MA 229/MA 235 - Lecture 8

IISc

• More examples of smooth manifolds.

- More examples of smooth manifolds.
- Manifolds-with-boundary.

- More examples of smooth manifolds.
- Manifolds-with-boundary.
- Smooth maps.

• Consider S^1 with the usual smooth structure.

• Consider S^1 with the usual smooth structure. The function $f: \mathbb{R} \to S^1$ given by $f(t) = (\cos(t), \sin(t))$ is smooth.

• Consider S^1 with the usual smooth structure. The function $f: \mathbb{R} \to S^1$ given by $f(t) = (\cos(t), \sin(t))$ is smooth. Indeed, consider the usual 4 graph charts on S^1 .

• Consider S^1 with the usual smooth structure. The function $f: \mathbb{R} \to S^1$ given by $f(t) = (\cos(t), \sin(t))$ is smooth. Indeed, consider the usual 4 graph charts on S^1 . For instance, y > 0.

• Consider S^1 with the usual smooth structure. The function $f: \mathbb{R} \to S^1$ given by $f(t) = (\cos(t), \sin(t))$ is smooth. Indeed, consider the usual 4 graph charts on S^1 . For instance, y>0. Then $\phi(x,y)=x$ is the chart.

• Consider S^1 with the usual smooth structure. The function $f: \mathbb{R} \to S^1$ given by $f(t) = (\cos(t), \sin(t))$ is smooth. Indeed, consider the usual 4 graph charts on S^1 . For instance, y > 0. Then $\phi(x, y) = x$ is the chart. So $f(t) = \cos(t)$ is the function which is smooth in this chart.

• Consider S^1 with the usual smooth structure. The function $f: \mathbb{R} \to S^1$ given by $f(t) = (\cos(t), \sin(t))$ is smooth. Indeed, consider the usual 4 graph charts on S^1 . For instance, y > 0. Then $\phi(x, y) = x$ is the chart. So $f(t) = \cos(t)$ is the function which is smooth in this chart. Likewise for the others.

- Consider S^1 with the usual smooth structure. The function $f: \mathbb{R} \to S^1$ given by $f(t) = (\cos(t), \sin(t))$ is smooth. Indeed, consider the usual 4 graph charts on S^1 . For instance, y>0. Then $\phi(x,y)=x$ is the chart. So $f(t)=\cos(t)$ is the function which is smooth in this chart. Likewise for the others.
- $f: \mathbb{R}^n \to T^n$ given by $f(t) = (e^{it^1}, e^{it^2}, \ldots)$ is smooth.

- Consider S^1 with the usual smooth structure. The function $f: \mathbb{R} \to S^1$ given by $f(t) = (\cos(t), \sin(t))$ is smooth. Indeed, consider the usual 4 graph charts on S^1 . For instance, y>0. Then $\phi(x,y)=x$ is the chart. So $f(t)=\cos(t)$ is the function which is smooth in this chart. Likewise for the others.
- $f: \mathbb{R}^n \to T^n$ given by $f(t) = (e^{it^1}, e^{it^2}, \ldots)$ is smooth.
- ullet The inclusion map $i:S^n o \mathbb{R}^{n+1}$ is smooth:

- Consider S^1 with the usual smooth structure. The function $f: \mathbb{R} \to S^1$ given by $f(t) = (\cos(t), \sin(t))$ is smooth. Indeed, consider the usual 4 graph charts on S^1 . For instance, y>0. Then $\phi(x,y)=x$ is the chart. So $f(t)=\cos(t)$ is the function which is smooth in this chart. Likewise for the others.
- $f: \mathbb{R}^n \to T^n$ given by $f(t) = (e^{it^1}, e^{it^2}, \ldots)$ is smooth.
- The inclusion map $i: S^n \to \mathbb{R}^{n+1}$ is smooth: Indeed, in the stereographic charts,

- Consider S^1 with the usual smooth structure. The function $f: \mathbb{R} \to S^1$ given by $f(t) = (\cos(t), \sin(t))$ is smooth. Indeed, consider the usual 4 graph charts on S^1 . For instance, y>0. Then $\phi(x,y)=x$ is the chart. So $f(t)=\cos(t)$ is the function which is smooth in this chart. Likewise for the others.
- $f: \mathbb{R}^n \to T^n$ given by $f(t) = (e^{it^1}, e^{it^2}, \ldots)$ is smooth.
- The inclusion map $i:S^n\to\mathbb{R}^{n+1}$ is smooth: Indeed, in the stereographic charts, we see that $\sum_i (y_+^i)^2=\frac{1+x^{n+1}}{1-x^{n+1}}$ from which

- Consider S^1 with the usual smooth structure. The function $f: \mathbb{R} \to S^1$ given by $f(t) = (\cos(t), \sin(t))$ is smooth. Indeed, consider the usual 4 graph charts on S^1 . For instance, y>0. Then $\phi(x,y)=x$ is the chart. So $f(t)=\cos(t)$ is the function which is smooth in this chart. Likewise for the others.
- $f: \mathbb{R}^n \to T^n$ given by $f(t) = (e^{it^1}, e^{it^2}, \ldots)$ is smooth.
- The inclusion map $i: S^n \to \mathbb{R}^{n+1}$ is smooth: Indeed, in the stereographic charts, we see that $\sum_i (y_+^i)^2 = \frac{1+x^{n+1}}{1-x^{n+1}}$ from which we can solve for x^{n+1} smoothly, and

- Consider S^1 with the usual smooth structure. The function $f: \mathbb{R} \to S^1$ given by $f(t) = (\cos(t), \sin(t))$ is smooth. Indeed, consider the usual 4 graph charts on S^1 . For instance, y>0. Then $\phi(x,y)=x$ is the chart. So $f(t)=\cos(t)$ is the function which is smooth in this chart. Likewise for the others.
- $f: \mathbb{R}^n \to T^n$ given by $f(t) = (e^{it^1}, e^{it^2}, \ldots)$ is smooth.
- The inclusion map $i: S^n \to \mathbb{R}^{n+1}$ is smooth: Indeed, in the stereographic charts, we see that $\sum_i (y_+^i)^2 = \frac{1+x^{n+1}}{1-x^{n+1}}$ from which we can solve for x^{n+1} smoothly, and $i(y_+^1, \ldots) = ((1-x^{n+1})y^1, (1-x^{n+1})y^2, \ldots, (1-x^{n+1})y^n, x^{n+1})$.

- Consider S^1 with the usual smooth structure. The function $f: \mathbb{R} \to S^1$ given by $f(t) = (\cos(t), \sin(t))$ is smooth. Indeed, consider the usual 4 graph charts on S^1 . For instance, y>0. Then $\phi(x,y)=x$ is the chart. So $f(t)=\cos(t)$ is the function which is smooth in this chart. Likewise for the others.
- $f: \mathbb{R}^n \to T^n$ given by $f(t) = (e^{it^1}, e^{it^2}, \ldots)$ is smooth.
- The inclusion map $i: S^n \to \mathbb{R}^{n+1}$ is smooth: Indeed, in the stereographic charts, we see that $\sum_i (y_+^i)^2 = \frac{1+x^{n+1}}{1-x^{n+1}}$ from which we can solve for x^{n+1} smoothly, and $i(y_+^1, \ldots) = ((1-x^{n+1})y^1, (1-x^{n+1})y^2, \ldots, (1-x^{n+1})y^n, x^{n+1})$. Likewise for the other chart.

