MA 229/MA 235 - Lecture 22

IISc

Recap

Recap

- Tensor fields and Riemannian metrics.

Recap

- Tensor fields and Riemannian metrics.
- Elementary alternating tensors.

Change of top forms under a map

Change of top forms under a map

- If V is an n-dimensional v. space,

Change of top forms under a map

- If V is an n-dimensional v. space, then elements of $\Lambda^{n}\left(V^{*}\right)$ are called

Change of top forms under a map

- If V is an n-dimensional v. space, then elements of $\Lambda^{n}\left(V^{*}\right)$ are called "top forms" (because

Change of top forms under a map

- If V is an n-dimensional v. space, then elements of $\Lambda^{n}\left(V^{*}\right)$ are called "top forms" (because there are no forms beyond them).

Change of top forms under a map

- If V is an n-dimensional v. space, then elements of $\Lambda^{n}\left(V^{*}\right)$ are called "top forms" (because there are no forms beyond them).
- Let $T: V \rightarrow V$ be a linear map and ω be a top form.

Change of top forms under a map

- If V is an n-dimensional v. space, then elements of $\Lambda^{n}\left(V^{*}\right)$ are called "top forms" (because there are no forms beyond them).
- Let $T: V \rightarrow V$ be a linear map and ω be a top form. Then $\omega\left(T v_{1}, \ldots, T v_{n}\right)=\operatorname{det}(T) \omega\left(v_{1}, \ldots, v_{n}\right)$.

Change of top forms under a map

- If V is an n-dimensional v. space, then elements of $\Lambda^{n}\left(V^{*}\right)$ are called "top forms" (because there are no forms beyond them).
- Let $T: V \rightarrow V$ be a linear map and ω be a top form. Then $\omega\left(T v_{1}, \ldots, T v_{n}\right)=\operatorname{det}(T) \omega\left(v_{1}, \ldots, v_{n}\right)$.
- Proof:

Change of top forms under a map

- If V is an n-dimensional v. space, then elements of $\Lambda^{n}\left(V^{*}\right)$ are called "top forms" (because there are no forms beyond them).
- Let $T: V \rightarrow V$ be a linear map and ω be a top form. Then $\omega\left(T v_{1}, \ldots, T v_{n}\right)=\operatorname{det}(T) \omega\left(v_{1}, \ldots, v_{n}\right)$.
- Proof: Let e_{1}, \ldots, e_{n} be a basis of V.

Change of top forms under a map

- If V is an n-dimensional v. space, then elements of $\Lambda^{n}\left(V^{*}\right)$ are called "top forms" (because there are no forms beyond them).
- Let $T: V \rightarrow V$ be a linear map and ω be a top form. Then $\omega\left(T v_{1}, \ldots, T v_{n}\right)=\operatorname{det}(T) \omega\left(v_{1}, \ldots, v_{n}\right)$.
- Proof: Let e_{1}, \ldots, e_{n} be a basis of V. We note that $\omega=c \epsilon^{12 \ldots n}$ for some c.
- If V is an n-dimensional v. space, then elements of $\Lambda^{n}\left(V^{*}\right)$ are called "top forms" (because there are no forms beyond them).
- Let $T: V \rightarrow V$ be a linear map and ω be a top form. Then $\omega\left(T v_{1}, \ldots, T v_{n}\right)=\operatorname{det}(T) \omega\left(v_{1}, \ldots, v_{n}\right)$.
- Proof: Let e_{1}, \ldots, e_{n} be a basis of V. We note that $\omega=c \epsilon^{12 \ldots n}$ for some c. Since both sides are top forms,
- If V is an n-dimensional v. space, then elements of $\Lambda^{n}\left(V^{*}\right)$ are called "top forms" (because there are no forms beyond them).
- Let $T: V \rightarrow V$ be a linear map and ω be a top form. Then $\omega\left(T v_{1}, \ldots, T v_{n}\right)=\operatorname{det}(T) \omega\left(v_{1}, \ldots, v_{n}\right)$.
- Proof: Let e_{1}, \ldots, e_{n} be a basis of V. We note that $\omega=c \epsilon^{12 \ldots n}$ for some c. Since both sides are top forms, we only need to check when $v_{i}=e_{i}$.
- If V is an n-dimensional v. space, then elements of $\Lambda^{n}\left(V^{*}\right)$ are called "top forms" (because there are no forms beyond them).
- Let $T: V \rightarrow V$ be a linear map and ω be a top form. Then $\omega\left(T v_{1}, \ldots, T v_{n}\right)=\operatorname{det}(T) \omega\left(v_{1}, \ldots, v_{n}\right)$.
- Proof: Let e_{1}, \ldots, e_{n} be a basis of V. We note that $\omega=c \epsilon^{12 \ldots n}$ for some c. Since both sides are top forms, we only need to check when $v_{i}=e_{i}$. The RHS is
- If V is an n-dimensional v. space, then elements of $\Lambda^{n}\left(V^{*}\right)$ are called "top forms" (because there are no forms beyond them).
- Let $T: V \rightarrow V$ be a linear map and ω be a top form. Then $\omega\left(T v_{1}, \ldots, T v_{n}\right)=\operatorname{det}(T) \omega\left(v_{1}, \ldots, v_{n}\right)$.
- Proof: Let e_{1}, \ldots, e_{n} be a basis of V. We note that $\omega=c \epsilon^{12 \ldots n}$ for some c. Since both sides are top forms, we only need to check when $v_{i}=e_{i}$. The RHS is $\operatorname{det}(T) c$.
- If V is an n-dimensional v. space, then elements of $\Lambda^{n}\left(V^{*}\right)$ are called "top forms" (because there are no forms beyond them).
- Let $T: V \rightarrow V$ be a linear map and ω be a top form. Then $\omega\left(T v_{1}, \ldots, T v_{n}\right)=\operatorname{det}(T) \omega\left(v_{1}, \ldots, v_{n}\right)$.
- Proof: Let e_{1}, \ldots, e_{n} be a basis of V. We note that $\omega=c \epsilon^{12 \ldots n}$ for some c. Since both sides are top forms, we only need to check when $v_{i}=e_{i}$. The RHS is $\operatorname{det}(T) c$. The LHS is
- If V is an n-dimensional v. space, then elements of $\Lambda^{n}\left(V^{*}\right)$ are called "top forms" (because there are no forms beyond them).
- Let $T: V \rightarrow V$ be a linear map and ω be a top form. Then $\omega\left(T v_{1}, \ldots, T v_{n}\right)=\operatorname{det}(T) \omega\left(v_{1}, \ldots, v_{n}\right)$.
- Proof: Let e_{1}, \ldots, e_{n} be a basis of V. We note that $\omega=c \epsilon^{12 \ldots n}$ for some c. Since both sides are top forms, we only need to check when $v_{i}=e_{i}$. The RHS is $\operatorname{det}(T) c$. The LHS is $c \operatorname{det}\left(T e_{1}, \ldots, T e_{n}\right)=c \operatorname{det}(T)$ (why?). Hence we are done.

