MA 229/MA 235 - Lecture 8

IISc

Recap

Recap

- More examples of smooth manifolds.

Recap

- More examples of smooth manifolds.
- Manifolds-with-boundary.

Recap

- More examples of smooth manifolds.
- Manifolds-with-boundary.
- Smooth maps.

Examples

Examples

- Consider S^{1} with the usual smooth structure.

Examples

- Consider S^{1} with the usual smooth structure. The function $f: \mathbb{R} \rightarrow S^{1}$ given by $f(t)=(\cos (t), \sin (t))$ is smooth.

Examples

- Consider S^{1} with the usual smooth structure. The function $f: \mathbb{R} \rightarrow S^{1}$ given by $f(t)=(\cos (t), \sin (t))$ is smooth. Indeed, consider the usual 4 graph charts on S^{1}.

Examples

- Consider S^{1} with the usual smooth structure. The function $f: \mathbb{R} \rightarrow S^{1}$ given by $f(t)=(\cos (t), \sin (t))$ is smooth. Indeed, consider the usual 4 graph charts on S^{1}. For instance, $y>0$.

Examples

- Consider S^{1} with the usual smooth structure. The function $f: \mathbb{R} \rightarrow S^{1}$ given by $f(t)=(\cos (t), \sin (t))$ is smooth. Indeed, consider the usual 4 graph charts on S^{1}. For instance, $y>0$. Then $\phi(x, y)=x$ is the chart.
- Consider S^{1} with the usual smooth structure. The function $f: \mathbb{R} \rightarrow S^{1}$ given by $f(t)=(\cos (t), \sin (t))$ is smooth. Indeed, consider the usual 4 graph charts on S^{1}. For instance, $y>0$. Then $\phi(x, y)=x$ is the chart. So $f(t)=\cos (t)$ is the function which is smooth in this chart.
- Consider S^{1} with the usual smooth structure. The function $f: \mathbb{R} \rightarrow S^{1}$ given by $f(t)=(\cos (t), \sin (t))$ is smooth. Indeed, consider the usual 4 graph charts on S^{1}. For instance, $y>0$. Then $\phi(x, y)=x$ is the chart. So $f(t)=\cos (t)$ is the function which is smooth in this chart. Likewise for the others.
- Consider S^{1} with the usual smooth structure. The function $f: \mathbb{R} \rightarrow S^{1}$ given by $f(t)=(\cos (t), \sin (t))$ is smooth. Indeed, consider the usual 4 graph charts on S^{1}. For instance, $y>0$. Then $\phi(x, y)=x$ is the chart. So $f(t)=\cos (t)$ is the function which is smooth in this chart. Likewise for the others.
- $f: \mathbb{R}^{n} \rightarrow T^{n}$ given by $f(t)=\left(e^{i t^{1}}, e^{i t^{2}}, \ldots\right)$ is smooth.
- Consider S^{1} with the usual smooth structure. The function $f: \mathbb{R} \rightarrow S^{1}$ given by $f(t)=(\cos (t), \sin (t))$ is smooth. Indeed, consider the usual 4 graph charts on S^{1}. For instance, $y>0$. Then $\phi(x, y)=x$ is the chart. So $f(t)=\cos (t)$ is the function which is smooth in this chart. Likewise for the others.
- $f: \mathbb{R}^{n} \rightarrow T^{n}$ given by $f(t)=\left(e^{i t^{1}}, e^{i t^{2}}, \ldots\right)$ is smooth.
- The inclusion map $i: S^{n} \rightarrow \mathbb{R}^{n+1}$ is smooth:
- Consider S^{1} with the usual smooth structure. The function $f: \mathbb{R} \rightarrow S^{1}$ given by $f(t)=(\cos (t), \sin (t))$ is smooth. Indeed, consider the usual 4 graph charts on S^{1}. For instance, $y>0$. Then $\phi(x, y)=x$ is the chart. So $f(t)=\cos (t)$ is the function which is smooth in this chart. Likewise for the others.
- $f: \mathbb{R}^{n} \rightarrow T^{n}$ given by $f(t)=\left(e^{i t^{1}}, e^{i t^{2}}, \ldots\right)$ is smooth.
- The inclusion map $i: S^{n} \rightarrow \mathbb{R}^{n+1}$ is smooth: Indeed, in the stereographic charts,
- Consider S^{1} with the usual smooth structure. The function $f: \mathbb{R} \rightarrow S^{1}$ given by $f(t)=(\cos (t), \sin (t))$ is smooth. Indeed, consider the usual 4 graph charts on S^{1}. For instance, $y>0$. Then $\phi(x, y)=x$ is the chart. So $f(t)=\cos (t)$ is the function which is smooth in this chart. Likewise for the others.
- $f: \mathbb{R}^{n} \rightarrow T^{n}$ given by $f(t)=\left(e^{i t^{1}}, e^{i t^{2}}, \ldots\right)$ is smooth.
- The inclusion map $i: S^{n} \rightarrow \mathbb{R}^{n+1}$ is smooth: Indeed, in the stereographic charts, we see that $\sum_{i}\left(y_{+}^{i}\right)^{2}=\frac{1+x^{n+1}}{1-x^{n+1}}$ from which
- Consider S^{1} with the usual smooth structure. The function $f: \mathbb{R} \rightarrow S^{1}$ given by $f(t)=(\cos (t), \sin (t))$ is smooth. Indeed, consider the usual 4 graph charts on S^{1}. For instance, $y>0$. Then $\phi(x, y)=x$ is the chart. So $f(t)=\cos (t)$ is the function which is smooth in this chart. Likewise for the others.
- $f: \mathbb{R}^{n} \rightarrow T^{n}$ given by $f(t)=\left(e^{i t^{1}}, e^{i t^{2}}, \ldots\right)$ is smooth.
- The inclusion map $i: S^{n} \rightarrow \mathbb{R}^{n+1}$ is smooth: Indeed, in the stereographic charts, we see that $\sum_{i}\left(y_{+}^{i}\right)^{2}=\frac{1+x^{n+1}}{1-x^{n+1}}$ from which we can solve for x^{n+1} smoothly, and