- Consider S^1 with the usual smooth structure. The function $f: \mathbb{R} \to S^1$ given by $f(t) = (\cos(t), \sin(t))$ is smooth. Indeed, consider the usual 4 graph charts on S^1 . For instance, y>0. Then $\phi(x,y)=x$ is the chart. So $f(t)=\cos(t)$ is the function which is smooth in this chart. Likewise for the others.
- $f: \mathbb{R}^n \to T^n$ given by $f(t) = (e^{it^1}, e^{it^2}, \ldots)$ is smooth.
- The inclusion map $i: S^n \to \mathbb{R}^{n+1}$ is smooth: Indeed, in the stereographic charts, we see that $\sum_i (y_+^i)^2 = \frac{1+x^{n+1}}{1-x^{n+1}}$ from which we can solve for x^{n+1} smoothly, and $i(y_+^1, \ldots) = ((1-x^{n+1})y^1, (1-x^{n+1})y^2, \ldots, (1-x^{n+1})y^n, x^{n+1})$. Likewise for the other chart.
- The quotient map $\pi: \mathbb{R}^{n+1} 0 \to \mathbb{RP}^n$ is smooth (why?)

- Consider S^1 with the usual smooth structure. The function $f: \mathbb{R} \to S^1$ given by $f(t) = (\cos(t), \sin(t))$ is smooth. Indeed, consider the usual 4 graph charts on S^1 . For instance, y>0. Then $\phi(x,y)=x$ is the chart. So $f(t)=\cos(t)$ is the function which is smooth in this chart. Likewise for the others.
- $f: \mathbb{R}^n \to T^n$ given by $f(t) = (e^{it^1}, e^{it^2}, \ldots)$ is smooth.
- The inclusion map $i: S^n \to \mathbb{R}^{n+1}$ is smooth: Indeed, in the stereographic charts, we see that $\sum_i (y_+^i)^2 = \frac{1+x^{n+1}}{1-x^{n+1}}$ from which we can solve for x^{n+1} smoothly, and $i(y_+^1, \ldots) = ((1-x^{n+1})y^1, (1-x^{n+1})y^2, \ldots, (1-x^{n+1})y^n, x^{n+1})$. Likewise for the other chart.
- The quotient map $\pi: \mathbb{R}^{n+1} 0 \to \mathbb{RP}^n$ is smooth (why?)
- Define $q: S^n \to \mathbb{RP}^n$ by restriction of π .

- Consider S^1 with the usual smooth structure. The function $f: \mathbb{R} \to S^1$ given by $f(t) = (\cos(t), \sin(t))$ is smooth. Indeed, consider the usual 4 graph charts on S^1 . For instance, y>0. Then $\phi(x,y)=x$ is the chart. So $f(t)=\cos(t)$ is the function which is smooth in this chart. Likewise for the others.
- $f: \mathbb{R}^n \to T^n$ given by $f(t) = (e^{it^1}, e^{it^2}, \ldots)$ is smooth.
- The inclusion map $i:S^n \to \mathbb{R}^{n+1}$ is smooth: Indeed, in the stereographic charts, we see that $\sum_i (y_+^i)^2 = \frac{1+x^{n+1}}{1-x^{n+1}}$ from which we can solve for x^{n+1} smoothly, and $i(y_+^1,\ldots) = ((1-x^{n+1})y^1,(1-x^{n+1})y^2,\ldots,(1-x^{n+1})y^n,x^{n+1})$. Likewise for the other chart.
- The quotient map $\pi: \mathbb{R}^{n+1} 0 \to \mathbb{RP}^n$ is smooth (why?)
- Define $q:S^n \to \mathbb{RP}^n$ by restriction of π . It is smooth (why?)

• What about a smooth map

• What about a smooth map from S^n to T^n ? (Hint: composition)

- What about a smooth map from S^n to T^n ? (Hint: composition)
- From T^n to \mathbb{R}^n ?

- What about a smooth map from S^n to T^n ? (Hint: composition)
- From T^n to \mathbb{R}^n ?
- From T^n to \mathbb{S}^n ?

• A smooth bijection $f: M \to N$ is

• A smooth bijection $f: M \to N$ is called a diffeomorphism if

• A smooth bijection $f:M\to N$ is called a diffeomorphism if f^{-1} is smooth. (

• A smooth bijection $f: M \to N$ is called a diffeomorphism if f^{-1} is smooth. (The open interval is

• A smooth bijection $f: M \to N$ is called a diffeomorphism if f^{-1} is smooth. (The open interval is not diffeomorphic to a circle for instance.)

- A smooth bijection $f:M\to N$ is called a diffeomorphism if f^{-1} is smooth. (The open interval is not diffeomorphic to a circle for instance.)
- The map $F: \mathbb{B}^n \to \mathbb{R}^n$ given by $F(x) = \frac{x}{1-|x|^2}$ is a diffeomorphism.

- A smooth bijection $f:M\to N$ is called a diffeomorphism if f^{-1} is smooth. (The open interval is not diffeomorphic to a circle for instance.)
- The map $F: \mathbb{B}^n \to \mathbb{R}^n$ given by $F(x) = \frac{x}{1-|x|^2}$ is a diffeomorphism.
- ullet Any smooth coordinate chart (ϕ, U) on M is

- A smooth bijection $f:M\to N$ is called a diffeomorphism if f^{-1} is smooth. (The open interval is not diffeomorphic to a circle for instance.)
- The map $F: \mathbb{B}^n \to \mathbb{R}^n$ given by $F(x) = \frac{x}{1-|x|^2}$ is a diffeomorphism.
- Any smooth coordinate chart (ϕ, U) on M is actually a diffeomorphism between $U \subset M$ and $\phi(U)$ $(\subset \mathbb{H}^n$ or $\mathbb{R}^n)$.

