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More examples of smooth manifolds.
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Examples

Consider S1 with the usual smooth structure. The function
f : R→ S1 given by f (t) = (cos(t), sin(t)) is smooth. Indeed,
consider the usual 4 graph charts on S1. For instance, y > 0.
Then φ(x , y) = x is the chart. So f (t) = cos(t) is the
function which is smooth in this chart. Likewise for the others.

f : Rn → T n given by f (t) = (e it
1
, e it

2
, . . .) is smooth.

The inclusion map i : Sn → Rn+1 is smooth: Indeed, in the
stereographic charts, we see that

∑
i (y

i
+)2 = 1+xn+1

1−xn+1 from

which we can solve for xn+1 smoothly, and i(y1+, . . .) =
((1− xn+1)y1, (1− xn+1)y2, . . . , (1− xn+1)yn, xn+1).
Likewise for the other chart.

The quotient map π : Rn+1 − 0→ RPn is smooth (why?)

Define q : Sn → RPn by restriction of π. It is smooth (why?)
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Diffeomorphisms

A smooth bijection f : M → N is called a diffeomorphism if
f −1 is smooth. (The open interval is not diffeomorphic to a
circle for instance.)

The map F : Bn → Rn given by F (x) = x
1−|x |2 is a

diffeomorphism.

Any smooth coordinate chart (φ,U) on M is actually a
diffeomorphism between U ⊂ M and φ(U) (⊂ Hn or Rn).

Compositions of diffeos are diffeos, Cartesian products of
diffeos are diffeos, diffeos are homeos, being diffeomorphic is
an equivalence relation, the boundary is taken to the
boundary under a diffeo.

Recall the smooth structure φ(u) = u3 on R? This structure
is not the same as the usual one, but is diffeomorphic to it:
F : R→ R̃ given by F (x) = x1/3. In charts, it is F (t) = t
which is a diffeo.
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Compositions of diffeos are diffeos, Cartesian products of
diffeos are diffeos, diffeos are homeos, being diffeomorphic is
an equivalence relation, the boundary is taken to the
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Recall the smooth structure φ(u) = u3 on R? This structure
is not the same as the usual one, but is diffeomorphic to it:
F : R→ R̃ given by F (x) = x1/3. In charts, it is F (t) = t
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Differential topology

The aim of differential topology is to classify (i.e., write a list)
of “standard manifolds” with a way of telling whether a given
manifold is diffeo to anything in the list.

A 1-manifold is diffeo to either an open interval or a circle. If
it has boundary, then to an interval or a half-line.

A compact 2-manifold is diffeo to “a g -hold surface”.

Compact 3-manifolds are classified by geometrisation.

For 4 and above, it is complicated.
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Local to global - partitions of unity

Unfortunately, one cannot glue smooth functions that agree
on closed subsets.

On the other hand, it is helpful to construct lots of smooth
functions. For instance, if one wants a bump function or
perhaps a 1− 1 map from M to RN , and so on.

More generally, one often has local functions fα that one
somehow wants to “blend together” to form a global one.

To this end, it is helpful to have a partition-of-unity, i.e., a
collection of smooth non-negative functions φα such that∑

α φα = 1 and there is a restriction on their supports.
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Paracompactness

Note that it makes sense to only sum up finitely many
numbers. So it is helpful to have open covers Uα such that
every point has a neighbourhood intersecting only finitely
many sets. Such covers are called locally finite.

Unfortunately, not every cover is locally finite (or even has a
locally finite subcover): Consider (−n, n) covering R. The
best we can do in this example is to take (m,m + 1),
(m − 1/2,m + 1/2). This cover is a refinement of the
previous cover, i.e., every subset is in some Uα.

Paracompact space: Every open cover has a locally finite open
refinement.

Proposition: Every smooth (in fact, just topological is enough)
manifold is paracompact. (In fact, every metric space is so.)
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Exhaustion

To prove the above proposition (and for other reasons), we
need to “exhaust” the manifold by compact sets: A sequence
Ki of compact sets is said to provide an exhaustion of a space
X if X = ∪iKi and Ki ⊂ Int(Ki+1).

Existence of an exhaustion of a topological manifold (with or
without boundary): Consider the countable basis of coordinate
balls or half-balls Bm (recall that their closures are compact).
Let K1 = B̄1. Suppose K1, . . . ,Ki have been found such that
Kj ⊂ Int(Kj+1). Choose Mi so that Ki ⊂ B1 ∪ B2 . . .BMi

.
Assume that Mi ≥ i + 1. Now Ki+1 := B̄1 ∪ B̄2 . . .. Since
Bi ⊂ Ki (by inductive construction), we are done.
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Returning to paracompactness

Proposition: Given a topological manifold M, an open cover χ
of M, any basis B for M’s topology, there exists a countable,
locally finite refinement of χ, consisting of elements of B.
(Similar if boundary is there.)

Proof: Consider an exhaustion Ki . Let Vj = Kj+1 − Int(Kj).
Cover the Vj ’s by finitely many elements of B such that each
element is in B and in Wj = Kj+2 − Int(Kj−1). Since
M = ∪jVj , these elements cover M form a refinement, and
since Wj ∩Wk = φ unless j − 2 ≤ k ≤ j + 2, it is locally finite.
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Partition-of-unity

Let χ = {Uα} be an open cover of M. A partition-of-unity
subordinate to χ is a family of smooth functions
ρα : Uα → R≥0 such that 0 ≤ ρα ≤ 1, supp(ρα) ⊂ Uα, the
supports are locally finite, i.e. every point has a
neighbourhood intersecting only finitely many of them,∑

α ρα = 1.

Theorem: Suppose M is a smooth manifold with or without
boundary. Let χ be an open cover of M. Then there exists a
smooth partition of unity subordinate to it. There also exists
a partition-of-unity consisting of compact supports
subordinate to a locally finite countable open refinement.
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