- Consider S^{1} with the usual smooth structure. The function $f: \mathbb{R} \rightarrow S^{1}$ given by $f(t)=(\cos (t), \sin (t))$ is smooth. Indeed, consider the usual 4 graph charts on S^{1}. For instance, $y>0$. Then $\phi(x, y)=x$ is the chart. So $f(t)=\cos (t)$ is the function which is smooth in this chart. Likewise for the others.
- $f: \mathbb{R}^{n} \rightarrow T^{n}$ given by $f(t)=\left(e^{i t^{1}}, e^{i t^{2}}, \ldots\right)$ is smooth.
- The inclusion map $i: S^{n} \rightarrow \mathbb{R}^{n+1}$ is smooth: Indeed, in the stereographic charts, we see that $\sum_{i}\left(y_{+}^{i}\right)^{2}=\frac{1+x^{n+1}}{1-x^{n+1}}$ from which we can solve for x^{n+1} smoothly, and $i\left(y_{+}^{1}, \ldots\right)=$ $\left(\left(1-x^{n+1}\right) y^{1},\left(1-x^{n+1}\right) y^{2}, \ldots,\left(1-x^{n+1}\right) y^{n}, x^{n+1}\right)$.
- Consider S^{1} with the usual smooth structure. The function $f: \mathbb{R} \rightarrow S^{1}$ given by $f(t)=(\cos (t), \sin (t))$ is smooth. Indeed, consider the usual 4 graph charts on S^{1}. For instance, $y>0$. Then $\phi(x, y)=x$ is the chart. So $f(t)=\cos (t)$ is the function which is smooth in this chart. Likewise for the others.
- $f: \mathbb{R}^{n} \rightarrow T^{n}$ given by $f(t)=\left(e^{i t^{1}}, e^{i t^{2}}, \ldots\right)$ is smooth.
- The inclusion map $i: S^{n} \rightarrow \mathbb{R}^{n+1}$ is smooth: Indeed, in the stereographic charts, we see that $\sum_{i}\left(y_{+}^{i}\right)^{2}=\frac{1+x^{n+1}}{1-x^{n+1}}$ from which we can solve for x^{n+1} smoothly, and $i\left(y_{+}^{1}, \ldots\right)=$ $\left(\left(1-x^{n+1}\right) y^{1},\left(1-x^{n+1}\right) y^{2}, \ldots,\left(1-x^{n+1}\right) y^{n}, x^{n+1}\right)$.
Likewise for the other chart.
- Consider S^{1} with the usual smooth structure. The function $f: \mathbb{R} \rightarrow S^{1}$ given by $f(t)=(\cos (t), \sin (t))$ is smooth. Indeed, consider the usual 4 graph charts on S^{1}. For instance, $y>0$. Then $\phi(x, y)=x$ is the chart. So $f(t)=\cos (t)$ is the function which is smooth in this chart. Likewise for the others.
- $f: \mathbb{R}^{n} \rightarrow T^{n}$ given by $f(t)=\left(e^{i t^{1}}, e^{i t^{2}}, \ldots\right)$ is smooth.
- The inclusion map $i: S^{n} \rightarrow \mathbb{R}^{n+1}$ is smooth: Indeed, in the stereographic charts, we see that $\sum_{i}\left(y_{+}^{i}\right)^{2}=\frac{1+x^{n+1}}{1-x^{n+1}}$ from which we can solve for x^{n+1} smoothly, and $i\left(y_{+}^{1}, \ldots\right)=$ $\left(\left(1-x^{n+1}\right) y^{1},\left(1-x^{n+1}\right) y^{2}, \ldots,\left(1-x^{n+1}\right) y^{n}, x^{n+1}\right)$.
Likewise for the other chart.
- The quotient map $\pi: \mathbb{R}^{n+1}-0 \rightarrow \mathbb{R}^{p}$ is smooth (why?)
- Consider S^{1} with the usual smooth structure. The function $f: \mathbb{R} \rightarrow S^{1}$ given by $f(t)=(\cos (t), \sin (t))$ is smooth. Indeed, consider the usual 4 graph charts on S^{1}. For instance, $y>0$. Then $\phi(x, y)=x$ is the chart. So $f(t)=\cos (t)$ is the function which is smooth in this chart. Likewise for the others.
- $f: \mathbb{R}^{n} \rightarrow T^{n}$ given by $f(t)=\left(e^{i t^{1}}, e^{i t^{2}}, \ldots\right)$ is smooth.
- The inclusion map $i: S^{n} \rightarrow \mathbb{R}^{n+1}$ is smooth: Indeed, in the stereographic charts, we see that $\sum_{i}\left(y_{+}^{i}\right)^{2}=\frac{1+x^{n+1}}{1-x^{n+1}}$ from which we can solve for x^{n+1} smoothly, and $i\left(y_{+}^{1}, \ldots\right)=$ $\left(\left(1-x^{n+1}\right) y^{1},\left(1-x^{n+1}\right) y^{2}, \ldots,\left(1-x^{n+1}\right) y^{n}, x^{n+1}\right)$. Likewise for the other chart.
- The quotient map $\pi: \mathbb{R}^{n+1}-0 \rightarrow \mathbb{R}^{p}$ is smooth (why?)
- Define $q: S^{n} \rightarrow \mathbb{R} \mathbb{P}^{n}$ by restriction of π.
- Consider S^{1} with the usual smooth structure. The function $f: \mathbb{R} \rightarrow S^{1}$ given by $f(t)=(\cos (t), \sin (t))$ is smooth. Indeed, consider the usual 4 graph charts on S^{1}. For instance, $y>0$. Then $\phi(x, y)=x$ is the chart. So $f(t)=\cos (t)$ is the function which is smooth in this chart. Likewise for the others.
- $f: \mathbb{R}^{n} \rightarrow T^{n}$ given by $f(t)=\left(e^{i t^{1}}, e^{i t^{2}}, \ldots\right)$ is smooth.
- The inclusion map $i: S^{n} \rightarrow \mathbb{R}^{n+1}$ is smooth: Indeed, in the stereographic charts, we see that $\sum_{i}\left(y_{+}^{i}\right)^{2}=\frac{1+x^{n+1}}{1-x^{n+1}}$ from which we can solve for x^{n+1} smoothly, and $i\left(y_{+}^{1}, \ldots\right)=$ $\left(\left(1-x^{n+1}\right) y^{1},\left(1-x^{n+1}\right) y^{2}, \ldots,\left(1-x^{n+1}\right) y^{n}, x^{n+1}\right)$. Likewise for the other chart.
- The quotient map $\pi: \mathbb{R}^{n+1}-0 \rightarrow \mathbb{R}^{n}$ is smooth (why?)
- Define $q: S^{n} \rightarrow \mathbb{R P}^{n}$ by restriction of π. It is smooth (why?)