- A smooth bijection $f:M\to N$ is called a diffeomorphism if f^{-1} is smooth. (The open interval is not diffeomorphic to a circle for instance.)
- The map $F: \mathbb{B}^n \to \mathbb{R}^n$ given by $F(x) = \frac{x}{1-|x|^2}$ is a diffeomorphism.
- Any smooth coordinate chart (ϕ, U) on M is actually a diffeomorphism between $U \subset M$ and $\phi(U)$ $(\subset \mathbb{H}^n$ or $\mathbb{R}^n)$.
- Compositions of diffeos are diffeos,

- A smooth bijection $f:M\to N$ is called a diffeomorphism if f^{-1} is smooth. (The open interval is not diffeomorphic to a circle for instance.)
- The map $F: \mathbb{B}^n \to \mathbb{R}^n$ given by $F(x) = \frac{x}{1-|x|^2}$ is a diffeomorphism.
- Any smooth coordinate chart (ϕ, U) on M is actually a diffeomorphism between $U \subset M$ and $\phi(U)$ $(\subset \mathbb{H}^n$ or $\mathbb{R}^n)$.
- Compositions of diffeos are diffeos, Cartesian products of diffeos are diffeos,

- A smooth bijection $f:M\to N$ is called a diffeomorphism if f^{-1} is smooth. (The open interval is not diffeomorphic to a circle for instance.)
- The map $F: \mathbb{B}^n \to \mathbb{R}^n$ given by $F(x) = \frac{x}{1-|x|^2}$ is a diffeomorphism.
- Any smooth coordinate chart (ϕ, U) on M is actually a diffeomorphism between $U \subset M$ and $\phi(U)$ $(\subset \mathbb{H}^n$ or $\mathbb{R}^n)$.
- Compositions of diffeos are diffeos, Cartesian products of diffeos are diffeos, diffeos are homeos,

- A smooth bijection $f:M\to N$ is called a diffeomorphism if f^{-1} is smooth. (The open interval is not diffeomorphic to a circle for instance.)
- The map $F: \mathbb{B}^n \to \mathbb{R}^n$ given by $F(x) = \frac{x}{1-|x|^2}$ is a diffeomorphism.
- Any smooth coordinate chart (ϕ, U) on M is actually a diffeomorphism between $U \subset M$ and $\phi(U)$ $(\subset \mathbb{H}^n$ or $\mathbb{R}^n)$.
- Compositions of diffeos are diffeos, Cartesian products of diffeos are diffeos, diffeos are homeos, being diffeomorphic is an equivalence relation,

- A smooth bijection $f:M\to N$ is called a diffeomorphism if f^{-1} is smooth. (The open interval is not diffeomorphic to a circle for instance.)
- The map $F: \mathbb{B}^n \to \mathbb{R}^n$ given by $F(x) = \frac{x}{1-|x|^2}$ is a diffeomorphism.
- Any smooth coordinate chart (ϕ, U) on M is actually a diffeomorphism between $U \subset M$ and $\phi(U)$ $(\subset \mathbb{H}^n$ or $\mathbb{R}^n)$.
- Compositions of diffeos are diffeos, Cartesian products of diffeos are diffeos, diffeos are homeos, being diffeomorphic is an equivalence relation, the boundary is taken to the boundary under a diffeo.

- A smooth bijection $f:M\to N$ is called a diffeomorphism if f^{-1} is smooth. (The open interval is not diffeomorphic to a circle for instance.)
- The map $F: \mathbb{B}^n \to \mathbb{R}^n$ given by $F(x) = \frac{x}{1-|x|^2}$ is a diffeomorphism.
- Any smooth coordinate chart (ϕ, U) on M is actually a diffeomorphism between $U \subset M$ and $\phi(U)$ $(\subset \mathbb{H}^n$ or $\mathbb{R}^n)$.
- Compositions of diffeos are diffeos, Cartesian products of diffeos are diffeos, diffeos are homeos, being diffeomorphic is an equivalence relation, the boundary is taken to the boundary under a diffeo.
- Recall the

- A smooth bijection $f:M\to N$ is called a diffeomorphism if f^{-1} is smooth. (The open interval is not diffeomorphic to a circle for instance.)
- The map $F: \mathbb{B}^n \to \mathbb{R}^n$ given by $F(x) = \frac{x}{1-|x|^2}$ is a diffeomorphism.
- Any smooth coordinate chart (ϕ, U) on M is actually a diffeomorphism between $U \subset M$ and $\phi(U)$ $(\subset \mathbb{H}^n$ or $\mathbb{R}^n)$.
- Compositions of diffeos are diffeos, Cartesian products of diffeos are diffeos, diffeos are homeos, being diffeomorphic is an equivalence relation, the boundary is taken to the boundary under a diffeo.
- Recall the smooth structure $\phi(u) = u^3$ on \mathbb{R} ?

- A smooth bijection $f:M\to N$ is called a diffeomorphism if f^{-1} is smooth. (The open interval is not diffeomorphic to a circle for instance.)
- The map $F: \mathbb{B}^n \to \mathbb{R}^n$ given by $F(x) = \frac{x}{1-|x|^2}$ is a diffeomorphism.
- Any smooth coordinate chart (ϕ, U) on M is actually a diffeomorphism between $U \subset M$ and $\phi(U)$ $(\subset \mathbb{H}^n$ or $\mathbb{R}^n)$.
- Compositions of diffeos are diffeos, Cartesian products of diffeos are diffeos, diffeos are homeos, being diffeomorphic is an equivalence relation, the boundary is taken to the boundary under a diffeo.
- Recall the smooth structure $\phi(u)=u^3$ on \mathbb{R} ? This structure is *not* the same as the usual one, but

- A smooth bijection $f:M\to N$ is called a diffeomorphism if f^{-1} is smooth. (The open interval is not diffeomorphic to a circle for instance.)
- The map $F: \mathbb{B}^n \to \mathbb{R}^n$ given by $F(x) = \frac{x}{1-|x|^2}$ is a diffeomorphism.
- Any smooth coordinate chart (ϕ, U) on M is actually a diffeomorphism between $U \subset M$ and $\phi(U)$ $(\subset \mathbb{H}^n$ or $\mathbb{R}^n)$.
- Compositions of diffeos are diffeos, Cartesian products of diffeos are diffeos, diffeos are homeos, being diffeomorphic is an equivalence relation, the boundary is taken to the boundary under a diffeo.
- Recall the smooth structure $\phi(u)=u^3$ on \mathbb{R} ? This structure is *not* the same as the usual one, but is *diffeomorphic* to it:

- A smooth bijection $f:M\to N$ is called a diffeomorphism if f^{-1} is smooth. (The open interval is not diffeomorphic to a circle for instance.)
- The map $F: \mathbb{B}^n \to \mathbb{R}^n$ given by $F(x) = \frac{x}{1-|x|^2}$ is a diffeomorphism.
- Any smooth coordinate chart (ϕ, U) on M is actually a diffeomorphism between $U \subset M$ and $\phi(U)$ $(\subset \mathbb{H}^n$ or $\mathbb{R}^n)$.
- Compositions of diffeos are diffeos, Cartesian products of diffeos are diffeos, diffeos are homeos, being diffeomorphic is an equivalence relation, the boundary is taken to the boundary under a diffeo.
- Recall the smooth structure $\phi(u)=u^3$ on \mathbb{R} ? This structure is *not* the same as the usual one, but is *diffeomorphic* to it: $F:\mathbb{R}\to \tilde{\mathbb{R}}$ given by $F(x)=x^{1/3}$.

