$
- Secondly, they span the space:

Increasing multi-index elementary forms

- Consider the vector space $\Lambda^{k}\left(V^{*}\right)$ - the space of alternating covariant k-tensors $/ k$-forms on V. We want a basis of this space.
- Consider "increasing" multiindices, $i_{1}<i_{2}<\ldots$. For increasing-index-summation, we put a prime sign.
- Theorem: Increasing-index elementary forms form a basis. As a consequence, $\operatorname{dim}\left(\Lambda^{k}\right)=\binom{n}{k}$ when $k \leq n$ and 0 otherwise.
- Proof: If $k>n$, then by previous results, Λ^{k} is the trivial vector space (why?) So assume $k \leq n$.
- Firstly, the ϵ^{\prime} are linearly independent: If $\sum^{\prime} c_{l} \epsilon^{\prime}=0$, then consider $0=\sum^{\prime} c_{l} \epsilon^{\prime}\left(e_{j_{1}}, e_{j_{2}}, \ldots\right)=\sum^{\prime} c_{l} \delta_{J}^{\prime}=c_{J}$ (why?)
- Secondly, they span the space: Let $\alpha \in \Lambda^{k}$.

Increasing multi-index elementary forms

- Consider the vector space $\Lambda^{k}\left(V^{*}\right)$ - the space of alternating covariant k-tensors $/ k$-forms on V. We want a basis of this space.
- Consider "increasing" multiindices, $i_{1}<i_{2}<\ldots$. For increasing-index-summation, we put a prime sign.
- Theorem: Increasing-index elementary forms form a basis. As a consequence, $\operatorname{dim}\left(\Lambda^{k}\right)=\binom{n}{k}$ when $k \leq n$ and 0 otherwise.
- Proof: If $k>n$, then by previous results, Λ^{k} is the trivial vector space (why?) So assume $k \leq n$.
- Firstly, the ϵ^{\prime} are linearly independent: If $\sum^{\prime} c_{l} \epsilon^{\prime}=0$, then consider $0=\sum^{\prime} c_{l} \epsilon^{\prime}\left(e_{j_{1}}, e_{j_{2}}, \ldots\right)=\sum^{\prime} c_{l} \delta_{J}^{\prime}=c_{J}($ why? $)$
- Secondly, they span the space: Let $\alpha \in \Lambda^{k}$. Then let $\alpha_{I}=\alpha\left(e_{i_{1}}, \ldots\right)$.

Increasing multi-index elementary forms

- Consider the vector space $\Lambda^{k}\left(V^{*}\right)$ - the space of alternating covariant k-tensors $/ k$-forms on V. We want a basis of this space.
- Consider "increasing" multiindices, $i_{1}<i_{2}<\ldots$. For increasing-index-summation, we put a prime sign.
- Theorem: Increasing-index elementary forms form a basis. As a consequence, $\operatorname{dim}\left(\Lambda^{k}\right)=\binom{n}{k}$ when $k \leq n$ and 0 otherwise.
- Proof: If $k>n$, then by previous results, Λ^{k} is the trivial vector space (why?) So assume $k \leq n$.
- Firstly, the ϵ^{\prime} are linearly independent: If $\sum^{\prime} c_{l} \epsilon^{\prime}=0$, then consider $0=\sum^{\prime} c_{l} \epsilon^{\prime}\left(e_{j_{1}}, e_{j_{2}}, \ldots\right)=\sum^{\prime} c_{l} \delta_{J}^{\prime}=c_{J}$ (why?)
- Secondly, they span the space: Let $\alpha \in \Lambda^{k}$. Then let $\alpha_{I}=\alpha\left(e_{i_{1}}, \ldots\right)$. Thus $\left(\alpha-\sum^{\prime} \alpha_{I} \epsilon^{\prime}\right)\left(e_{j_{1}}, \ldots, e_{j_{n}}\right)=0$ (why?) and

Increasing multi-index elementary forms

- Consider the vector space $\Lambda^{k}\left(V^{*}\right)$ - the space of alternating covariant k-tensors $/ k$-forms on V. We want a basis of this space.
- Consider "increasing" multiindices, $i_{1}<i_{2}<\ldots$. For increasing-index-summation, we put a prime sign.
- Theorem: Increasing-index elementary forms form a basis. As a consequence, $\operatorname{dim}\left(\Lambda^{k}\right)=\binom{n}{k}$ when $k \leq n$ and 0 otherwise.
- Proof: If $k>n$, then by previous results, Λ^{k} is the trivial vector space (why?) So assume $k \leq n$.
- Firstly, the ϵ^{\prime} are linearly independent: If $\sum^{\prime} c_{l} \epsilon^{\prime}=0$, then consider $0=\sum^{\prime} c_{l} \epsilon^{\prime}\left(e_{j_{1}}, e_{j_{2}}, \ldots\right)=\sum^{\prime} c_{l} \delta_{J}^{\prime}=c_{J}$ (why?)
- Secondly, they span the space: Let $\alpha \in \Lambda^{k}$. Then let $\alpha_{I}=\alpha\left(e_{i_{1}}, \ldots\right)$. Thus $\left(\alpha-\sum^{\prime} \alpha_{I} \epsilon^{\prime}\right)\left(e_{j_{1}}, \ldots, e_{j_{n}}\right)=0$ (why?) and hence we are done (why?).