Examples

Examples

- What about a smooth map

Examples

- What about a smooth map from S^{n} to T^{n} ? (Hint: composition)

Examples

- What about a smooth map from S^{n} to T^{n} ? (Hint: composition)
- From T^{n} to \mathbb{R}^{n} ?

Examples

- What about a smooth map from S^{n} to T^{n} ? (Hint: composition)
- From T^{n} to \mathbb{R}^{n} ?
- From T^{n} to \mathbb{S}^{n} ?

Diffeomorphisms

Diffeomorphisms

- A smooth bijection $f: M \rightarrow N$ is

Diffeomorphisms

- A smooth bijection $f: M \rightarrow N$ is called a diffeomorphism if

Diffeomorphisms

- A smooth bijection $f: M \rightarrow N$ is called a diffeomorphism if f^{-1} is smooth. (

Diffeomorphisms

- A smooth bijection $f: M \rightarrow N$ is called a diffeomorphism if f^{-1} is smooth. (The open interval is

Diffeomorphisms

- A smooth bijection $f: M \rightarrow N$ is called a diffeomorphism if f^{-1} is smooth. (The open interval is not diffeomorphic to a circle for instance.)

Diffeomorphisms

- A smooth bijection $f: M \rightarrow N$ is called a diffeomorphism if f^{-1} is smooth. (The open interval is not diffeomorphic to a circle for instance.)
- The map $F: \mathbb{B}^{n} \rightarrow \mathbb{R}^{n}$ given by $F(x)=\frac{x}{1-|x|^{2}}$ is a diffeomorphism.

Diffeomorphisms

- A smooth bijection $f: M \rightarrow N$ is called a diffeomorphism if f^{-1} is smooth. (The open interval is not diffeomorphic to a circle for instance.)
- The map $F: \mathbb{B}^{n} \rightarrow \mathbb{R}^{n}$ given by $F(x)=\frac{x}{1-|x|^{2}}$ is a diffeomorphism.
- Any smooth coordinate chart (ϕ, U) on M is

Diffeomorphisms

- A smooth bijection $f: M \rightarrow N$ is called a diffeomorphism if f^{-1} is smooth. (The open interval is not diffeomorphic to a circle for instance.)
- The map $F: \mathbb{B}^{n} \rightarrow \mathbb{R}^{n}$ given by $F(x)=\frac{x}{1-|x|^{2}}$ is a diffeomorphism.
- Any smooth coordinate chart (ϕ, U) on M is actually a diffeomorphism between $U \subset M$ and $\phi(U)\left(\subset \mathbb{H}^{n}\right.$ or $\left.\mathbb{R}^{n}\right)$.

Diffeomorphisms

- A smooth bijection $f: M \rightarrow N$ is called a diffeomorphism if f^{-1} is smooth. (The open interval is not diffeomorphic to a circle for instance.)
- The map $F: \mathbb{B}^{n} \rightarrow \mathbb{R}^{n}$ given by $F(x)=\frac{x}{1-|x|^{2}}$ is a diffeomorphism.
- Any smooth coordinate chart (ϕ, U) on M is actually a diffeomorphism between $U \subset M$ and $\phi(U)\left(\subset \mathbb{H}^{n}\right.$ or $\left.\mathbb{R}^{n}\right)$.
- Compositions of diffeos are diffeos,

Diffeomorphisms

- A smooth bijection $f: M \rightarrow N$ is called a diffeomorphism if f^{-1} is smooth. (The open interval is not diffeomorphic to a circle for instance.)
- The map $F: \mathbb{B}^{n} \rightarrow \mathbb{R}^{n}$ given by $F(x)=\frac{x}{1-|x|^{2}}$ is a diffeomorphism.
- Any smooth coordinate chart (ϕ, U) on M is actually a diffeomorphism between $U \subset M$ and $\phi(U)\left(\subset \mathbb{H}^{n}\right.$ or $\left.\mathbb{R}^{n}\right)$.
- Compositions of diffeos are diffeos, Cartesian products of diffeos are diffeos,

Diffeomorphisms

- A smooth bijection $f: M \rightarrow N$ is called a diffeomorphism if f^{-1} is smooth. (The open interval is not diffeomorphic to a circle for instance.)
- The map $F: \mathbb{B}^{n} \rightarrow \mathbb{R}^{n}$ given by $F(x)=\frac{x}{1-|x|^{2}}$ is a diffeomorphism.
- Any smooth coordinate chart (ϕ, U) on M is actually a diffeomorphism between $U \subset M$ and $\phi(U)\left(\subset \mathbb{H}^{n}\right.$ or $\left.\mathbb{R}^{n}\right)$.
- Compositions of diffeos are diffeos, Cartesian products of diffeos are diffeos, diffeos are homeos,

Diffeomorphisms

- A smooth bijection $f: M \rightarrow N$ is called a diffeomorphism if f^{-1} is smooth. (The open interval is not diffeomorphic to a circle for instance.)
- The map $F: \mathbb{B}^{n} \rightarrow \mathbb{R}^{n}$ given by $F(x)=\frac{x}{1-|x|^{2}}$ is a diffeomorphism.
- Any smooth coordinate chart (ϕ, U) on M is actually a diffeomorphism between $U \subset M$ and $\phi(U)\left(\subset \mathbb{H}^{n}\right.$ or $\left.\mathbb{R}^{n}\right)$.
- Compositions of diffeos are diffeos, Cartesian products of diffeos are diffeos, diffeos are homeos, being diffeomorphic is an equivalence relation,