- A smooth bijection $f:M\to N$ is called a diffeomorphism if f^{-1} is smooth. (The open interval is not diffeomorphic to a circle for instance.)
- The map $F: \mathbb{B}^n \to \mathbb{R}^n$ given by $F(x) = \frac{x}{1-|x|^2}$ is a diffeomorphism.
- Any smooth coordinate chart (ϕ, U) on M is actually a diffeomorphism between $U \subset M$ and $\phi(U)$ $(\subset \mathbb{H}^n$ or $\mathbb{R}^n)$.
- Compositions of diffeos are diffeos, Cartesian products of diffeos are diffeos, diffeos are homeos, being diffeomorphic is an equivalence relation, the boundary is taken to the boundary under a diffeo.
- Recall the smooth structure $\phi(u)=u^3$ on \mathbb{R} ? This structure is *not* the same as the usual one, but is *diffeomorphic* to it: $F:\mathbb{R}\to \tilde{\mathbb{R}}$ given by $F(x)=x^{1/3}$. In charts, it is F(t)=t which is a diffeo.

• The aim of

• The aim of differential topology

• The aim of differential topology is to classify (

• The aim of differential topology is to classify (i.e., write a list) of "standard manifolds" with

 The aim of differential topology is to classify (i.e., write a list) of "standard manifolds" with a way of telling whether a given manifold

• The aim of differential topology is to classify (i.e., write a list) of "standard manifolds" with a way of telling whether a given manifold is diffeo to anything in the list.

- The aim of differential topology is to classify (i.e., write a list)
 of "standard manifolds" with a way of telling whether a given
 manifold is diffeo to anything in the list.
- A 1-manifold is diffeo to

- The aim of differential topology is to classify (i.e., write a list)
 of "standard manifolds" with a way of telling whether a given
 manifold is diffeo to anything in the list.
- A 1-manifold is diffeo to either an open interval or a circle.

- The aim of differential topology is to classify (i.e., write a list)
 of "standard manifolds" with a way of telling whether a given
 manifold is diffeo to anything in the list.
- A 1-manifold is diffeo to either an open interval or a circle. If it has boundary,

- The aim of differential topology is to classify (i.e., write a list)
 of "standard manifolds" with a way of telling whether a given
 manifold is diffeo to anything in the list.
- A 1-manifold is diffeo to either an open interval or a circle. If it has boundary, then to an interval or a half-line.

- The aim of differential topology is to classify (i.e., write a list)
 of "standard manifolds" with a way of telling whether a given
 manifold is diffeo to anything in the list.
- A 1-manifold is diffeo to either an open interval or a circle. If it has boundary, then to an interval or a half-line.
- A compact 2-manifold is diffeo to

- The aim of differential topology is to classify (i.e., write a list)
 of "standard manifolds" with a way of telling whether a given
 manifold is diffeo to anything in the list.
- A 1-manifold is diffeo to either an open interval or a circle. If it has boundary, then to an interval or a half-line.
- A compact 2-manifold is diffeo to "a g-hold surface".

- The aim of differential topology is to classify (i.e., write a list)
 of "standard manifolds" with a way of telling whether a given
 manifold is diffeo to anything in the list.
- A 1-manifold is diffeo to either an open interval or a circle. If it has boundary, then to an interval or a half-line.
- A compact 2-manifold is diffeo to "a g-hold surface".
- Compact 3-manifolds are classified by geometrisation.

- The aim of differential topology is to classify (i.e., write a list)
 of "standard manifolds" with a way of telling whether a given
 manifold is diffeo to anything in the list.
- A 1-manifold is diffeo to either an open interval or a circle. If it has boundary, then to an interval or a half-line.
- A compact 2-manifold is diffeo to "a g-hold surface".
- Compact 3-manifolds are classified by geometrisation.
- For 4 and above, it is complicated.

Unfortunately, one cannot

• Unfortunately, one cannot glue smooth functions that

• Unfortunately, one cannot glue smooth functions that agree on closed subsets.

- Unfortunately, one cannot glue smooth functions that agree on closed subsets.
- On the other hand,

- Unfortunately, one cannot glue smooth functions that agree on closed subsets.
- On the other hand, it is helpful to construct lots of smooth functions.

- Unfortunately, one cannot glue smooth functions that agree on closed subsets.
- On the other hand, it is helpful to construct lots of smooth functions. For instance, if one wants a bump function or

- Unfortunately, one cannot glue smooth functions that agree on closed subsets.
- On the other hand, it is helpful to construct lots of smooth functions. For instance, if one wants a bump function or perhaps a 1-1 map from M to \mathbb{R}^N , and so on.

- Unfortunately, one cannot glue smooth functions that agree on closed subsets.
- On the other hand, it is helpful to construct lots of smooth functions. For instance, if one wants a bump function or perhaps a 1-1 map from M to \mathbb{R}^N , and so on.
- More generally,

- Unfortunately, one cannot glue smooth functions that agree on closed subsets.
- On the other hand, it is helpful to construct lots of smooth functions. For instance, if one wants a bump function or perhaps a 1-1 map from M to \mathbb{R}^N , and so on.
- ullet More generally, one often has local functions f_{lpha}

- Unfortunately, one cannot glue smooth functions that agree on closed subsets.
- On the other hand, it is helpful to construct lots of smooth functions. For instance, if one wants a bump function or perhaps a 1-1 map from M to \mathbb{R}^N , and so on.
- More generally, one often has local functions f_{α} that one somehow wants to "blend together"

- Unfortunately, one cannot glue smooth functions that agree on closed subsets.
- On the other hand, it is helpful to construct lots of smooth functions. For instance, if one wants a bump function or perhaps a 1-1 map from M to \mathbb{R}^N , and so on.
- More generally, one often has local functions f_{α} that one somehow wants to "blend together" to form a global one.

- Unfortunately, one cannot glue smooth functions that agree on closed subsets.
- On the other hand, it is helpful to construct lots of smooth functions. For instance, if one wants a bump function or perhaps a 1-1 map from M to \mathbb{R}^N , and so on.
- More generally, one often has local functions f_{α} that one somehow wants to "blend together" to form a global one.
- To this end, it is helpful

- Unfortunately, one cannot glue smooth functions that agree on closed subsets.
- On the other hand, it is helpful to construct lots of smooth functions. For instance, if one wants a bump function or perhaps a 1-1 map from M to \mathbb{R}^N , and so on.
- More generally, one often has local functions f_{α} that one somehow wants to "blend together" to form a global one.
- To this end, it is helpful to have a partition-of-unity, i.e.,

- Unfortunately, one cannot glue smooth functions that agree on closed subsets.
- On the other hand, it is helpful to construct lots of smooth functions. For instance, if one wants a bump function or perhaps a 1-1 map from M to \mathbb{R}^N , and so on.
- More generally, one often has local functions f_{α} that one somehow wants to "blend together" to form a global one.
- To this end, it is helpful to have a partition-of-unity, i.e., a collection of smooth non-negative functions ϕ_{α} such that

- Unfortunately, one cannot glue smooth functions that agree on closed subsets.
- On the other hand, it is helpful to construct lots of smooth functions. For instance, if one wants a bump function or perhaps a 1-1 map from M to \mathbb{R}^N , and so on.
- More generally, one often has local functions f_{α} that one somehow wants to "blend together" to form a global one.
- To this end, it is helpful to have a partition-of-unity, i.e., a collection of smooth non-negative functions ϕ_{α} such that $\sum_{\alpha}\phi_{\alpha}=1$ and

- Unfortunately, one cannot glue smooth functions that agree on closed subsets.
- On the other hand, it is helpful to construct lots of smooth functions. For instance, if one wants a bump function or perhaps a 1-1 map from M to \mathbb{R}^N , and so on.
- More generally, one often has local functions f_{α} that one somehow wants to "blend together" to form a global one.
- To this end, it is helpful to have a partition-of-unity, i.e., a collection of smooth non-negative functions ϕ_{α} such that $\sum_{\alpha}\phi_{\alpha}=1$ and there is a restriction on their supports.

