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Change of top forms under a map

e If V is an n-dimensional v. space, then elements of A"(V*) are
called “top forms" (because there are no forms beyond them).

@ Let T:V — V be a linear map and w be a top form. Then
w(Tvi, ..., Tvy) =det(T)w(va,. .., Vn).

@ Proof: Let ey,...,e, be a basis of V. We note that
w = cet?+" for some c. Since both sides are top forms, we
only need to check when v; = e;. The RHS is det(T)c. The
LHS is cdet(Tey,..., Tey) = cdet(T) (why?). Hence we are
done. Ol
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Wedge product: Motivation

@ How does one generalise the cross product? Why must one
generalise it?

@ Why: To talk perhaps of signed volumes in higher dimensions.
Possibly to generalise the notion of curl Vx to formulate an
FTC.

e How: Naively, (a x b)jj = ajb; — ajb;, i.e., it is a 2-form! So
perhaps we can talk of the “cross product” (we shall call it
the wedge product) of a k-form with an /-form to get w A7 -
a (k + I)-form.
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wAn = (J”) Alt(w ® n).
@ So for instance, el Ae? = el @ €2 — 2 @ ! = €12, So

e AE(v,w) = viw? — v2ul.

@ Why the weird numerical factor?
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BA( @@ —2Red @) =
S, sgn(0)e” M @ €72 @ e7B) = 123 = 1 A (2 A €3). Bear
in mind that some old books don’t have this factor.
@ More generally, Theorem: For any two multi-indices /, J,
e ned =€V,
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o Let P=(p1,...,pk+s)- We need to show that
e Nel(ep,...) =€eY(ep,...) forall P.

@ If P has repeated indices, by alternating-ness, both sides are
zero.

@ If P has an index that does not occur in [ and J, then both
sides are zero (why?)

@ If P has no repeated indices, and P = IJ (any permutation of
it does not need to be checked), then ¢”(ep) = 1. For the
LHS,

I'ad _ 1 ! J
e'Ne'(ep) = a7 25 SBN(0)€ (pyyys - -+ s €psy JE (Epyisnys - - -)-
The only surviving terms are of the type 0 = 7. Thus

el Nel(ep) = 4 X2, san(T)e (er(1y) Yo, sgn(vh)e! (ey(s)) =1
(why?)
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@ Bilinearity (Proof: Checking the definition).

@ Associativity (Proof: Check for basis vectors).

o wAn=(—1)"nAw (Proof: Check for basis vectors).

o ¢t Ne? ... = ¢! (Proof: Inductively follows from associativity
and the above theorem)

o wlAw?. . wk(vy,...,v) = det(w'(v;)) (Proof: Induction

and checking for the elementary ones).

@ It turns out that the wedge product is the unique such map
satisfying the above properties.

e Caution: Not every form is a wedge of 1-forms (such forms
are called decomposable).
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Properties of the wedge product

Bilinearity (Proof: Checking the definition).
Associativity (Proof: Check for basis vectors).
wAn=(—1)"n Aw (Proof: Check for basis vectors).

et ANe? ... = ¢ (Proof: Inductively follows from associativity
and the above theorem)

e 6 o6 o

o wlAw?. . wk(vy,...,v) = det(w'(v;)) (Proof: Induction
and checking for the elementary ones).

@ It turns out that the wedge product is the unique such map
satisfying the above properties.

e Caution: Not every form is a wedge of 1-forms (such forms
are called decomposable).

@ In R3 there is an identification of 2-forms with R3 itself and
hence the cross product makes sense (but the choice of this
identification matters. Sometimes & x b is called a
pseudovector).
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@ We can take the disjoint union AKT*M = U,y AT M.

o Suppose (U, x) is a chart. Since ¢ = dx' is a basis for ToM,
whenever [ is an increasing multi-index, el =dxt ANdx2 ... is
a basis for Ak T;,‘M.

@ We can give A T*M a vector bundle structure using these
coordinate bases. A smooth section of this bundle of
differential k-forms is called a k-form field (or simply a
k-form). Such an object is a smooth linear combination of
dx’.

@ We can define the wedge product of forms. Moreover,
functions are treated as O-forms. f An = fn if f is a function.
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Suppose F : M — N is smooth. We can define the pullback
as follows: If w is a k-form field on N, F*w is a k-form field
on M such that (F*w)p(vi,...) = wrp)((F)p(va),- - )

e For functions, by definition, F*f(p) = f(F(p)) = f o F(p).

@ Recall that F*df = dF*f. Moreover, if w = w,-dx , then
F*w = wj o FdF'.

e For k-forms, the pullback is R-linear (why?).

o F*(wAn)=F'wA F*n (why?)

@ Using this property, we can calculate pullbacks for several
examples.
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Pullback for top-forms

o Suppose w = fdy!...dy", then F*w = F % fdF' ... dF",
which when acted on %, ...is Ff det(%)dx1 coodx”

e In particular, dX* A ... = det(g—i’:)dx1 AL
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