Diffeomorphisms

- A smooth bijection $f: M \rightarrow N$ is called a diffeomorphism if f^{-1} is smooth. (The open interval is not diffeomorphic to a circle for instance.)
- The map $F: \mathbb{B}^{n} \rightarrow \mathbb{R}^{n}$ given by $F(x)=\frac{x}{1-|x|^{2}}$ is a diffeomorphism.
- Any smooth coordinate chart (ϕ, U) on M is actually a diffeomorphism between $U \subset M$ and $\phi(U)\left(\subset \mathbb{H}^{n}\right.$ or $\left.\mathbb{R}^{n}\right)$.
- Compositions of diffeos are diffeos, Cartesian products of diffeos are diffeos, diffeos are homeos, being diffeomorphic is an equivalence relation, the boundary is taken to the boundary under a diffeo.

Diffeomorphisms

- A smooth bijection $f: M \rightarrow N$ is called a diffeomorphism if f^{-1} is smooth. (The open interval is not diffeomorphic to a circle for instance.)
- The map $F: \mathbb{B}^{n} \rightarrow \mathbb{R}^{n}$ given by $F(x)=\frac{x}{1-|x|^{2}}$ is a diffeomorphism.
- Any smooth coordinate chart (ϕ, U) on M is actually a diffeomorphism between $U \subset M$ and $\phi(U)\left(\subset \mathbb{H}^{n}\right.$ or $\left.\mathbb{R}^{n}\right)$.
- Compositions of diffeos are diffeos, Cartesian products of diffeos are diffeos, diffeos are homeos, being diffeomorphic is an equivalence relation, the boundary is taken to the boundary under a diffeo.
- Recall the

Diffeomorphisms

- A smooth bijection $f: M \rightarrow N$ is called a diffeomorphism if f^{-1} is smooth. (The open interval is not diffeomorphic to a circle for instance.)
- The map $F: \mathbb{B}^{n} \rightarrow \mathbb{R}^{n}$ given by $F(x)=\frac{x}{1-|x|^{2}}$ is a diffeomorphism.
- Any smooth coordinate chart (ϕ, U) on M is actually a diffeomorphism between $U \subset M$ and $\phi(U)\left(\subset \mathbb{H}^{n}\right.$ or $\left.\mathbb{R}^{n}\right)$.
- Compositions of diffeos are diffeos, Cartesian products of diffeos are diffeos, diffeos are homeos, being diffeomorphic is an equivalence relation, the boundary is taken to the boundary under a diffeo.
- Recall the smooth structure $\phi(u)=u^{3}$ on \mathbb{R} ?

Diffeomorphisms

- A smooth bijection $f: M \rightarrow N$ is called a diffeomorphism if f^{-1} is smooth. (The open interval is not diffeomorphic to a circle for instance.)
- The map $F: \mathbb{B}^{n} \rightarrow \mathbb{R}^{n}$ given by $F(x)=\frac{x}{1-|x|^{2}}$ is a diffeomorphism.
- Any smooth coordinate chart (ϕ, U) on M is actually a diffeomorphism between $U \subset M$ and $\phi(U)\left(\subset \mathbb{H}^{n}\right.$ or $\left.\mathbb{R}^{n}\right)$.
- Compositions of diffeos are diffeos, Cartesian products of diffeos are diffeos, diffeos are homeos, being diffeomorphic is an equivalence relation, the boundary is taken to the boundary under a diffeo.
- Recall the smooth structure $\phi(u)=u^{3}$ on \mathbb{R} ? This structure is not the same as the usual one, but

Diffeomorphisms

- A smooth bijection $f: M \rightarrow N$ is called a diffeomorphism if f^{-1} is smooth. (The open interval is not diffeomorphic to a circle for instance.)
- The map $F: \mathbb{B}^{n} \rightarrow \mathbb{R}^{n}$ given by $F(x)=\frac{x}{1-|x|^{2}}$ is a diffeomorphism.
- Any smooth coordinate chart (ϕ, U) on M is actually a diffeomorphism between $U \subset M$ and $\phi(U)\left(\subset \mathbb{H}^{n}\right.$ or $\left.\mathbb{R}^{n}\right)$.
- Compositions of diffeos are diffeos, Cartesian products of diffeos are diffeos, diffeos are homeos, being diffeomorphic is an equivalence relation, the boundary is taken to the boundary under a diffeo.
- Recall the smooth structure $\phi(u)=u^{3}$ on \mathbb{R} ? This structure is not the same as the usual one, but is diffeomorphic to it:

Diffeomorphisms

- A smooth bijection $f: M \rightarrow N$ is called a diffeomorphism if f^{-1} is smooth. (The open interval is not diffeomorphic to a circle for instance.)
- The map $F: \mathbb{B}^{n} \rightarrow \mathbb{R}^{n}$ given by $F(x)=\frac{x}{1-|x|^{2}}$ is a diffeomorphism.
- Any smooth coordinate chart (ϕ, U) on M is actually a diffeomorphism between $U \subset M$ and $\phi(U)\left(\subset \mathbb{H}^{n}\right.$ or $\left.\mathbb{R}^{n}\right)$.
- Compositions of diffeos are diffeos, Cartesian products of diffeos are diffeos, diffeos are homeos, being diffeomorphic is an equivalence relation, the boundary is taken to the boundary under a diffeo.
- Recall the smooth structure $\phi(u)=u^{3}$ on \mathbb{R} ? This structure is not the same as the usual one, but is diffeomorphic to it: $F: \mathbb{R} \rightarrow \tilde{\mathbb{R}}$ given by $F(x)=x^{1 / 3}$.