Note that it makes

• Note that it makes sense to only sum up finitely many numbers.

 Note that it makes sense to only sum up finitely many numbers. So it is helpful to have

• Note that it makes sense to only sum up finitely many numbers. So it is helpful to have open covers U_{α} such that

• Note that it makes sense to only sum up finitely many numbers. So it is helpful to have open covers U_{α} such that every point has a neighbourhood intersecting

• Note that it makes sense to only sum up finitely many numbers. So it is helpful to have open covers U_{α} such that every point has a neighbourhood intersecting only finitely many sets.

• Note that it makes sense to only sum up finitely many numbers. So it is helpful to have open covers U_{α} such that every point has a neighbourhood intersecting only finitely many sets. Such covers are called locally finite.

- Note that it makes sense to only sum up finitely many numbers. So it is helpful to have open covers U_{α} such that every point has a neighbourhood intersecting only finitely many sets. Such covers are called locally finite.
- Unfortunately, not every cover is locally finite (

- Note that it makes sense to only sum up finitely many numbers. So it is helpful to have open covers U_{α} such that every point has a neighbourhood intersecting only finitely many sets. Such covers are called locally finite.
- Unfortunately, not every cover is locally finite (or even has a locally finite subcover):

- Note that it makes sense to only sum up finitely many numbers. So it is helpful to have open covers U_{α} such that every point has a neighbourhood intersecting only finitely many sets. Such covers are called locally finite.
- Unfortunately, not every cover is locally finite (or even has a locally finite subcover): Consider (-n, n) covering \mathbb{R} .

- Note that it makes sense to only sum up finitely many numbers. So it is helpful to have open covers U_{α} such that every point has a neighbourhood intersecting only finitely many sets. Such covers are called locally finite.
- Unfortunately, not every cover is locally finite (or even has a locally finite subcover): Consider (-n, n) covering \mathbb{R} . The best we can do in this example

- Note that it makes sense to only sum up finitely many numbers. So it is helpful to have open covers U_{α} such that every point has a neighbourhood intersecting only finitely many sets. Such covers are called locally finite.
- Unfortunately, not every cover is locally finite (or even has a locally finite subcover): Consider (-n, n) covering \mathbb{R} . The best we can do in this example is to take (m, m+1), (m-1/2, m+1/2).

- Note that it makes sense to only sum up finitely many numbers. So it is helpful to have open covers U_{α} such that every point has a neighbourhood intersecting only finitely many sets. Such covers are called locally finite.
- Unfortunately, not every cover is locally finite (or even has a locally finite subcover): Consider (-n,n) covering \mathbb{R} . The best we can do in this example is to take (m,m+1), (m-1/2,m+1/2). This cover is a *refinement* of the previous cover, i.e.,

- Note that it makes sense to only sum up finitely many numbers. So it is helpful to have open covers U_{α} such that every point has a neighbourhood intersecting only finitely many sets. Such covers are called locally finite.
- Unfortunately, not every cover is locally finite (or even has a locally finite subcover): Consider (-n,n) covering \mathbb{R} . The best we can do in this example is to take (m,m+1), (m-1/2,m+1/2). This cover is a *refinement* of the previous cover, i.e., every subset is in *some* U_{α} .

- Note that it makes sense to only sum up finitely many numbers. So it is helpful to have open covers U_{α} such that every point has a neighbourhood intersecting only finitely many sets. Such covers are called locally finite.
- Unfortunately, not every cover is locally finite (or even has a locally finite subcover): Consider (-n,n) covering $\mathbb R$. The best we can do in this example is to take (m,m+1), (m-1/2,m+1/2). This cover is a *refinement* of the previous cover, i.e., every subset is in *some* U_{α} .
- Paracompact space:

- Note that it makes sense to only sum up finitely many numbers. So it is helpful to have open covers U_{α} such that every point has a neighbourhood intersecting only finitely many sets. Such covers are called locally finite.
- Unfortunately, not every cover is locally finite (or even has a locally finite subcover): Consider (-n,n) covering $\mathbb R$. The best we can do in this example is to take (m,m+1), (m-1/2,m+1/2). This cover is a *refinement* of the previous cover, i.e., every subset is in *some* U_{α} .
- Paracompact space: Every open cover has a

- Note that it makes sense to only sum up finitely many numbers. So it is helpful to have open covers U_{α} such that every point has a neighbourhood intersecting only finitely many sets. Such covers are called locally finite.
- Unfortunately, not every cover is locally finite (or even has a locally finite subcover): Consider (-n,n) covering $\mathbb R$. The best we can do in this example is to take (m,m+1), (m-1/2,m+1/2). This cover is a *refinement* of the previous cover, i.e., every subset is in *some* U_{α} .
- Paracompact space: Every open cover has a locally finite open refinement.

- Note that it makes sense to only sum up finitely many numbers. So it is helpful to have open covers U_{α} such that every point has a neighbourhood intersecting only finitely many sets. Such covers are called locally finite.
- Unfortunately, not every cover is locally finite (or even has a locally finite subcover): Consider (-n,n) covering \mathbb{R} . The best we can do in this example is to take (m,m+1), (m-1/2,m+1/2). This cover is a *refinement* of the previous cover, i.e., every subset is in *some* U_{α} .
- Paracompact space: Every open cover has a locally finite open refinement.
- Proposition:

- Note that it makes sense to only sum up finitely many numbers. So it is helpful to have open covers U_{α} such that every point has a neighbourhood intersecting only finitely many sets. Such covers are called locally finite.
- Unfortunately, not every cover is locally finite (or even has a locally finite subcover): Consider (-n,n) covering $\mathbb R$. The best we can do in this example is to take (m,m+1), (m-1/2,m+1/2). This cover is a *refinement* of the previous cover, i.e., every subset is in *some* U_{α} .
- Paracompact space: Every open cover has a locally finite open refinement.
- Proposition: Every smooth (in fact,