Wedge product: Motivation

- How does one generalise the cross product?
- How does one generalise the cross product? Why must one generalise it?
- How does one generalise the cross product? Why must one generalise it?
- How does one generalise the cross product? Why must one generalise it?
- Why:
- How does one generalise the cross product? Why must one generalise it?
- Why: To talk perhaps of signed volumes in higher dimensions.
- How does one generalise the cross product? Why must one generalise it?
- Why: To talk perhaps of signed volumes in higher dimensions. Possibly to generalise the notion of curl $\nabla \times$
- How does one generalise the cross product? Why must one generalise it?
- Why: To talk perhaps of signed volumes in higher dimensions. Possibly to generalise the notion of curl $\nabla \times$ to formulate an FTC.
- How does one generalise the cross product? Why must one generalise it?
- Why: To talk perhaps of signed volumes in higher dimensions. Possibly to generalise the notion of curl $\nabla \times$ to formulate an FTC.
- How:
- How does one generalise the cross product? Why must one generalise it?
- Why: To talk perhaps of signed volumes in higher dimensions. Possibly to generalise the notion of curl $\nabla \times$ to formulate an FTC.
- How: Naively,
- How does one generalise the cross product? Why must one generalise it?
- Why: To talk perhaps of signed volumes in higher dimensions. Possibly to generalise the notion of curl $\nabla \times$ to formulate an FTC.
- How: Naively, $(a \times b)_{i j}=a_{i} b_{j}-a_{j} b_{i}$, i.e.,
- How does one generalise the cross product? Why must one generalise it?
- Why: To talk perhaps of signed volumes in higher dimensions. Possibly to generalise the notion of curl $\nabla \times$ to formulate an FTC.
- How: Naively, $(a \times b)_{i j}=a_{i} b_{j}-a_{j} b_{i}$, i.e., it is a 2 -form!
- How does one generalise the cross product? Why must one generalise it?
- Why: To talk perhaps of signed volumes in higher dimensions. Possibly to generalise the notion of curl $\nabla \times$ to formulate an FTC.
- How: Naively, $(a \times b)_{i j}=a_{i} b_{j}-a_{j} b_{i}$, i.e., it is a 2-form! So perhaps we can talk of the
- How does one generalise the cross product? Why must one generalise it?
- Why: To talk perhaps of signed volumes in higher dimensions. Possibly to generalise the notion of curl $\nabla \times$ to formulate an FTC.
- How: Naively, $(a \times b)_{i j}=a_{i} b_{j}-a_{j} b_{i}$, i.e., it is a 2-form! So perhaps we can talk of the "cross product" (we shall call it the wedge product)
- How does one generalise the cross product? Why must one generalise it?
- Why: To talk perhaps of signed volumes in higher dimensions. Possibly to generalise the notion of curl $\nabla \times$ to formulate an FTC.
- How: Naively, $(a \times b)_{i j}=a_{i} b_{j}-a_{j} b_{i}$, i.e., it is a 2-form! So perhaps we can talk of the "cross product" (we shall call it the wedge product) of a k-form with an l-form
- How does one generalise the cross product? Why must one generalise it?
- Why: To talk perhaps of signed volumes in higher dimensions. Possibly to generalise the notion of curl $\nabla \times$ to formulate an FTC.
- How: Naively, $(a \times b)_{i j}=a_{i} b_{j}-a_{j} b_{i}$, i.e., it is a 2-form! So perhaps we can talk of the "cross product" (we shall call it the wedge product) of a k-form with an l-form to get $\omega \wedge \eta$ a $(k+l)$-form.

Wedge product: Definition

Wedge product: Definition

- Suppose $\omega \in \Lambda^{k}\left(V^{*}\right)$ and $\eta \in \Lambda^{\prime}\left(V^{*}\right)$,

Wedge product: Definition

- Suppose $\omega \in \Lambda^{k}\left(V^{*}\right)$ and $\eta \in \Lambda^{\prime}\left(V^{*}\right)$, then $\omega \wedge \eta:=\frac{(k+l)!}{k!!!} A l t(\omega \otimes \eta)$.

Wedge product: Definition

- Suppose $\omega \in \Lambda^{k}\left(V^{*}\right)$ and $\eta \in \Lambda^{\prime}\left(V^{*}\right)$, then $\omega \wedge \eta:=\frac{(k+l)!}{k!!!} A l t(\omega \otimes \eta)$.
- So for instance,

Wedge product: Definition

- Suppose $\omega \in \Lambda^{k}\left(V^{*}\right)$ and $\eta \in \Lambda^{\prime}\left(V^{*}\right)$, then $\omega \wedge \eta:=\frac{(k+l)!}{k!!!} A l t(\omega \otimes \eta)$.
- So for instance, $\epsilon^{1} \wedge \epsilon^{2}=\epsilon^{1} \otimes \epsilon^{2}-\epsilon^{2} \otimes \epsilon^{1}=\epsilon^{1,2}$.