Diffeomorphisms

- A smooth bijection $f: M \rightarrow N$ is called a diffeomorphism if f^{-1} is smooth. (The open interval is not diffeomorphic to a circle for instance.)
- The map $F: \mathbb{B}^{n} \rightarrow \mathbb{R}^{n}$ given by $F(x)=\frac{x}{1-|x|^{2}}$ is a diffeomorphism.
- Any smooth coordinate chart (ϕ, U) on M is actually a diffeomorphism between $U \subset M$ and $\phi(U)\left(\subset \mathbb{H}^{n}\right.$ or $\left.\mathbb{R}^{n}\right)$.
- Compositions of diffeos are diffeos, Cartesian products of diffeos are diffeos, diffeos are homeos, being diffeomorphic is an equivalence relation, the boundary is taken to the boundary under a diffeo.
- Recall the smooth structure $\phi(u)=u^{3}$ on \mathbb{R} ? This structure is not the same as the usual one, but is diffeomorphic to it: $F: \mathbb{R} \rightarrow \tilde{\mathbb{R}}$ given by $F(x)=x^{1 / 3}$. In charts, it is $F(t)=t$ which is a diffeo.

Differential topology

Differential topology

- The aim of

Differential topology

- The aim of differential topology

Differential topology

- The aim of differential topology is to classify (

Differential topology

- The aim of differential topology is to classify (i.e., write a list) of "standard manifolds" with

Differential topology

- The aim of differential topology is to classify (i.e., write a list) of "standard manifolds" with a way of telling whether a given manifold

Differential topology

- The aim of differential topology is to classify (i.e., write a list) of "standard manifolds" with a way of telling whether a given manifold is diffeo to anything in the list.

Differential topology

- The aim of differential topology is to classify (i.e., write a list) of "standard manifolds" with a way of telling whether a given manifold is diffeo to anything in the list.
- A 1-manifold is diffeo to

Differential topology

- The aim of differential topology is to classify (i.e., write a list) of "standard manifolds" with a way of telling whether a given manifold is diffeo to anything in the list.
- A 1-manifold is diffeo to either an open interval or a circle.

Differential topology

- The aim of differential topology is to classify (i.e., write a list) of "standard manifolds" with a way of telling whether a given manifold is diffeo to anything in the list.
- A 1-manifold is diffeo to either an open interval or a circle. If it has boundary,

Differential topology

- The aim of differential topology is to classify (i.e., write a list) of "standard manifolds" with a way of telling whether a given manifold is diffeo to anything in the list.
- A 1-manifold is diffeo to either an open interval or a circle. If it has boundary, then to an interval or a half-line.

Differential topology

- The aim of differential topology is to classify (i.e., write a list) of "standard manifolds" with a way of telling whether a given manifold is diffeo to anything in the list.
- A 1-manifold is diffeo to either an open interval or a circle. If it has boundary, then to an interval or a half-line.
- A compact 2-manifold is diffeo to

Differential topology

- The aim of differential topology is to classify (i.e., write a list) of "standard manifolds" with a way of telling whether a given manifold is diffeo to anything in the list.
- A 1-manifold is diffeo to either an open interval or a circle. If it has boundary, then to an interval or a half-line.
- A compact 2-manifold is diffeo to "a g-hold surface".

Differential topology

- The aim of differential topology is to classify (i.e., write a list) of "standard manifolds" with a way of telling whether a given manifold is diffeo to anything in the list.
- A 1-manifold is diffeo to either an open interval or a circle. If it has boundary, then to an interval or a half-line.
- A compact 2 -manifold is diffeo to "a g-hold surface".
- Compact 3-manifolds are classified by geometrisation.

Differential topology

- The aim of differential topology is to classify (i.e., write a list) of "standard manifolds" with a way of telling whether a given manifold is diffeo to anything in the list.
- A 1-manifold is diffeo to either an open interval or a circle. If it has boundary, then to an interval or a half-line.
- A compact 2-manifold is diffeo to "a g-hold surface".
- Compact 3-manifolds are classified by geometrisation.
- For 4 and above, it is complicated.

Local to global - partitions of unity

Local to global - partitions of unity

- Unfortunately, one cannot

Local to global - partitions of unity

- Unfortunately, one cannot glue smooth functions that

Local to global - partitions of unity

- Unfortunately, one cannot glue smooth functions that agree on closed subsets.

Local to global - partitions of unity

- Unfortunately, one cannot glue smooth functions that agree on closed subsets.
- On the other hand,

Local to global - partitions of unity

- Unfortunately, one cannot glue smooth functions that agree on closed subsets.
- On the other hand, it is helpful to construct lots of smooth functions.

Local to global - partitions of unity

- Unfortunately, one cannot glue smooth functions that agree on closed subsets.
- On the other hand, it is helpful to construct lots of smooth functions. For instance, if one wants a bump function or

Local to global - partitions of unity

- Unfortunately, one cannot glue smooth functions that agree on closed subsets.
- On the other hand, it is helpful to construct lots of smooth functions. For instance, if one wants a bump function or perhaps a 1-1 map from M to \mathbb{R}^{N}, and so on.

Local to global - partitions of unity

- Unfortunately, one cannot glue smooth functions that agree on closed subsets.
- On the other hand, it is helpful to construct lots of smooth functions. For instance, if one wants a bump function or perhaps a 1-1 map from M to \mathbb{R}^{N}, and so on.
- More generally,

Local to global - partitions of unity

- Unfortunately, one cannot glue smooth functions that agree on closed subsets.
- On the other hand, it is helpful to construct lots of smooth functions. For instance, if one wants a bump function or perhaps a 1-1 map from M to \mathbb{R}^{N}, and so on.
- More generally, one often has local functions f_{α}

Local to global - partitions of unity

- Unfortunately, one cannot glue smooth functions that agree on closed subsets.
- On the other hand, it is helpful to construct lots of smooth functions. For instance, if one wants a bump function or perhaps a 1-1 map from M to \mathbb{R}^{N}, and so on.
- More generally, one often has local functions f_{α} that one somehow wants to "blend together"

Local to global - partitions of unity

- Unfortunately, one cannot glue smooth functions that agree on closed subsets.
- On the other hand, it is helpful to construct lots of smooth functions. For instance, if one wants a bump function or perhaps a 1-1 map from M to \mathbb{R}^{N}, and so on.
- More generally, one often has local functions f_{α} that one somehow wants to "blend together" to form a global one.