- Note that it makes sense to only sum up finitely many numbers. So it is helpful to have open covers U_{α} such that every point has a neighbourhood intersecting only finitely many sets. Such covers are called locally finite.
- Unfortunately, not every cover is locally finite (or even has a locally finite subcover): Consider (-n,n) covering $\mathbb R$. The best we can do in this example is to take (m,m+1), (m-1/2,m+1/2). This cover is a *refinement* of the previous cover, i.e., every subset is in *some* U_{α} .
- Paracompact space: Every open cover has a locally finite open refinement.
- Proposition: Every smooth (in fact, just topological is enough) manifold

- Note that it makes sense to only sum up finitely many numbers. So it is helpful to have open covers U_{α} such that every point has a neighbourhood intersecting only finitely many sets. Such covers are called locally finite.
- Unfortunately, not every cover is locally finite (or even has a locally finite subcover): Consider (-n,n) covering $\mathbb R$. The best we can do in this example is to take (m,m+1), (m-1/2,m+1/2). This cover is a *refinement* of the previous cover, i.e., every subset is in *some* U_{α} .
- Paracompact space: Every open cover has a locally finite open refinement.
- Proposition: Every smooth (in fact, just topological is enough) manifold is paracompact. (

- Note that it makes sense to only sum up finitely many numbers. So it is helpful to have open covers U_{α} such that every point has a neighbourhood intersecting only finitely many sets. Such covers are called locally finite.
- Unfortunately, not every cover is locally finite (or even has a locally finite subcover): Consider (-n,n) covering $\mathbb R$. The best we can do in this example is to take (m,m+1), (m-1/2,m+1/2). This cover is a *refinement* of the previous cover, i.e., every subset is in *some* U_{α} .
- Paracompact space: Every open cover has a locally finite open refinement.
- Proposition: Every smooth (in fact, just topological is enough) manifold is paracompact. (In fact, every metric space is so.)

• To prove the above proposition (

• To prove the above proposition (and for other reasons),

• To prove the above proposition (and for other reasons), we need to "exhaust" the manifold by compact sets:

 To prove the above proposition (and for other reasons), we need to "exhaust" the manifold by compact sets: A sequence K_i of compact sets is said to

 To prove the above proposition (and for other reasons), we need to "exhaust" the manifold by compact sets: A sequence K_i of compact sets is said to provide an exhaustion of a space X

• To prove the above proposition (and for other reasons), we need to "exhaust" the manifold by compact sets: A sequence K_i of compact sets is said to provide an exhaustion of a space X if $X = \bigcup_i K_i$ and

• To prove the above proposition (and for other reasons), we need to "exhaust" the manifold by compact sets: A sequence K_i of compact sets is said to provide an exhaustion of a space X if $X = \bigcup_i K_i$ and $K_i \subset Int(K_{i+1})$.

- To prove the above proposition (and for other reasons), we need to "exhaust" the manifold by compact sets: A sequence K_i of compact sets is said to provide an exhaustion of a space X if $X = \bigcup_i K_i$ and $K_i \subset Int(K_{i+1})$.
- Existence of an exhaustion of a topological manifold (with or without boundary):

- To prove the above proposition (and for other reasons), we need to "exhaust" the manifold by compact sets: A sequence K_i of compact sets is said to provide an exhaustion of a space X if $X = \bigcup_i K_i$ and $K_i \subset Int(K_{i+1})$.
- Existence of an exhaustion of a topological manifold (with or without boundary): Consider the countable basis of coordinate balls or half-balls B_m (recall

- To prove the above proposition (and for other reasons), we need to "exhaust" the manifold by compact sets: A sequence K_i of compact sets is said to provide an exhaustion of a space X if $X = \bigcup_i K_i$ and $K_i \subset Int(K_{i+1})$.
- Existence of an exhaustion of a topological manifold (with or without boundary): Consider the countable basis of coordinate balls or half-balls B_m (recall that their closures are compact).

- To prove the above proposition (and for other reasons), we need to "exhaust" the manifold by compact sets: A sequence K_i of compact sets is said to provide an exhaustion of a space X if $X = \bigcup_i K_i$ and $K_i \subset Int(K_{i+1})$.
- Existence of an exhaustion of a topological manifold (with or without boundary): Consider the countable basis of coordinate balls or half-balls B_m (recall that their closures are compact). Let $K_1 = \bar{B}_1$.

- To prove the above proposition (and for other reasons), we need to "exhaust" the manifold by compact sets: A sequence K_i of compact sets is said to provide an exhaustion of a space X if $X = \bigcup_i K_i$ and $K_i \subset Int(K_{i+1})$.
- Existence of an exhaustion of a topological manifold (with or without boundary): Consider the countable basis of coordinate balls or half-balls B_m (recall that their closures are compact). Let $K_1 = \bar{B}_1$. Suppose K_1, \ldots, K_i have been found

- To prove the above proposition (and for other reasons), we need to "exhaust" the manifold by compact sets: A sequence K_i of compact sets is said to provide an exhaustion of a space X if $X = \bigcup_i K_i$ and $K_i \subset Int(K_{i+1})$.
- Existence of an exhaustion of a topological manifold (with or without boundary): Consider the countable basis of coordinate balls or half-balls B_m (recall that their closures are compact). Let $K_1 = \bar{B}_1$. Suppose K_1, \ldots, K_i have been found such that $K_j \subset Int(K_{j+1})$.

- To prove the above proposition (and for other reasons), we need to "exhaust" the manifold by compact sets: A sequence K_i of compact sets is said to provide an exhaustion of a space X if $X = \bigcup_i K_i$ and $K_i \subset Int(K_{i+1})$.
- Existence of an exhaustion of a topological manifold (with or without boundary): Consider the countable basis of coordinate balls or half-balls B_m (recall that their closures are compact). Let $K_1 = \bar{B}_1$. Suppose K_1, \ldots, K_i have been found such that $K_i \subset Int(K_{i+1})$. Choose M_i so that

- To prove the above proposition (and for other reasons), we need to "exhaust" the manifold by compact sets: A sequence K_i of compact sets is said to provide an exhaustion of a space X if $X = \bigcup_i K_i$ and $K_i \subset Int(K_{i+1})$.
- Existence of an exhaustion of a topological manifold (with or without boundary): Consider the countable basis of coordinate balls or half-balls B_m (recall that their closures are compact). Let $K_1 = \bar{B}_1$. Suppose K_1, \ldots, K_i have been found such that $K_j \subset Int(K_{j+1})$. Choose M_i so that $K_i \subset B_1 \cup B_2 \ldots B_{M_i}$.

- To prove the above proposition (and for other reasons), we need to "exhaust" the manifold by compact sets: A sequence K_i of compact sets is said to provide an exhaustion of a space X if $X = \bigcup_i K_i$ and $K_i \subset Int(K_{i+1})$.
- Existence of an exhaustion of a topological manifold (with or without boundary): Consider the countable basis of coordinate balls or half-balls B_m (recall that their closures are compact). Let $K_1 = \bar{B}_1$. Suppose K_1, \ldots, K_i have been found such that $K_j \subset Int(K_{j+1})$. Choose M_i so that $K_i \subset B_1 \cup B_2 \ldots B_{M_i}$. Assume that $M_i > i+1$.