Wedge product: Definition

- Suppose $\omega \in \Lambda^{k}\left(V^{*}\right)$ and $\eta \in \Lambda^{\prime}\left(V^{*}\right)$, then $\omega \wedge \eta:=\frac{(k+l)!}{k!!!} A l t(\omega \otimes \eta)$.
- So for instance, $\epsilon^{1} \wedge \epsilon^{2}=\epsilon^{1} \otimes \epsilon^{2}-\epsilon^{2} \otimes \epsilon^{1}=\epsilon^{1,2}$. So $\epsilon^{1} \wedge \epsilon^{2}(v, w)=v^{1} w^{2}-v^{2} w^{1}$.
- Suppose $\omega \in \Lambda^{k}\left(V^{*}\right)$ and $\eta \in \Lambda^{\prime}\left(V^{*}\right)$, then $\omega \wedge \eta:=\frac{(k+1)!}{k!!!} A l t(\omega \otimes \eta)$.
- So for instance, $\epsilon^{1} \wedge \epsilon^{2}=\epsilon^{1} \otimes \epsilon^{2}-\epsilon^{2} \otimes \epsilon^{1}=\epsilon^{1,2}$. So $\epsilon^{1} \wedge \epsilon^{2}(v, w)=v^{1} w^{2}-v^{2} w^{1}$.
- Why the weird numerical factor?
- Suppose $\omega \in \Lambda^{k}\left(V^{*}\right)$ and $\eta \in \Lambda^{\prime}\left(V^{*}\right)$, then $\omega \wedge \eta:=\frac{(k+l)!}{k!!!} A l t(\omega \otimes \eta)$.
- So for instance, $\epsilon^{1} \wedge \epsilon^{2}=\epsilon^{1} \otimes \epsilon^{2}-\epsilon^{2} \otimes \epsilon^{1}=\epsilon^{1,2}$. So $\epsilon^{1} \wedge \epsilon^{2}(v, w)=v^{1} w^{2}-v^{2} w^{1}$.
- Why the weird numerical factor? $\left(\epsilon^{1} \wedge \epsilon^{2}\right) \wedge \epsilon^{3}=\frac{3!}{2!1!} A / t\left(\left(\epsilon^{1} \otimes \epsilon^{2}-\epsilon^{2} \otimes \epsilon^{1}\right) \otimes \epsilon^{3}\right)=$ 3 Alt $\left(\epsilon^{1} \otimes \epsilon^{2} \otimes \epsilon^{3}-\epsilon^{2} \otimes \epsilon^{1} \otimes \epsilon^{3}\right)=$ $\sum_{\sigma} \operatorname{sgn}(\sigma) \epsilon^{\sigma(1)} \otimes \epsilon^{\sigma(2)} \otimes \epsilon^{\sigma(3)}=\epsilon^{1,2,3}=\epsilon^{1} \wedge\left(\epsilon^{2} \wedge \epsilon^{3}\right)$.
- Suppose $\omega \in \Lambda^{k}\left(V^{*}\right)$ and $\eta \in \Lambda^{\prime}\left(V^{*}\right)$, then $\omega \wedge \eta:=\frac{(k+l)!}{k!!!} A l t(\omega \otimes \eta)$.
- So for instance, $\epsilon^{1} \wedge \epsilon^{2}=\epsilon^{1} \otimes \epsilon^{2}-\epsilon^{2} \otimes \epsilon^{1}=\epsilon^{1,2}$. So $\epsilon^{1} \wedge \epsilon^{2}(v, w)=v^{1} w^{2}-v^{2} w^{1}$.
- Why the weird numerical factor? $\left(\epsilon^{1} \wedge \epsilon^{2}\right) \wedge \epsilon^{3}=\frac{3!}{2!1!} \operatorname{Alt}\left(\left(\epsilon^{1} \otimes \epsilon^{2}-\epsilon^{2} \otimes \epsilon^{1}\right) \otimes \epsilon^{3}\right)=$ $3 A I t\left(\epsilon^{1} \otimes \epsilon^{2} \otimes \epsilon^{3}-\epsilon^{2} \otimes \epsilon^{1} \otimes \epsilon^{3}\right)=$
$\sum_{\sigma} \operatorname{sgn}(\sigma) \epsilon^{\sigma(1)} \otimes \epsilon^{\sigma(2)} \otimes \epsilon^{\sigma(3)}=\epsilon^{1,2,3}=\epsilon^{1} \wedge\left(\epsilon^{2} \wedge \epsilon^{3}\right)$. Bear in mind that some old books don't have this factor.
- Suppose $\omega \in \Lambda^{k}\left(V^{*}\right)$ and $\eta \in \Lambda^{\prime}\left(V^{*}\right)$, then $\omega \wedge \eta:=\frac{(k+l)!}{k!!!} A l t(\omega \otimes \eta)$.
- So for instance, $\epsilon^{1} \wedge \epsilon^{2}=\epsilon^{1} \otimes \epsilon^{2}-\epsilon^{2} \otimes \epsilon^{1}=\epsilon^{1,2}$. So $\epsilon^{1} \wedge \epsilon^{2}(v, w)=v^{1} w^{2}-v^{2} w^{1}$.
- Why the weird numerical factor? $\left(\epsilon^{1} \wedge \epsilon^{2}\right) \wedge \epsilon^{3}=\frac{3!}{2!1!} A / t\left(\left(\epsilon^{1} \otimes \epsilon^{2}-\epsilon^{2} \otimes \epsilon^{1}\right) \otimes \epsilon^{3}\right)=$ $3 A / t\left(\epsilon^{1} \otimes \epsilon^{2} \otimes \epsilon^{3}-\epsilon^{2} \otimes \epsilon^{1} \otimes \epsilon^{3}\right)=$
$\sum_{\sigma} \operatorname{sgn}(\sigma) \epsilon^{\sigma(1)} \otimes \epsilon^{\sigma(2)} \otimes \epsilon^{\sigma(3)}=\epsilon^{1,2,3}=\epsilon^{1} \wedge\left(\epsilon^{2} \wedge \epsilon^{3}\right)$. Bear in mind that some old books don't have this factor.
- More generally,
- Suppose $\omega \in \Lambda^{k}\left(V^{*}\right)$ and $\eta \in \Lambda^{\prime}\left(V^{*}\right)$, then $\omega \wedge \eta:=\frac{(k+l)!}{k!!!} A l t(\omega \otimes \eta)$.
- So for instance, $\epsilon^{1} \wedge \epsilon^{2}=\epsilon^{1} \otimes \epsilon^{2}-\epsilon^{2} \otimes \epsilon^{1}=\epsilon^{1,2}$. So $\epsilon^{1} \wedge \epsilon^{2}(v, w)=v^{1} w^{2}-v^{2} w^{1}$.
- Why the weird numerical factor? $\left(\epsilon^{1} \wedge \epsilon^{2}\right) \wedge \epsilon^{3}=\frac{3!}{2!1!} A / t\left(\left(\epsilon^{1} \otimes \epsilon^{2}-\epsilon^{2} \otimes \epsilon^{1}\right) \otimes \epsilon^{3}\right)=$ $3 A I t\left(\epsilon^{1} \otimes \epsilon^{2} \otimes \epsilon^{3}-\epsilon^{2} \otimes \epsilon^{1} \otimes \epsilon^{3}\right)=$ $\sum_{\sigma} \operatorname{sgn}(\sigma) \epsilon^{\sigma(1)} \otimes \epsilon^{\sigma(2)} \otimes \epsilon^{\sigma(3)}=\epsilon^{1,2,3}=\epsilon^{1} \wedge\left(\epsilon^{2} \wedge \epsilon^{3}\right)$. Bear in mind that some old books don't have this factor.
- More generally, Theorem:
- Suppose $\omega \in \Lambda^{k}\left(V^{*}\right)$ and $\eta \in \Lambda^{\prime}\left(V^{*}\right)$, then $\omega \wedge \eta:=\frac{(k+l)!}{k!!!} A l t(\omega \otimes \eta)$.
- So for instance, $\epsilon^{1} \wedge \epsilon^{2}=\epsilon^{1} \otimes \epsilon^{2}-\epsilon^{2} \otimes \epsilon^{1}=\epsilon^{1,2}$. So $\epsilon^{1} \wedge \epsilon^{2}(v, w)=v^{1} w^{2}-v^{2} w^{1}$.
- Why the weird numerical factor? $\left(\epsilon^{1} \wedge \epsilon^{2}\right) \wedge \epsilon^{3}=\frac{3!}{2!1!} A l t\left(\left(\epsilon^{1} \otimes \epsilon^{2}-\epsilon^{2} \otimes \epsilon^{1}\right) \otimes \epsilon^{3}\right)=$ $3 A I t\left(\epsilon^{1} \otimes \epsilon^{2} \otimes \epsilon^{3}-\epsilon^{2} \otimes \epsilon^{1} \otimes \epsilon^{3}\right)=$ $\sum_{\sigma} \operatorname{sgn}(\sigma) \epsilon^{\sigma(1)} \otimes \epsilon^{\sigma(2)} \otimes \epsilon^{\sigma(3)}=\epsilon^{1,2,3}=\epsilon^{1} \wedge\left(\epsilon^{2} \wedge \epsilon^{3}\right)$. Bear in mind that some old books don't have this factor.
- More generally, Theorem: For any two multi-indices I, J,
- Suppose $\omega \in \Lambda^{k}\left(V^{*}\right)$ and $\eta \in \Lambda^{\prime}\left(V^{*}\right)$, then $\omega \wedge \eta:=\frac{(k+l)!}{k!!!} A l t(\omega \otimes \eta)$.
- So for instance, $\epsilon^{1} \wedge \epsilon^{2}=\epsilon^{1} \otimes \epsilon^{2}-\epsilon^{2} \otimes \epsilon^{1}=\epsilon^{1,2}$. So $\epsilon^{1} \wedge \epsilon^{2}(v, w)=v^{1} w^{2}-v^{2} w^{1}$.
- Why the weird numerical factor? $\left(\epsilon^{1} \wedge \epsilon^{2}\right) \wedge \epsilon^{3}=\frac{3!}{2!1!} \operatorname{Alt}\left(\left(\epsilon^{1} \otimes \epsilon^{2}-\epsilon^{2} \otimes \epsilon^{1}\right) \otimes \epsilon^{3}\right)=$ 3 Alt $\left(\epsilon^{1} \otimes \epsilon^{2} \otimes \epsilon^{3}-\epsilon^{2} \otimes \epsilon^{1} \otimes \epsilon^{3}\right)=$
$\sum_{\sigma} \operatorname{sgn}(\sigma) \epsilon^{\sigma(1)} \otimes \epsilon^{\sigma(2)} \otimes \epsilon^{\sigma(3)}=\epsilon^{1,2,3}=\epsilon^{1} \wedge\left(\epsilon^{2} \wedge \epsilon^{3}\right)$. Bear in mind that some old books don't have this factor.
- More generally, Theorem: For any two multi-indices I, J, $\epsilon^{\prime} \wedge \epsilon^{J}=\epsilon^{I J}$.

Proof of Theorem

Proof of Theorem

- Let $P=\left(p_{1}, \ldots, p_{k+1}\right)$.

Proof of Theorem

- Let $P=\left(p_{1}, \ldots, p_{k+1}\right)$. We need to show that

Proof of Theorem

- Let $P=\left(p_{1}, \ldots, p_{k+l}\right)$. We need to show that $\epsilon^{\prime} \wedge \epsilon^{J}\left(e_{p_{1}}, \ldots\right)=\epsilon^{I J}\left(e_{p_{1}}, \ldots\right)$ for all P.