Local to global - partitions of unity

- Unfortunately, one cannot glue smooth functions that agree on closed subsets.
- On the other hand, it is helpful to construct lots of smooth functions. For instance, if one wants a bump function or perhaps a 1-1 map from M to \mathbb{R}^{N}, and so on.
- More generally, one often has local functions f_{α} that one somehow wants to "blend together" to form a global one.
- To this end, it is helpful

Local to global - partitions of unity

- Unfortunately, one cannot glue smooth functions that agree on closed subsets.
- On the other hand, it is helpful to construct lots of smooth functions. For instance, if one wants a bump function or perhaps a 1-1 map from M to \mathbb{R}^{N}, and so on.
- More generally, one often has local functions f_{α} that one somehow wants to "blend together" to form a global one.
- To this end, it is helpful to have a partition-of-unity, i.e.,

Local to global - partitions of unity

- Unfortunately, one cannot glue smooth functions that agree on closed subsets.
- On the other hand, it is helpful to construct lots of smooth functions. For instance, if one wants a bump function or perhaps a 1-1 map from M to \mathbb{R}^{N}, and so on.
- More generally, one often has local functions f_{α} that one somehow wants to "blend together" to form a global one.
- To this end, it is helpful to have a partition-of-unity, i.e., a collection of smooth non-negative functions ϕ_{α} such that

Local to global - partitions of unity

- Unfortunately, one cannot glue smooth functions that agree on closed subsets.
- On the other hand, it is helpful to construct lots of smooth functions. For instance, if one wants a bump function or perhaps a 1-1 map from M to \mathbb{R}^{N}, and so on.
- More generally, one often has local functions f_{α} that one somehow wants to "blend together" to form a global one.
- To this end, it is helpful to have a partition-of-unity, i.e., a collection of smooth non-negative functions ϕ_{α} such that $\sum_{\alpha} \phi_{\alpha}=1$ and

Local to global - partitions of unity

- Unfortunately, one cannot glue smooth functions that agree on closed subsets.
- On the other hand, it is helpful to construct lots of smooth functions. For instance, if one wants a bump function or perhaps a 1-1 map from M to \mathbb{R}^{N}, and so on.
- More generally, one often has local functions f_{α} that one somehow wants to "blend together" to form a global one.
- To this end, it is helpful to have a partition-of-unity, i.e., a collection of smooth non-negative functions ϕ_{α} such that $\sum_{\alpha} \phi_{\alpha}=1$ and there is a restriction on their supports.

Paracompactness

Paracompactness

- Note that it makes

Paracompactness

- Note that it makes sense to only sum up finitely many numbers.

Paracompactness

- Note that it makes sense to only sum up finitely many numbers. So it is helpful to have