- To prove the above proposition (and for other reasons), we need to "exhaust" the manifold by compact sets: A sequence K_i of compact sets is said to provide an exhaustion of a space X if $X = \bigcup_i K_i$ and $K_i \subset Int(K_{i+1})$.
- Existence of an exhaustion of a topological manifold (with or without boundary): Consider the countable basis of coordinate balls or half-balls B_m (recall that their closures are compact). Let $K_1 = \bar{B}_1$. Suppose K_1, \ldots, K_i have been found such that $K_j \subset Int(K_{j+1})$. Choose M_i so that $K_i \subset B_1 \cup B_2 \ldots B_{M_i}$. Assume that $M_i \geq i+1$. Now $K_{i+1} := \bar{B}_1 \cup \bar{B}_2 \ldots$

- To prove the above proposition (and for other reasons), we need to "exhaust" the manifold by compact sets: A sequence K_i of compact sets is said to provide an exhaustion of a space X if $X = \bigcup_i K_i$ and $K_i \subset Int(K_{i+1})$.
- Existence of an exhaustion of a topological manifold (with or without boundary): Consider the countable basis of coordinate balls or half-balls B_m (recall that their closures are compact). Let $K_1 = \bar{B}_1$. Suppose K_1, \ldots, K_i have been found such that $K_j \subset Int(K_{j+1})$. Choose M_i so that $K_i \subset B_1 \cup B_2 \ldots B_{M_i}$. Assume that $M_i \geq i+1$. Now $K_{i+1} := \bar{B}_1 \cup \bar{B}_2 \ldots$ Since $B_i \subset K_i$ (by inductive construction), we are done.

• Proposition:

ullet Proposition: Given a topological manifold M,

• Proposition: Given a topological manifold M, an open cover χ of M,

• Proposition: Given a topological manifold M, an open cover χ of M, any basis $\mathcal B$ for M's topology,

• Proposition: Given a topological manifold M, an open cover χ of M, any basis $\mathcal B$ for M's topology, there exists a countable,

• Proposition: Given a topological manifold M, an open cover χ of M, any basis $\mathcal B$ for M's topology, there exists a countable, locally finite refinement of χ ,

• Proposition: Given a topological manifold M, an open cover χ of M, any basis $\mathcal B$ for M's topology, there exists a countable, locally finite refinement of χ , consisting of elements of $\mathcal B$. (

• Proposition: Given a topological manifold M, an open cover χ of M, any basis $\mathcal B$ for M's topology, there exists a countable, locally finite refinement of χ , consisting of elements of $\mathcal B$. (Similar if boundary is there.)

- Proposition: Given a topological manifold M, an open cover χ of M, any basis $\mathcal B$ for M's topology, there exists a countable, locally finite refinement of χ , consisting of elements of $\mathcal B$. (Similar if boundary is there.)
- Proof:

- Proposition: Given a topological manifold M, an open cover χ of M, any basis $\mathcal B$ for M's topology, there exists a countable, locally finite refinement of χ , consisting of elements of $\mathcal B$. (Similar if boundary is there.)
- Proof: Consider an exhaustion K_i .

- Proposition: Given a topological manifold M, an open cover χ of M, any basis $\mathcal B$ for M's topology, there exists a countable, locally finite refinement of χ , consisting of elements of $\mathcal B$. (Similar if boundary is there.)
- Proof: Consider an exhaustion K_i . Let $V_j = K_{j+1} Int(K_j)$.

- Proposition: Given a topological manifold M, an open cover χ of M, any basis $\mathcal B$ for M's topology, there exists a countable, locally finite refinement of χ , consisting of elements of $\mathcal B$. (Similar if boundary is there.)
- Proof: Consider an exhaustion K_i . Let $V_j = K_{j+1} Int(K_j)$. Cover the V_j 's by finitely many

- Proposition: Given a topological manifold M, an open cover χ of M, any basis $\mathcal B$ for M's topology, there exists a countable, locally finite refinement of χ , consisting of elements of $\mathcal B$. (Similar if boundary is there.)
- Proof: Consider an exhaustion K_i . Let $V_j = K_{j+1} Int(K_j)$. Cover the V_j 's by finitely many elements of \mathcal{B} such that

- Proposition: Given a topological manifold M, an open cover χ of M, any basis $\mathcal B$ for M's topology, there exists a countable, locally finite refinement of χ , consisting of elements of $\mathcal B$. (Similar if boundary is there.)
- Proof: Consider an exhaustion K_i . Let $V_j = K_{j+1} Int(K_j)$. Cover the V_j 's by finitely many elements of \mathcal{B} such that each element is in \mathcal{B} and

- Proposition: Given a topological manifold M, an open cover χ of M, any basis $\mathcal B$ for M's topology, there exists a countable, locally finite refinement of χ , consisting of elements of $\mathcal B$. (Similar if boundary is there.)
- Proof: Consider an exhaustion K_i . Let $V_j = K_{j+1} Int(K_j)$. Cover the V_j 's by finitely many elements of \mathcal{B} such that each element is in \mathcal{B} and in $W_j = K_{j+2} Int(K_{j-1})$.

- Proposition: Given a topological manifold M, an open cover χ of M, any basis $\mathcal B$ for M's topology, there exists a countable, locally finite refinement of χ , consisting of elements of $\mathcal B$. (Similar if boundary is there.)
- Proof: Consider an exhaustion K_i . Let $V_j = K_{j+1} Int(K_j)$. Cover the V_j 's by finitely many elements of \mathcal{B} such that each element is in \mathcal{B} and in $W_j = K_{j+2} Int(K_{j-1})$. Since $M = \bigcup_j V_j$,

- Proposition: Given a topological manifold M, an open cover χ of M, any basis $\mathcal B$ for M's topology, there exists a countable, locally finite refinement of χ , consisting of elements of $\mathcal B$. (Similar if boundary is there.)
- Proof: Consider an exhaustion K_i . Let $V_j = K_{j+1} Int(K_j)$. Cover the V_j 's by finitely many elements of \mathcal{B} such that each element is in \mathcal{B} and in $W_j = K_{j+2} Int(K_{j-1})$. Since $M = \bigcup_j V_j$, these elements cover M

- Proposition: Given a topological manifold M, an open cover χ of M, any basis $\mathcal B$ for M's topology, there exists a countable, locally finite refinement of χ , consisting of elements of $\mathcal B$. (Similar if boundary is there.)
- Proof: Consider an exhaustion K_i . Let $V_j = K_{j+1} Int(K_j)$. Cover the V_j 's by finitely many elements of \mathcal{B} such that each element is in \mathcal{B} and in $W_j = K_{j+2} Int(K_{j-1})$. Since $M = \bigcup_j V_j$, these elements cover M form a refinement,

- Proposition: Given a topological manifold M, an open cover χ of M, any basis $\mathcal B$ for M's topology, there exists a countable, locally finite refinement of χ , consisting of elements of $\mathcal B$. (Similar if boundary is there.)
- Proof: Consider an exhaustion K_i . Let $V_j = K_{j+1} Int(K_j)$. Cover the V_j 's by finitely many elements of $\mathcal B$ such that each element is in $\mathcal B$ and in $W_j = K_{j+2} Int(K_{j-1})$. Since $M = \cup_j V_j$, these elements cover M form a refinement, and since $W_j \cap W_k = \phi$ unless $j-2 \le k \le j+2$, it is locally finite.