Proof of Theorem

- Let $P=\left(p_{1}, \ldots, p_{k+1}\right)$. We need to show that $\epsilon^{\prime} \wedge \epsilon^{J}\left(e_{p_{1}}, \ldots\right)=\epsilon^{I J}\left(e_{p_{1}}, \ldots\right)$ for all P.
- If P has repeated indices,

Proof of Theorem

- Let $P=\left(p_{1}, \ldots, p_{k+l}\right)$. We need to show that $\epsilon^{I} \wedge \epsilon^{J}\left(e_{p_{1}}, \ldots\right)=\epsilon^{I J}\left(e_{p_{1}}, \ldots\right)$ for all P.
- If P has repeated indices, by alternating-ness, both sides are zero.
- Let $P=\left(p_{1}, \ldots, p_{k+1}\right)$. We need to show that $\epsilon^{I} \wedge \epsilon^{J}\left(e_{p_{1}}, \ldots\right)=\epsilon^{I J}\left(e_{p_{1}}, \ldots\right)$ for all P.
- If P has repeated indices, by alternating-ness, both sides are zero.
- If P has an index
- Let $P=\left(p_{1}, \ldots, p_{k+1}\right)$. We need to show that $\epsilon^{I} \wedge \epsilon^{J}\left(e_{p_{1}}, \ldots\right)=\epsilon^{I J}\left(e_{p_{1}}, \ldots\right)$ for all P.
- If P has repeated indices, by alternating-ness, both sides are zero.
- If P has an index that does not occur in I and J,
- Let $P=\left(p_{1}, \ldots, p_{k+1}\right)$. We need to show that $\epsilon^{I} \wedge \epsilon^{J}\left(e_{p_{1}}, \ldots\right)=\epsilon^{I J}\left(e_{p_{1}}, \ldots\right)$ for all P.
- If P has repeated indices, by alternating-ness, both sides are zero.
- If P has an index that does not occur in I and J, then both sides are zero (why?)
- Let $P=\left(p_{1}, \ldots, p_{k+1}\right)$. We need to show that $\epsilon^{I} \wedge \epsilon^{J}\left(e_{p_{1}}, \ldots\right)=\epsilon^{I J}\left(e_{p_{1}}, \ldots\right)$ for all P.
- If P has repeated indices, by alternating-ness, both sides are zero.
- If P has an index that does not occur in I and J, then both sides are zero (why?)
- If P has no repeated indices,
- Let $P=\left(p_{1}, \ldots, p_{k+l}\right)$. We need to show that $\epsilon^{I} \wedge \epsilon^{J}\left(e_{p_{1}}, \ldots\right)=\epsilon^{I J}\left(e_{p_{1}}, \ldots\right)$ for all P.
- If P has repeated indices, by alternating-ness, both sides are zero.
- If P has an index that does not occur in I and J, then both sides are zero (why?)
- If P has no repeated indices, and $P=I J$ (
- Let $P=\left(p_{1}, \ldots, p_{k+l}\right)$. We need to show that $\epsilon^{I} \wedge \epsilon^{J}\left(e_{p_{1}}, \ldots\right)=\epsilon^{I J}\left(e_{p_{1}}, \ldots\right)$ for all P.
- If P has repeated indices, by alternating-ness, both sides are zero.
- If P has an index that does not occur in I and J, then both sides are zero (why?)
- If P has no repeated indices, and $P=I J$ (any permutation of it does not need to be checked),
- Let $P=\left(p_{1}, \ldots, p_{k+1}\right)$. We need to show that $\epsilon^{I} \wedge \epsilon^{J}\left(e_{p_{1}}, \ldots\right)=\epsilon^{I J}\left(e_{p_{1}}, \ldots\right)$ for all P.
- If P has repeated indices, by alternating-ness, both sides are zero.
- If P has an index that does not occur in I and J, then both sides are zero (why?)
- If P has no repeated indices, and $P=I J$ (any permutation of it does not need to be checked), then $\epsilon^{I J}\left(e_{P}\right)=1$.
- Let $P=\left(p_{1}, \ldots, p_{k+1}\right)$. We need to show that $\epsilon^{I} \wedge \epsilon^{J}\left(e_{p_{1}}, \ldots\right)=\epsilon^{I J}\left(e_{p_{1}}, \ldots\right)$ for all P.
- If P has repeated indices, by alternating-ness, both sides are zero.
- If P has an index that does not occur in I and J, then both sides are zero (why?)
- If P has no repeated indices, and $P=I J$ (any permutation of it does not need to be checked), then $\epsilon^{I J}\left(e_{P}\right)=1$. For the LHS,
- Let $P=\left(p_{1}, \ldots, p_{k+1}\right)$. We need to show that $\epsilon^{I} \wedge \epsilon^{J}\left(e_{p_{1}}, \ldots\right)=\epsilon^{I J}\left(e_{p_{1}}, \ldots\right)$ for all P.
- If P has repeated indices, by alternating-ness, both sides are zero.
- If P has an index that does not occur in I and J, then both sides are zero (why?)
- If P has no repeated indices, and $P=I J$ (any permutation of it does not need to be checked), then $\epsilon^{I J}\left(e_{P}\right)=1$. For the LHS,
$\epsilon^{\prime} \wedge \epsilon^{J}\left(e_{P}\right)=\frac{1}{k!!!} \sum_{\sigma} \operatorname{sgn}(\sigma) \epsilon^{\prime}\left(e_{p_{\sigma(1)}}, \ldots, e_{p_{\sigma(k)}}\right) \epsilon^{J}\left(e_{p_{\sigma(k+1)}}, \ldots\right)$.
- Let $P=\left(p_{1}, \ldots, p_{k+1}\right)$. We need to show that $\epsilon^{I} \wedge \epsilon^{J}\left(e_{p_{1}}, \ldots\right)=\epsilon^{I J}\left(e_{p_{1}}, \ldots\right)$ for all P.
- If P has repeated indices, by alternating-ness, both sides are zero.
- If P has an index that does not occur in I and J, then both sides are zero (why?)
- If P has no repeated indices, and $P=I J$ (any permutation of it does not need to be checked), then $\epsilon^{I J}\left(e_{P}\right)=1$. For the LHS,
$\epsilon^{\prime} \wedge \epsilon^{J}\left(e_{P}\right)=\frac{1}{k!!!} \sum_{\sigma} \operatorname{sgn}(\sigma) \epsilon^{\prime}\left(e_{p_{\sigma(1)}}, \ldots, e_{p_{\sigma(k)}}\right) \epsilon^{J}\left(e_{p_{\sigma(k+1)}}, \ldots\right)$.
The only surviving terms
- Let $P=\left(p_{1}, \ldots, p_{k+1}\right)$. We need to show that $\epsilon^{I} \wedge \epsilon^{J}\left(e_{p_{1}}, \ldots\right)=\epsilon^{I J}\left(e_{p_{1}}, \ldots\right)$ for all P.
- If P has repeated indices, by alternating-ness, both sides are zero.
- If P has an index that does not occur in I and J, then both sides are zero (why?)
- If P has no repeated indices, and $P=I J$ (any permutation of it does not need to be checked), then $\epsilon^{I J}\left(e_{P}\right)=1$. For the LHS,
$\epsilon^{\prime} \wedge \epsilon^{J}\left(e_{P}\right)=\frac{1}{k!!!} \sum_{\sigma} \operatorname{sgn}(\sigma) \epsilon^{\prime}\left(e_{p_{\sigma(1)}}, \ldots, e_{p_{\sigma(k)}}\right) \epsilon^{J}\left(e_{p_{\sigma(k+1)}}, \ldots\right)$.
The only surviving terms are of the type $\sigma=\tau \psi$.
- Let $P=\left(p_{1}, \ldots, p_{k+1}\right)$. We need to show that $\epsilon^{I} \wedge \epsilon^{J}\left(e_{p_{1}}, \ldots\right)=\epsilon^{I J}\left(e_{p_{1}}, \ldots\right)$ for all P.
- If P has repeated indices, by alternating-ness, both sides are zero.
- If P has an index that does not occur in I and J, then both sides are zero (why?)
- If P has no repeated indices, and $P=I J$ (any permutation of it does not need to be checked), then $\epsilon^{I J}\left(e_{P}\right)=1$. For the LHS,
$\epsilon^{\prime} \wedge \epsilon^{J}\left(e_{P}\right)=\frac{1}{k!!!!} \sum_{\sigma} \operatorname{sgn}(\sigma) \epsilon^{\prime}\left(e_{p_{\sigma(1)}}, \ldots, e_{p_{\sigma(k)}}\right) \epsilon^{J}\left(e_{p_{\sigma(k+1)}}, \ldots\right)$.
The only surviving terms are of the type $\sigma=\tau \psi$. Thus $\epsilon^{\prime} \wedge \epsilon^{J}\left(e_{P}\right)=\frac{1}{k!!!} \sum_{\tau} \operatorname{sgn}(\tau) \epsilon^{\prime}\left(e_{\tau(I)}\right) \sum_{\psi} \operatorname{sgn}(\psi) \epsilon^{J}\left(e_{\psi(J)}\right)=1$ (why?)