Paracompactness

- Note that it makes sense to only sum up finitely many numbers. So it is helpful to have open covers U_{α} such that
- Note that it makes sense to only sum up finitely many numbers. So it is helpful to have open covers U_{α} such that every point has a neighbourhood intersecting
- Note that it makes sense to only sum up finitely many numbers. So it is helpful to have open covers U_{α} such that every point has a neighbourhood intersecting only finitely many sets.
- Note that it makes sense to only sum up finitely many numbers. So it is helpful to have open covers U_{α} such that every point has a neighbourhood intersecting only finitely many sets. Such covers are called locally finite.
- Note that it makes sense to only sum up finitely many numbers. So it is helpful to have open covers U_{α} such that every point has a neighbourhood intersecting only finitely many sets. Such covers are called locally finite.
- Unfortunately, not every cover is locally finite (
- Note that it makes sense to only sum up finitely many numbers. So it is helpful to have open covers U_{α} such that every point has a neighbourhood intersecting only finitely many sets. Such covers are called locally finite.
- Unfortunately, not every cover is locally finite (or even has a locally finite subcover):
- Note that it makes sense to only sum up finitely many numbers. So it is helpful to have open covers U_{α} such that every point has a neighbourhood intersecting only finitely many sets. Such covers are called locally finite.
- Unfortunately, not every cover is locally finite (or even has a locally finite subcover): Consider $(-n, n)$ covering \mathbb{R}.
- Note that it makes sense to only sum up finitely many numbers. So it is helpful to have open covers U_{α} such that every point has a neighbourhood intersecting only finitely many sets. Such covers are called locally finite.
- Unfortunately, not every cover is locally finite (or even has a locally finite subcover): Consider $(-n, n)$ covering \mathbb{R}. The best we can do in this example
- Note that it makes sense to only sum up finitely many numbers. So it is helpful to have open covers U_{α} such that every point has a neighbourhood intersecting only finitely many sets. Such covers are called locally finite.
- Unfortunately, not every cover is locally finite (or even has a locally finite subcover): Consider $(-n, n)$ covering \mathbb{R}. The best we can do in this example is to take $(m, m+1)$, ($m-1 / 2, m+1 / 2$).
- Note that it makes sense to only sum up finitely many numbers. So it is helpful to have open covers U_{α} such that every point has a neighbourhood intersecting only finitely many sets. Such covers are called locally finite.
- Unfortunately, not every cover is locally finite (or even has a locally finite subcover): Consider $(-n, n)$ covering \mathbb{R}. The best we can do in this example is to take $(m, m+1)$, $(m-1 / 2, m+1 / 2)$. This cover is a refinement of the previous cover, i.e.,
- Note that it makes sense to only sum up finitely many numbers. So it is helpful to have open covers U_{α} such that every point has a neighbourhood intersecting only finitely many sets. Such covers are called locally finite.
- Unfortunately, not every cover is locally finite (or even has a locally finite subcover): Consider $(-n, n)$ covering \mathbb{R}. The best we can do in this example is to take $(m, m+1)$, $(m-1 / 2, m+1 / 2)$. This cover is a refinement of the previous cover, i.e., every subset is in some U_{α}.
- Note that it makes sense to only sum up finitely many numbers. So it is helpful to have open covers U_{α} such that every point has a neighbourhood intersecting only finitely many sets. Such covers are called locally finite.
- Unfortunately, not every cover is locally finite (or even has a locally finite subcover): Consider $(-n, n)$ covering \mathbb{R}. The best we can do in this example is to take $(m, m+1)$, ($m-1 / 2, m+1 / 2$). This cover is a refinement of the previous cover, i.e., every subset is in some U_{α}.
- Paracompact space:
- Note that it makes sense to only sum up finitely many numbers. So it is helpful to have open covers U_{α} such that every point has a neighbourhood intersecting only finitely many sets. Such covers are called locally finite.
- Unfortunately, not every cover is locally finite (or even has a locally finite subcover): Consider $(-n, n)$ covering \mathbb{R}. The best we can do in this example is to take $(m, m+1)$, $(m-1 / 2, m+1 / 2)$. This cover is a refinement of the previous cover, i.e., every subset is in some U_{α}.
- Paracompact space: Every open cover has a
- Note that it makes sense to only sum up finitely many numbers. So it is helpful to have open covers U_{α} such that every point has a neighbourhood intersecting only finitely many sets. Such covers are called locally finite.
- Unfortunately, not every cover is locally finite (or even has a locally finite subcover): Consider $(-n, n)$ covering \mathbb{R}. The best we can do in this example is to take $(m, m+1)$, $(m-1 / 2, m+1 / 2)$. This cover is a refinement of the previous cover, i.e., every subset is in some U_{α}.
- Paracompact space: Every open cover has a locally finite open refinement.
- Note that it makes sense to only sum up finitely many numbers. So it is helpful to have open covers U_{α} such that every point has a neighbourhood intersecting only finitely many sets. Such covers are called locally finite.
- Unfortunately, not every cover is locally finite (or even has a locally finite subcover): Consider $(-n, n)$ covering \mathbb{R}. The best we can do in this example is to take $(m, m+1)$, $(m-1 / 2, m+1 / 2)$. This cover is a refinement of the previous cover, i.e., every subset is in some U_{α}.
- Paracompact space: Every open cover has a locally finite open refinement.
- Proposition:
- Note that it makes sense to only sum up finitely many numbers. So it is helpful to have open covers U_{α} such that every point has a neighbourhood intersecting only finitely many sets. Such covers are called locally finite.
- Unfortunately, not every cover is locally finite (or even has a locally finite subcover): Consider $(-n, n)$ covering \mathbb{R}. The best we can do in this example is to take $(m, m+1)$, $(m-1 / 2, m+1 / 2)$. This cover is a refinement of the previous cover, i.e., every subset is in some U_{α}.
- Paracompact space: Every open cover has a locally finite open refinement.
- Proposition: Every smooth (in fact,
- Note that it makes sense to only sum up finitely many numbers. So it is helpful to have open covers U_{α} such that every point has a neighbourhood intersecting only finitely many sets. Such covers are called locally finite.
- Unfortunately, not every cover is locally finite (or even has a locally finite subcover): Consider $(-n, n)$ covering \mathbb{R}. The best we can do in this example is to take $(m, m+1)$, $(m-1 / 2, m+1 / 2)$. This cover is a refinement of the previous cover, i.e., every subset is in some U_{α}.
- Paracompact space: Every open cover has a locally finite open refinement.
- Proposition: Every smooth (in fact, just topological is enough) manifold
- Note that it makes sense to only sum up finitely many numbers. So it is helpful to have open covers U_{α} such that every point has a neighbourhood intersecting only finitely many sets. Such covers are called locally finite.
- Unfortunately, not every cover is locally finite (or even has a locally finite subcover): Consider $(-n, n)$ covering \mathbb{R}. The best we can do in this example is to take $(m, m+1)$, $(m-1 / 2, m+1 / 2)$. This cover is a refinement of the previous cover, i.e., every subset is in some U_{α}.
- Paracompact space: Every open cover has a locally finite open refinement.
- Proposition: Every smooth (in fact, just topological is enough) manifold is paracompact. (
- Note that it makes sense to only sum up finitely many numbers. So it is helpful to have open covers U_{α} such that every point has a neighbourhood intersecting only finitely many sets. Such covers are called locally finite.
- Unfortunately, not every cover is locally finite (or even has a locally finite subcover): Consider $(-n, n)$ covering \mathbb{R}. The best we can do in this example is to take $(m, m+1)$, $(m-1 / 2, m+1 / 2)$. This cover is a refinement of the previous cover, i.e., every subset is in some U_{α}.
- Paracompact space: Every open cover has a locally finite open refinement.
- Proposition: Every smooth (in fact, just topological is enough) manifold is paracompact. (In fact, every metric space is so.)

Exhaustion

Exhaustion

- To prove the above proposition (

Exhaustion

- To prove the above proposition (and for other reasons),

Exhaustion

- To prove the above proposition (and for other reasons), we need to "exhaust" the manifold by compact sets:

Exhaustion

- To prove the above proposition (and for other reasons), we need to "exhaust" the manifold by compact sets: A sequence K_{i} of compact sets is said to

Exhaustion

- To prove the above proposition (and for other reasons), we need to "exhaust" the manifold by compact sets: A sequence K_{i} of compact sets is said to provide an exhaustion of a space X

Exhaustion

- To prove the above proposition (and for other reasons), we need to "exhaust" the manifold by compact sets: A sequence K_{i} of compact sets is said to provide an exhaustion of a space X if $X=\cup_{i} K_{i}$ and

Exhaustion

- To prove the above proposition (and for other reasons), we need to "exhaust" the manifold by compact sets: A sequence K_{i} of compact sets is said to provide an exhaustion of a space X if $X=\cup_{i} K_{i}$ and $K_{i} \subset \operatorname{Int}\left(K_{i+1}\right)$.