Partition-of-unity

Partition-of-unity

• Let $\chi = \{U_{\alpha}\}$ be an open cover of M.

• Let $\chi = \{U_{\alpha}\}$ be an open cover of M. A partition-of-unity subordinate to χ is

• Let $\chi = \{U_{\alpha}\}$ be an open cover of M. A partition-of-unity subordinate to χ is a family of smooth functions $\rho_{\alpha}: U_{\alpha} \to \mathbb{R}_{>0}$ such that

• Let $\chi = \{U_{\alpha}\}$ be an open cover of M. A partition-of-unity subordinate to χ is a family of smooth functions $\rho_{\alpha}: U_{\alpha} \to \mathbb{R}_{>0}$ such that $0 \le \rho_{\alpha} \le 1$,

• Let $\chi = \{U_{\alpha}\}$ be an open cover of M. A partition-of-unity subordinate to χ is a family of smooth functions $\rho_{\alpha}: U_{\alpha} \to \mathbb{R}_{>0}$ such that $0 \le \rho_{\alpha} \le 1$, $supp(\rho_{\alpha}) \subset U_{\alpha}$,

• Let $\chi = \{U_{\alpha}\}$ be an open cover of M. A partition-of-unity subordinate to χ is a family of smooth functions $\rho_{\alpha}: U_{\alpha} \to \mathbb{R}_{\geq 0}$ such that $0 \leq \rho_{\alpha} \leq 1$, $supp(\rho_{\alpha}) \subset U_{\alpha}$, the supports are locally finite, i.e.

• Let $\chi = \{U_{\alpha}\}$ be an open cover of M. A partition-of-unity subordinate to χ is a family of smooth functions $\rho_{\alpha}: U_{\alpha} \to \mathbb{R}_{\geq 0}$ such that $0 \leq \rho_{\alpha} \leq 1$, $supp(\rho_{\alpha}) \subset U_{\alpha}$, the supports are locally finite, i.e. every point has a neighbourhood intersecting only finitely many of them,

• Let $\chi = \{U_{\alpha}\}$ be an open cover of M. A partition-of-unity subordinate to χ is a family of smooth functions $\rho_{\alpha}: U_{\alpha} \to \mathbb{R}_{\geq 0}$ such that $0 \leq \rho_{\alpha} \leq 1$, $supp(\rho_{\alpha}) \subset U_{\alpha}$, the supports are locally finite, i.e. every point has a neighbourhood intersecting only finitely many of them, $\sum_{\alpha} \rho_{\alpha} = 1$.

- Let $\chi = \{U_{\alpha}\}$ be an open cover of M. A partition-of-unity subordinate to χ is a family of smooth functions $\rho_{\alpha}: U_{\alpha} \to \mathbb{R}_{\geq 0}$ such that $0 \leq \rho_{\alpha} \leq 1$, $supp(\rho_{\alpha}) \subset U_{\alpha}$, the supports are locally finite, i.e. every point has a neighbourhood intersecting only finitely many of them, $\sum_{\alpha} \rho_{\alpha} = 1$.
- Theorem:

- Let $\chi = \{U_{\alpha}\}$ be an open cover of M. A partition-of-unity subordinate to χ is a family of smooth functions $\rho_{\alpha}: U_{\alpha} \to \mathbb{R}_{\geq 0}$ such that $0 \leq \rho_{\alpha} \leq 1$, $supp(\rho_{\alpha}) \subset U_{\alpha}$, the supports are locally finite, i.e. every point has a neighbourhood intersecting only finitely many of them, $\sum_{\alpha} \rho_{\alpha} = 1$.
- Theorem: Suppose *M* is a smooth manifold with or without boundary.

- Let $\chi = \{U_{\alpha}\}$ be an open cover of M. A partition-of-unity subordinate to χ is a family of smooth functions $\rho_{\alpha}: U_{\alpha} \to \mathbb{R}_{\geq 0}$ such that $0 \leq \rho_{\alpha} \leq 1$, $supp(\rho_{\alpha}) \subset U_{\alpha}$, the supports are locally finite, i.e. every point has a neighbourhood intersecting only finitely many of them, $\sum_{\alpha} \rho_{\alpha} = 1$.
- Theorem: Suppose M is a smooth manifold with or without boundary. Let χ be an open cover of M.

- Let $\chi = \{U_{\alpha}\}$ be an open cover of M. A partition-of-unity subordinate to χ is a family of smooth functions $\rho_{\alpha}: U_{\alpha} \to \mathbb{R}_{\geq 0}$ such that $0 \leq \rho_{\alpha} \leq 1$, $supp(\rho_{\alpha}) \subset U_{\alpha}$, the supports are locally finite, i.e. every point has a neighbourhood intersecting only finitely many of them, $\sum_{\alpha} \rho_{\alpha} = 1$.
- Theorem: Suppose M is a smooth manifold with or without boundary. Let χ be an open cover of M. Then there exists a smooth partition of unity subordinate to it.

- Let $\chi = \{U_{\alpha}\}$ be an open cover of M. A partition-of-unity subordinate to χ is a family of smooth functions $\rho_{\alpha}: U_{\alpha} \to \mathbb{R}_{\geq 0}$ such that $0 \leq \rho_{\alpha} \leq 1$, $supp(\rho_{\alpha}) \subset U_{\alpha}$, the supports are locally finite, i.e. every point has a neighbourhood intersecting only finitely many of them, $\sum_{\alpha} \rho_{\alpha} = 1$.
- Theorem: Suppose M is a smooth manifold with or without boundary. Let χ be an open cover of M. Then there exists a smooth partition of unity subordinate to it. There also exists a partition-of-unity consisting of compact supports

- Let $\chi = \{U_{\alpha}\}$ be an open cover of M. A partition-of-unity subordinate to χ is a family of smooth functions $\rho_{\alpha}: U_{\alpha} \to \mathbb{R}_{\geq 0}$ such that $0 \leq \rho_{\alpha} \leq 1$, $supp(\rho_{\alpha}) \subset U_{\alpha}$, the supports are locally finite, i.e. every point has a neighbourhood intersecting only finitely many of them, $\sum_{\alpha} \rho_{\alpha} = 1$.
- Theorem: Suppose M is a smooth manifold with or without boundary. Let χ be an open cover of M. Then there exists a smooth partition of unity subordinate to it. There also exists a partition-of-unity consisting of compact supports subordinate to a locally finite countable open refinement.