Properties of the wedge product

Properties of the wedge product

- Bilinearity (Proof:

Properties of the wedge product

- Bilinearity (Proof: Checking the definition).

Properties of the wedge product

- Bilinearity (Proof: Checking the definition).
- Associativity (Proof:

Properties of the wedge product

- Bilinearity (Proof: Checking the definition).
- Associativity (Proof: Check for basis vectors).

Properties of the wedge product

- Bilinearity (Proof: Checking the definition).
- Associativity (Proof: Check for basis vectors).
- $\omega \wedge \eta=(-1)^{k l} \eta \wedge \omega$ (Proof:

Properties of the wedge product

- Bilinearity (Proof: Checking the definition).
- Associativity (Proof: Check for basis vectors).
- $\omega \wedge \eta=(-1)^{k l} \eta \wedge \omega$ (Proof: Check for basis vectors).
- Bilinearity (Proof: Checking the definition).
- Associativity (Proof: Check for basis vectors).
- $\omega \wedge \eta=(-1)^{k l} \eta \wedge \omega$ (Proof: Check for basis vectors).
- $\epsilon^{i_{1}} \wedge \epsilon^{i_{2}} \ldots=\epsilon^{\prime}$ (Proof:
- Bilinearity (Proof: Checking the definition).
- Associativity (Proof: Check for basis vectors).
- $\omega \wedge \eta=(-1)^{k l} \eta \wedge \omega$ (Proof: Check for basis vectors).
- $\epsilon^{i_{1}} \wedge \epsilon^{i_{2}} \ldots=\epsilon^{l}$ (Proof: Inductively follows from associativity and the above theorem)
- Bilinearity (Proof: Checking the definition).
- Associativity (Proof: Check for basis vectors).
- $\omega \wedge \eta=(-1)^{k l} \eta \wedge \omega$ (Proof: Check for basis vectors).
- $\epsilon^{i_{1}} \wedge \epsilon^{i_{2}} \ldots=\epsilon^{l}$ (Proof: Inductively follows from associativity and the above theorem)
- $\omega^{1} \wedge \omega^{2} \ldots \omega^{k}\left(v_{1}, \ldots, v_{k}\right)=\operatorname{det}\left(\omega^{i}\left(v_{j}\right)\right)$ (Proof:
- Bilinearity (Proof: Checking the definition).
- Associativity (Proof: Check for basis vectors).
- $\omega \wedge \eta=(-1)^{k l} \eta \wedge \omega$ (Proof: Check for basis vectors).
- $\epsilon^{i_{1}} \wedge \epsilon^{i_{2}} \ldots=\epsilon^{l}$ (Proof: Inductively follows from associativity and the above theorem)
- $\omega^{1} \wedge \omega^{2} \ldots \omega^{k}\left(v_{1}, \ldots, v_{k}\right)=\operatorname{det}\left(\omega^{i}\left(v_{j}\right)\right)$ (Proof: Induction and checking for the elementary ones).
- Bilinearity (Proof: Checking the definition).
- Associativity (Proof: Check for basis vectors).
- $\omega \wedge \eta=(-1)^{k l} \eta \wedge \omega$ (Proof: Check for basis vectors).
- $\epsilon^{i_{1}} \wedge \epsilon^{i_{2}} \ldots=\epsilon^{l}$ (Proof: Inductively follows from associativity and the above theorem)
- $\omega^{1} \wedge \omega^{2} \ldots \omega^{k}\left(v_{1}, \ldots, v_{k}\right)=\operatorname{det}\left(\omega^{i}\left(v_{j}\right)\right)$ (Proof: Induction and checking for the elementary ones).
- It turns out that
- Bilinearity (Proof: Checking the definition).
- Associativity (Proof: Check for basis vectors).
- $\omega \wedge \eta=(-1)^{k l} \eta \wedge \omega$ (Proof: Check for basis vectors).
- $\epsilon^{i_{1}} \wedge \epsilon^{i_{2}} \ldots=\epsilon^{l}$ (Proof: Inductively follows from associativity and the above theorem)
- $\omega^{1} \wedge \omega^{2} \ldots \omega^{k}\left(v_{1}, \ldots, v_{k}\right)=\operatorname{det}\left(\omega^{i}\left(v_{j}\right)\right)$ (Proof: Induction and checking for the elementary ones).
- It turns out that the wedge product is the unique such map
- Bilinearity (Proof: Checking the definition).
- Associativity (Proof: Check for basis vectors).
- $\omega \wedge \eta=(-1)^{k l} \eta \wedge \omega$ (Proof: Check for basis vectors).
- $\epsilon^{i_{1}} \wedge \epsilon^{i_{2}} \ldots=\epsilon^{l}$ (Proof: Inductively follows from associativity and the above theorem)
- $\omega^{1} \wedge \omega^{2} \ldots \omega^{k}\left(v_{1}, \ldots, v_{k}\right)=\operatorname{det}\left(\omega^{i}\left(v_{j}\right)\right)$ (Proof: Induction and checking for the elementary ones).
- It turns out that the wedge product is the unique such map satisfying the above properties.
- Bilinearity (Proof: Checking the definition).
- Associativity (Proof: Check for basis vectors).
- $\omega \wedge \eta=(-1)^{k l} \eta \wedge \omega$ (Proof: Check for basis vectors).
- $\epsilon^{i_{1}} \wedge \epsilon^{i_{2}} \ldots=\epsilon^{l}$ (Proof: Inductively follows from associativity and the above theorem)
- $\omega^{1} \wedge \omega^{2} \ldots \omega^{k}\left(v_{1}, \ldots, v_{k}\right)=\operatorname{det}\left(\omega^{i}\left(v_{j}\right)\right)$ (Proof: Induction and checking for the elementary ones).
- It turns out that the wedge product is the unique such map satisfying the above properties.
- Caution:
- Bilinearity (Proof: Checking the definition).
- Associativity (Proof: Check for basis vectors).
- $\omega \wedge \eta=(-1)^{k l} \eta \wedge \omega$ (Proof: Check for basis vectors).
- $\epsilon^{i_{1}} \wedge \epsilon^{i_{2}} \ldots=\epsilon^{l}$ (Proof: Inductively follows from associativity and the above theorem)
- $\omega^{1} \wedge \omega^{2} \ldots \omega^{k}\left(v_{1}, \ldots, v_{k}\right)=\operatorname{det}\left(\omega^{i}\left(v_{j}\right)\right)$ (Proof: Induction and checking for the elementary ones).
- It turns out that the wedge product is the unique such map satisfying the above properties.
- Caution: Not every form
- Bilinearity (Proof: Checking the definition).
- Associativity (Proof: Check for basis vectors).
- $\omega \wedge \eta=(-1)^{k l} \eta \wedge \omega$ (Proof: Check for basis vectors).
- $\epsilon^{i_{1}} \wedge \epsilon^{i_{2}} \ldots=\epsilon^{l}$ (Proof: Inductively follows from associativity and the above theorem)
- $\omega^{1} \wedge \omega^{2} \ldots \omega^{k}\left(v_{1}, \ldots, v_{k}\right)=\operatorname{det}\left(\omega^{i}\left(v_{j}\right)\right)$ (Proof: Induction and checking for the elementary ones).
- It turns out that the wedge product is the unique such map satisfying the above properties.
- Caution: Not every form is a wedge of 1-forms (

