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Change of top forms under a map

If V is an n-dimensional v. space, then elements of Λn(V ∗) are
called “top forms” (because there are no forms beyond them).

Let T : V → V be a linear map and ω be a top form. Then
ω(Tv1, . . . ,Tvn) = det(T )ω(v1, . . . , vn).

Proof: Let e1, . . . , en be a basis of V . We note that
ω = cε12...n for some c . Since both sides are top forms, we
only need to check when vi = ei . The RHS is det(T )c . The
LHS is c det(Te1, . . . ,Ten) = c det(T ) (why?). Hence we are
done.
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Wedge product: Motivation

How does one generalise the cross product? Why must one
generalise it?

Why: To talk perhaps of signed volumes in higher dimensions.
Possibly to generalise the notion of curl ∇× to formulate an
FTC.

How: Naively, (a× b)ij = aibj − ajbi , i.e., it is a 2-form! So
perhaps we can talk of the “cross product” (we shall call it
the wedge product) of a k-form with an l-form to get ω ∧ η -
a (k + l)-form.
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Wedge product: Definition

Suppose ω ∈ Λk(V ∗) and η ∈ Λl(V ∗), then

ω ∧ η := (k+l)!
k!l! Alt(ω ⊗ η).

So for instance, ε1 ∧ ε2 = ε1 ⊗ ε2 − ε2 ⊗ ε1 = ε1,2. So
ε1 ∧ ε2(v ,w) = v1w2 − v2w1.

Why the weird numerical factor?
(ε1 ∧ ε2) ∧ ε3 = 3!

2!1!Alt((ε1 ⊗ ε2 − ε2 ⊗ ε1)⊗ ε3) =
3Alt(ε1 ⊗ ε2 ⊗ ε3 − ε2 ⊗ ε1 ⊗ ε3) =∑

σ sgn(σ)εσ(1) ⊗ εσ(2) ⊗ εσ(3) = ε1,2,3 = ε1 ∧ (ε2 ∧ ε3). Bear
in mind that some old books don’t have this factor.

More generally, Theorem: For any two multi-indices I , J,
εI ∧ εJ = εIJ .
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Proof of Theorem

Let P = (p1, . . . , pk+l). We need to show that
εI ∧ εJ(ep1 , . . .) = εIJ(ep1 , . . .) for all P.

If P has repeated indices, by alternating-ness, both sides are
zero.

If P has an index that does not occur in I and J, then both
sides are zero (why?)

If P has no repeated indices, and P = IJ (any permutation of
it does not need to be checked), then εIJ(eP) = 1. For the
LHS,
εI∧εJ(eP) = 1

k!l!

∑
σ sgn(σ)εI (epσ(1)

, . . . , epσ(k)
)εJ(epσ(k+1)

, . . .).
The only surviving terms are of the type σ = τψ. Thus
εI ∧ εJ(eP) = 1

k!l!

∑
τ sgn(τ)εI (eτ(I ))

∑
ψ sgn(ψ)εJ(eψ(J)) = 1

(why?)
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Properties of the wedge product

Bilinearity (Proof: Checking the definition).

Associativity (Proof: Check for basis vectors).

ω ∧ η = (−1)klη ∧ ω (Proof: Check for basis vectors).

εi1 ∧ εi2 . . . = εI (Proof: Inductively follows from associativity
and the above theorem)

ω1 ∧ ω2 . . . ωk(v1, . . . , vk) = det(ωi (vj)) (Proof: Induction
and checking for the elementary ones).

It turns out that the wedge product is the unique such map
satisfying the above properties.

Caution: Not every form is a wedge of 1-forms (such forms
are called decomposable).

In R3 there is an identification of 2-forms with R3 itself and
hence the cross product makes sense (but the choice of this
identification matters. Sometimes ~a× ~b is called a
pseudovector).
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Differential forms on manifolds

We can take the disjoint union ΛkT ∗M = ∪p∈MΛkT ∗pM.

Suppose (U, x) is a chart. Since εi = dx i is a basis for T ∗pM,

whenever I is an increasing multi-index, εI = dx i1 ∧ dx i2 . . . is
a basis for ΛkT ∗pM.

We can give ΛkT ∗M a vector bundle structure using these
coordinate bases. A smooth section of this bundle of
differential k-forms is called a k-form field (or simply a
k-form). Such an object is a smooth linear combination of
dx I .

We can define the wedge product of forms. Moreover,
functions are treated as 0-forms. f ∧ η = f η if f is a function.
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Pullback and wedge product

Suppose F : M → N is smooth. We can define the pullback
as follows: If ω is a k-form field on N, F ∗ω is a k-form field
on M such that (F ∗ω)p(v1, . . .) = ωF (p)((F∗)p(v1), . . .).

For functions, by definition, F ∗f (p) = f (F (p)) = f ◦ F (p).

Recall that F ∗df = dF ∗f . Moreover, if ω = ωidx
i , then

F ∗ω = ωi ◦ FdF i .

For k-forms, the pullback is R-linear (why?).

F ∗(ω ∧ η) = F ∗ω ∧ F ∗η (why?)

Using this property, we can calculate pullbacks for several
examples.
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Pullback for top-forms

Suppose ω = fdy1 . . . dyn, then F ∗ω = F ∗ fdF 1 . . . dF n,
which when acted on ∂

∂x1
, . . . is F f det(∂F

i

∂x j
)dx1 . . . dxn.

In particular, dx̃1 ∧ . . . = det(∂x̃
i

∂x j
)dx1 ∧ . . ..
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