Properties of the wedge product

- Bilinearity (Proof: Checking the definition).
- Associativity (Proof: Check for basis vectors).
- $\omega \wedge \eta=(-1)^{k l} \eta \wedge \omega$ (Proof: Check for basis vectors).
- $\epsilon^{i_{1}} \wedge \epsilon^{i_{2}} \ldots=\epsilon^{l}$ (Proof: Inductively follows from associativity and the above theorem)
- $\omega^{1} \wedge \omega^{2} \ldots \omega^{k}\left(v_{1}, \ldots, v_{k}\right)=\operatorname{det}\left(\omega^{i}\left(v_{j}\right)\right)$ (Proof: Induction and checking for the elementary ones).
- It turns out that the wedge product is the unique such map satisfying the above properties.
- Caution: Not every form is a wedge of 1-forms (such forms are called decomposable).

Properties of the wedge product

- Bilinearity (Proof: Checking the definition).
- Associativity (Proof: Check for basis vectors).
- $\omega \wedge \eta=(-1)^{k l} \eta \wedge \omega$ (Proof: Check for basis vectors).
- $\epsilon^{i_{1}} \wedge \epsilon^{i_{2}} \ldots=\epsilon^{l}$ (Proof: Inductively follows from associativity and the above theorem)
- $\omega^{1} \wedge \omega^{2} \ldots \omega^{k}\left(v_{1}, \ldots, v_{k}\right)=\operatorname{det}\left(\omega^{i}\left(v_{j}\right)\right)$ (Proof: Induction and checking for the elementary ones).
- It turns out that the wedge product is the unique such map satisfying the above properties.
- Caution: Not every form is a wedge of 1-forms (such forms are called decomposable).
- $\ln \mathbb{R}^{3}$ there is

Properties of the wedge product

- Bilinearity (Proof: Checking the definition).
- Associativity (Proof: Check for basis vectors).
- $\omega \wedge \eta=(-1)^{k l} \eta \wedge \omega$ (Proof: Check for basis vectors).
- $\epsilon^{i_{1}} \wedge \epsilon^{i_{2}} \ldots=\epsilon^{l}$ (Proof: Inductively follows from associativity and the above theorem)
- $\omega^{1} \wedge \omega^{2} \ldots \omega^{k}\left(v_{1}, \ldots, v_{k}\right)=\operatorname{det}\left(\omega^{i}\left(v_{j}\right)\right)$ (Proof: Induction and checking for the elementary ones).
- It turns out that the wedge product is the unique such map satisfying the above properties.
- Caution: Not every form is a wedge of 1 -forms (such forms are called decomposable).
- $\ln \mathbb{R}^{3}$ there is an identification of 2-forms with \mathbb{R}^{3} itself

Properties of the wedge product

- Bilinearity (Proof: Checking the definition).
- Associativity (Proof: Check for basis vectors).
- $\omega \wedge \eta=(-1)^{k l} \eta \wedge \omega$ (Proof: Check for basis vectors).
- $\epsilon^{i_{1}} \wedge \epsilon^{i_{2}} \ldots=\epsilon^{l}$ (Proof: Inductively follows from associativity and the above theorem)
- $\omega^{1} \wedge \omega^{2} \ldots \omega^{k}\left(v_{1}, \ldots, v_{k}\right)=\operatorname{det}\left(\omega^{i}\left(v_{j}\right)\right)$ (Proof: Induction and checking for the elementary ones).
- It turns out that the wedge product is the unique such map satisfying the above properties.
- Caution: Not every form is a wedge of 1 -forms (such forms are called decomposable).
- In \mathbb{R}^{3} there is an identification of 2-forms with \mathbb{R}^{3} itself and hence the cross product makes sense (

Properties of the wedge product

- Bilinearity (Proof: Checking the definition).
- Associativity (Proof: Check for basis vectors).
- $\omega \wedge \eta=(-1)^{k l} \eta \wedge \omega$ (Proof: Check for basis vectors).
- $\epsilon^{i_{1}} \wedge \epsilon^{i_{2}} \ldots=\epsilon^{l}$ (Proof: Inductively follows from associativity and the above theorem)
- $\omega^{1} \wedge \omega^{2} \ldots \omega^{k}\left(v_{1}, \ldots, v_{k}\right)=\operatorname{det}\left(\omega^{i}\left(v_{j}\right)\right)$ (Proof: Induction and checking for the elementary ones).
- It turns out that the wedge product is the unique such map satisfying the above properties.
- Caution: Not every form is a wedge of 1 -forms (such forms are called decomposable).
- In \mathbb{R}^{3} there is an identification of 2-forms with \mathbb{R}^{3} itself and hence the cross product makes sense (but the choice of this identification

Properties of the wedge product

- Bilinearity (Proof: Checking the definition).
- Associativity (Proof: Check for basis vectors).
- $\omega \wedge \eta=(-1)^{k l} \eta \wedge \omega$ (Proof: Check for basis vectors).
- $\epsilon^{i_{1}} \wedge \epsilon^{i_{2}} \ldots=\epsilon^{l}$ (Proof: Inductively follows from associativity and the above theorem)
- $\omega^{1} \wedge \omega^{2} \ldots \omega^{k}\left(v_{1}, \ldots, v_{k}\right)=\operatorname{det}\left(\omega^{i}\left(v_{j}\right)\right)$ (Proof: Induction and checking for the elementary ones).
- It turns out that the wedge product is the unique such map satisfying the above properties.
- Caution: Not every form is a wedge of 1-forms (such forms are called decomposable).
- In \mathbb{R}^{3} there is an identification of 2-forms with \mathbb{R}^{3} itself and hence the cross product makes sense (but the choice of this identification matters. Sometimes $\vec{a} \times \vec{b}$ is called a pseudovector).

Differential forms on manifolds

Differential forms on manifolds

- We can take the disjoint union

Differential forms on manifolds

- We can take the disjoint union $\Lambda^{k} T^{*} M=\cup_{p \in M} \Lambda^{k} T_{p}^{*} M$.

Differential forms on manifolds

- We can take the disjoint union $\Lambda^{k} T^{*} M=\cup_{p \in M} \Lambda^{k} T_{p}^{*} M$.
- Suppose (U, x) is a chart.

Differential forms on manifolds

- We can take the disjoint union $\Lambda^{k} T^{*} M=\cup_{p \in M} \Lambda^{k} T_{p}^{*} M$.
- Suppose (U, x) is a chart. Since $\epsilon^{i}=d x^{i}$ is a basis for $T_{p}^{*} M$,

Differential forms on manifolds

- We can take the disjoint union $\Lambda^{k} T^{*} M=\cup_{p \in M} \Lambda^{k} T_{p}^{*} M$.
- Suppose (U, x) is a chart. Since $\epsilon^{i}=d x^{i}$ is a basis for $T_{p}^{*} M$, whenever I is an increasing multi-index,

Differential forms on manifolds

- We can take the disjoint union $\Lambda^{k} T^{*} M=\cup_{p \in M} \Lambda^{k} T_{p}^{*} M$.
- Suppose (U, x) is a chart. Since $\epsilon^{i}=d x^{i}$ is a basis for $T_{p}^{*} M$, whenever I is an increasing multi-index, $\epsilon^{I}=d x^{i_{1}} \wedge d x^{i_{2}} \ldots$ is a basis for $\Lambda^{k} T_{p}^{*} M$.

Differential forms on manifolds

- We can take the disjoint union $\Lambda^{k} T^{*} M=\cup_{p \in M} \Lambda^{k} T_{p}^{*} M$.
- Suppose (U, x) is a chart. Since $\epsilon^{i}=d x^{i}$ is a basis for $T_{p}^{*} M$, whenever I is an increasing multi-index, $\epsilon^{I}=d x^{i_{1}} \wedge d x^{i_{2}} \ldots$ is a basis for $\Lambda^{k} T_{p}^{*} M$.
- We can give $\Lambda^{k} T^{*} M$ a vector bundle structure

Differential forms on manifolds

- We can take the disjoint union $\Lambda^{k} T^{*} M=\cup_{p \in M} \Lambda^{k} T_{p}^{*} M$.
- Suppose (U, x) is a chart. Since $\epsilon^{i}=d x^{i}$ is a basis for $T_{p}^{*} M$, whenever I is an increasing multi-index, $\epsilon^{I}=d x^{i_{1}} \wedge d x^{i_{2}} \ldots$ is a basis for $\Lambda^{k} T_{p}^{*} M$.
- We can give $\Lambda^{k} T^{*} M$ a vector bundle structure using these coordinate bases.

Differential forms on manifolds

- We can take the disjoint union $\Lambda^{k} T^{*} M=\cup_{p \in M} \Lambda^{k} T_{p}^{*} M$.
- Suppose (U, x) is a chart. Since $\epsilon^{i}=d x^{i}$ is a basis for $T_{p}^{*} M$, whenever I is an increasing multi-index, $\epsilon^{I}=d x^{i_{1}} \wedge d x^{i_{2}} \ldots$ is a basis for $\Lambda^{k} T_{p}^{*} M$.
- We can give $\Lambda^{k} T^{*} M$ a vector bundle structure using these coordinate bases. A smooth section of this bundle of differential k-forms

Differential forms on manifolds

- We can take the disjoint union $\Lambda^{k} T^{*} M=\cup_{p \in M} \Lambda^{k} T_{p}^{*} M$.
- Suppose (U, x) is a chart. Since $\epsilon^{i}=d x^{i}$ is a basis for $T_{p}^{*} M$, whenever I is an increasing multi-index, $\epsilon^{I}=d x^{i_{1}} \wedge d x^{i_{2}} \ldots$ is a basis for $\Lambda^{k} T_{p}^{*} M$.
- We can give $\Lambda^{k} T^{*} M$ a vector bundle structure using these coordinate bases. A smooth section of this bundle of differential k-forms is called a k-form field (or simply a k-form).

Differential forms on manifolds

- We can take the disjoint union $\Lambda^{k} T^{*} M=\cup_{p \in M} \Lambda^{k} T_{p}^{*} M$.
- Suppose (U, x) is a chart. Since $\epsilon^{i}=d x^{i}$ is a basis for $T_{p}^{*} M$, whenever I is an increasing multi-index, $\epsilon^{I}=d x^{i_{1}} \wedge d x^{i_{2}} \ldots$ is a basis for $\Lambda^{k} T_{p}^{*} M$.
- We can give $\Lambda^{k} T^{*} M$ a vector bundle structure using these coordinate bases. A smooth section of this bundle of differential k-forms is called a k-form field (or simply a k-form). Such an object is a smooth linear combination

Differential forms on manifolds

- We can take the disjoint union $\Lambda^{k} T^{*} M=\cup_{p \in M} \Lambda^{k} T_{p}^{*} M$.
- Suppose (U, x) is a chart. Since $\epsilon^{i}=d x^{i}$ is a basis for $T_{p}^{*} M$, whenever I is an increasing multi-index, $\epsilon^{I}=d x^{i_{1}} \wedge d x^{i_{2}} \ldots$ is a basis for $\Lambda^{k} T_{p}^{*} M$.
- We can give $\Lambda^{k} T^{*} M$ a vector bundle structure using these coordinate bases. A smooth section of this bundle of differential k-forms is called a k-form field (or simply a k-form). Such an object is a smooth linear combination of $d x^{\prime}$.

Differential forms on manifolds

- We can take the disjoint union $\Lambda^{k} T^{*} M=\cup_{p \in M} \Lambda^{k} T_{p}^{*} M$.
- Suppose (U, x) is a chart. Since $\epsilon^{i}=d x^{i}$ is a basis for $T_{p}^{*} M$, whenever I is an increasing multi-index, $\epsilon^{I}=d x^{i_{1}} \wedge d x^{i_{2}} \ldots$ is a basis for $\Lambda^{k} T_{p}^{*} M$.
- We can give $\Lambda^{k} T^{*} M$ a vector bundle structure using these coordinate bases. A smooth section of this bundle of differential k-forms is called a k-form field (or simply a k-form). Such an object is a smooth linear combination of $d x^{\prime}$.
- We can define the wedge product of forms.

Differential forms on manifolds

- We can take the disjoint union $\Lambda^{k} T^{*} M=\cup_{p \in M} \Lambda^{k} T_{p}^{*} M$.
- Suppose (U, x) is a chart. Since $\epsilon^{i}=d x^{i}$ is a basis for $T_{p}^{*} M$, whenever I is an increasing multi-index, $\epsilon^{I}=d x^{i_{1}} \wedge d x^{i_{2}} \ldots$ is a basis for $\Lambda^{k} T_{p}^{*} M$.
- We can give $\Lambda^{k} T^{*} M$ a vector bundle structure using these coordinate bases. A smooth section of this bundle of differential k-forms is called a k-form field (or simply a k-form). Such an object is a smooth linear combination of $d x^{\prime}$.
- We can define the wedge product of forms. Moreover, functions are treated as 0 -forms.

Differential forms on manifolds

- We can take the disjoint union $\Lambda^{k} T^{*} M=\cup_{p \in M} \Lambda^{k} T_{p}^{*} M$.
- Suppose (U, x) is a chart. Since $\epsilon^{i}=d x^{i}$ is a basis for $T_{p}^{*} M$, whenever I is an increasing multi-index, $\epsilon^{I}=d x^{i_{1}} \wedge d x^{i_{2}} \ldots$ is a basis for $\Lambda^{k} T_{p}^{*} M$.
- We can give $\Lambda^{k} T^{*} M$ a vector bundle structure using these coordinate bases. A smooth section of this bundle of differential k-forms is called a k-form field (or simply a k-form). Such an object is a smooth linear combination of $d x^{\prime}$.
- We can define the wedge product of forms. Moreover, functions are treated as 0 -forms. $f \wedge \eta=f \eta$ if f is a function.

Pullback and wedge product

Pullback and wedge product

- Suppose $F: M \rightarrow N$ is smooth.

Pullback and wedge product

- Suppose $F: M \rightarrow N$ is smooth. We can define the pullback as follows:
- Suppose $F: M \rightarrow N$ is smooth. We can define the pullback as follows: If ω is a k-form field on N,
- Suppose $F: M \rightarrow N$ is smooth. We can define the pullback as follows: If ω is a k-form field on $N, F^{*} \omega$ is a k-form field on M
- Suppose $F: M \rightarrow N$ is smooth. We can define the pullback as follows: If ω is a k-form field on $N, F^{*} \omega$ is a k-form field on M such that $\left(F^{*} \omega\right)_{p}\left(v_{1}, \ldots\right)=\omega_{F(p)}\left(\left(F_{*}\right)_{p}\left(v_{1}\right), \ldots\right)$.

Pullback and wedge product

- Suppose $F: M \rightarrow N$ is smooth. We can define the pullback as follows: If ω is a k-form field on $N, F^{*} \omega$ is a k-form field on M such that $\left(F^{*} \omega\right)_{p}\left(v_{1}, \ldots\right)=\omega_{F(p)}\left(\left(F_{*}\right)_{p}\left(v_{1}\right), \ldots\right)$.
- For functions,

Pullback and wedge product

- Suppose $F: M \rightarrow N$ is smooth. We can define the pullback as follows: If ω is a k-form field on $N, F^{*} \omega$ is a k-form field on M such that $\left(F^{*} \omega\right)_{p}\left(v_{1}, \ldots\right)=\omega_{F(p)}\left(\left(F_{*}\right)_{p}\left(v_{1}\right), \ldots\right)$.
- For functions, by definition, $F^{*} f(p)=f(F(p))=f \circ F(p)$.
- Suppose $F: M \rightarrow N$ is smooth. We can define the pullback as follows: If ω is a k-form field on $N, F^{*} \omega$ is a k-form field on M such that $\left(F^{*} \omega\right)_{p}\left(v_{1}, \ldots\right)=\omega_{F(p)}\left(\left(F_{*}\right)_{p}\left(v_{1}\right), \ldots\right)$.
- For functions, by definition, $F^{*} f(p)=f(F(p))=f \circ F(p)$.
- Recall that $F^{*} d f=d F^{*} f$.

Pullback and wedge product

- Suppose $F: M \rightarrow N$ is smooth. We can define the pullback as follows: If ω is a k-form field on $N, F^{*} \omega$ is a k-form field on M such that $\left(F^{*} \omega\right)_{p}\left(v_{1}, \ldots\right)=\omega_{F(p)}\left(\left(F_{*}\right)_{p}\left(v_{1}\right), \ldots\right)$.
- For functions, by definition, $F^{*} f(p)=f(F(p))=f \circ F(p)$.
- Recall that $F^{*} d f=d F^{*} f$. Moreover, if $\omega=\omega_{i} d x^{i}$, then $F^{*} \omega=\omega_{i} \circ F d F^{i}$.

Pullback and wedge product

- Suppose $F: M \rightarrow N$ is smooth. We can define the pullback as follows: If ω is a k-form field on $N, F^{*} \omega$ is a k-form field on M such that $\left(F^{*} \omega\right)_{p}\left(v_{1}, \ldots\right)=\omega_{F(p)}\left(\left(F_{*}\right)_{p}\left(v_{1}\right), \ldots\right)$.
- For functions, by definition, $F^{*} f(p)=f(F(p))=f \circ F(p)$.
- Recall that $F^{*} d f=d F^{*} f$. Moreover, if $\omega=\omega_{i} d x^{i}$, then $F^{*} \omega=\omega_{i} \circ F d F^{i}$.
- For k-forms,
- Suppose $F: M \rightarrow N$ is smooth. We can define the pullback as follows: If ω is a k-form field on $N, F^{*} \omega$ is a k-form field on M such that $\left(F^{*} \omega\right)_{p}\left(v_{1}, \ldots\right)=\omega_{F(p)}\left(\left(F_{*}\right)_{p}\left(v_{1}\right), \ldots\right)$.
- For functions, by definition, $F^{*} f(p)=f(F(p))=f \circ F(p)$.
- Recall that $F^{*} d f=d F^{*} f$. Moreover, if $\omega=\omega_{i} d x^{i}$, then $F^{*} \omega=\omega_{i} \circ F d F^{i}$.
- For k-forms, the pullback is \mathbb{R}-linear (why?).
- Suppose $F: M \rightarrow N$ is smooth. We can define the pullback as follows: If ω is a k-form field on $N, F^{*} \omega$ is a k-form field on M such that $\left(F^{*} \omega\right)_{p}\left(v_{1}, \ldots\right)=\omega_{F(p)}\left(\left(F_{*}\right)_{p}\left(v_{1}\right), \ldots\right)$.
- For functions, by definition, $F^{*} f(p)=f(F(p))=f \circ F(p)$.
- Recall that $F^{*} d f=d F^{*} f$. Moreover, if $\omega=\omega_{i} d x^{i}$, then $F^{*} \omega=\omega_{i} \circ F d F^{i}$.
- For k-forms, the pullback is \mathbb{R}-linear (why?).
- $F^{*}(\omega \wedge \eta)=F^{*} \omega \wedge F^{*} \eta$ (why?)
- Suppose $F: M \rightarrow N$ is smooth. We can define the pullback as follows: If ω is a k-form field on $N, F^{*} \omega$ is a k-form field on M such that $\left(F^{*} \omega\right)_{p}\left(v_{1}, \ldots\right)=\omega_{F(p)}\left(\left(F_{*}\right)_{p}\left(v_{1}\right), \ldots\right)$.
- For functions, by definition, $F^{*} f(p)=f(F(p))=f \circ F(p)$.
- Recall that $F^{*} d f=d F^{*} f$. Moreover, if $\omega=\omega_{i} d x^{i}$, then $F^{*} \omega=\omega_{i} \circ F d F^{i}$.
- For k-forms, the pullback is \mathbb{R}-linear (why?).
- $F^{*}(\omega \wedge \eta)=F^{*} \omega \wedge F^{*} \eta$ (why?)
- Using this property,
- Suppose $F: M \rightarrow N$ is smooth. We can define the pullback as follows: If ω is a k-form field on $N, F^{*} \omega$ is a k-form field on M such that $\left(F^{*} \omega\right)_{p}\left(v_{1}, \ldots\right)=\omega_{F(p)}\left(\left(F_{*}\right)_{p}\left(v_{1}\right), \ldots\right)$.
- For functions, by definition, $F^{*} f(p)=f(F(p))=f \circ F(p)$.
- Recall that $F^{*} d f=d F^{*} f$. Moreover, if $\omega=\omega_{i} d x^{i}$, then $F^{*} \omega=\omega_{i} \circ F d F^{i}$.
- For k-forms, the pullback is \mathbb{R}-linear (why?).
- $F^{*}(\omega \wedge \eta)=F^{*} \omega \wedge F^{*} \eta$ (why?)
- Using this property, we can calculate pullbacks for several examples.

Pullback for top-forms

Pullback for top-forms

- Suppose $\omega=f d y^{1} \ldots d y^{n}$,

Pullback for top-forms

- Suppose $\omega=f d y^{1} \ldots d y^{n}$, then $F^{*} \omega=F * f d F^{1} \ldots d F^{n}$, which

Pullback for top-forms

- Suppose $\omega=f d y^{1} \ldots d y^{n}$, then $F^{*} \omega=F * f d F^{1} \ldots d F^{n}$, which when acted on $\frac{\partial}{\partial x^{1}}, \ldots$ is

Pullback for top-forms

- Suppose $\omega=f d y^{1} \ldots d y^{n}$, then $F^{*} \omega=F * f d F^{1} \ldots d F^{n}$, which when acted on $\frac{\partial}{\partial x^{1}}, \ldots$ is $F^{f} \operatorname{det}\left(\frac{\partial F^{i}}{\partial x^{j}}\right) d x^{1} \ldots d x^{n}$.

Pullback for top-forms

- Suppose $\omega=f d y^{1} \ldots d y^{n}$, then $F^{*} \omega=F * f d F^{1} \ldots d F^{n}$, which when acted on $\frac{\partial}{\partial x^{1}}, \ldots$ is $F^{f} \operatorname{det}\left(\frac{\partial F^{i}}{\partial x^{j}}\right) d x^{1} \ldots d x^{n}$.
- In particular, $d \tilde{x}^{1} \wedge \ldots=\operatorname{det}\left(\frac{\partial \tilde{x}^{i}}{\partial x^{j}}\right) d x^{1} \wedge \ldots$.