Exhaustion

- To prove the above proposition (and for other reasons), we need to "exhaust" the manifold by compact sets: A sequence K_{i} of compact sets is said to provide an exhaustion of a space X if $X=\cup_{i} K_{i}$ and $K_{i} \subset \operatorname{Int}\left(K_{i+1}\right)$.
- Existence of an exhaustion of a topological manifold (with or without boundary):

Exhaustion

- To prove the above proposition (and for other reasons), we need to "exhaust" the manifold by compact sets: A sequence K_{i} of compact sets is said to provide an exhaustion of a space X if $X=\cup_{i} K_{i}$ and $K_{i} \subset \operatorname{Int}\left(K_{i+1}\right)$.
- Existence of an exhaustion of a topological manifold (with or without boundary): Consider the countable basis of coordinate balls or half-balls B_{m} (recall
- To prove the above proposition (and for other reasons), we need to "exhaust" the manifold by compact sets: A sequence K_{i} of compact sets is said to provide an exhaustion of a space X if $X=\cup_{i} K_{i}$ and $K_{i} \subset \operatorname{Int}\left(K_{i+1}\right)$.
- Existence of an exhaustion of a topological manifold (with or without boundary): Consider the countable basis of coordinate balls or half-balls B_{m} (recall that their closures are compact).
- To prove the above proposition (and for other reasons), we need to "exhaust" the manifold by compact sets: A sequence K_{i} of compact sets is said to provide an exhaustion of a space X if $X=\cup_{i} K_{i}$ and $K_{i} \subset \operatorname{Int}\left(K_{i+1}\right)$.
- Existence of an exhaustion of a topological manifold (with or without boundary): Consider the countable basis of coordinate balls or half-balls B_{m} (recall that their closures are compact). Let $K_{1}=\bar{B}_{1}$.

Exhaustion

- To prove the above proposition (and for other reasons), we need to "exhaust" the manifold by compact sets: A sequence K_{i} of compact sets is said to provide an exhaustion of a space X if $X=\cup_{i} K_{i}$ and $K_{i} \subset \operatorname{Int}\left(K_{i+1}\right)$.
- Existence of an exhaustion of a topological manifold (with or without boundary): Consider the countable basis of coordinate balls or half-balls B_{m} (recall that their closures are compact). Let $K_{1}=\bar{B}_{1}$. Suppose K_{1}, \ldots, K_{i} have been found
- To prove the above proposition (and for other reasons), we need to "exhaust" the manifold by compact sets: A sequence K_{i} of compact sets is said to provide an exhaustion of a space X if $X=\cup_{i} K_{i}$ and $K_{i} \subset \operatorname{Int}\left(K_{i+1}\right)$.
- Existence of an exhaustion of a topological manifold (with or without boundary): Consider the countable basis of coordinate balls or half-balls B_{m} (recall that their closures are compact). Let $K_{1}=\bar{B}_{1}$. Suppose K_{1}, \ldots, K_{i} have been found such that $K_{j} \subset \operatorname{Int}\left(K_{j+1}\right)$.
- To prove the above proposition (and for other reasons), we need to "exhaust" the manifold by compact sets: A sequence K_{i} of compact sets is said to provide an exhaustion of a space X if $X=\cup_{i} K_{i}$ and $K_{i} \subset \operatorname{Int}\left(K_{i+1}\right)$.
- Existence of an exhaustion of a topological manifold (with or without boundary): Consider the countable basis of coordinate balls or half-balls B_{m} (recall that their closures are compact). Let $K_{1}=\bar{B}_{1}$. Suppose K_{1}, \ldots, K_{i} have been found such that $K_{j} \subset \operatorname{Int}\left(K_{j+1}\right)$. Choose M_{i} so that
- To prove the above proposition (and for other reasons), we need to "exhaust" the manifold by compact sets: A sequence K_{i} of compact sets is said to provide an exhaustion of a space X if $X=\cup_{i} K_{i}$ and $K_{i} \subset \operatorname{Int}\left(K_{i+1}\right)$.
- Existence of an exhaustion of a topological manifold (with or without boundary): Consider the countable basis of coordinate balls or half-balls B_{m} (recall that their closures are compact). Let $K_{1}=\bar{B}_{1}$. Suppose K_{1}, \ldots, K_{i} have been found such that $K_{j} \subset \operatorname{Int}\left(K_{j+1}\right)$. Choose M_{i} so that $K_{i} \subset B_{1} \cup B_{2} \ldots B_{M_{i}}$.
- To prove the above proposition (and for other reasons), we need to "exhaust" the manifold by compact sets: A sequence K_{i} of compact sets is said to provide an exhaustion of a space X if $X=\cup_{i} K_{i}$ and $K_{i} \subset \operatorname{Int}\left(K_{i+1}\right)$.
- Existence of an exhaustion of a topological manifold (with or without boundary): Consider the countable basis of coordinate balls or half-balls B_{m} (recall that their closures are compact). Let $K_{1}=\bar{B}_{1}$. Suppose K_{1}, \ldots, K_{i} have been found such that $K_{j} \subset \operatorname{Int}\left(K_{j+1}\right)$. Choose M_{i} so that $K_{i} \subset B_{1} \cup B_{2} \ldots B_{M_{i}}$. Assume that $M_{i} \geq i+1$.
- To prove the above proposition (and for other reasons), we need to "exhaust" the manifold by compact sets: A sequence K_{i} of compact sets is said to provide an exhaustion of a space X if $X=\cup_{i} K_{i}$ and $K_{i} \subset \operatorname{Int}\left(K_{i+1}\right)$.
- Existence of an exhaustion of a topological manifold (with or without boundary): Consider the countable basis of coordinate balls or half-balls B_{m} (recall that their closures are compact). Let $K_{1}=\bar{B}_{1}$. Suppose K_{1}, \ldots, K_{i} have been found such that $K_{j} \subset \operatorname{Int}\left(K_{j+1}\right)$. Choose M_{i} so that $K_{i} \subset B_{1} \cup B_{2} \ldots B_{M_{i}}$. Assume that $M_{i} \geq i+1$. Now $K_{i+1}:=\bar{B}_{1} \cup \bar{B}_{2} \ldots$
- To prove the above proposition (and for other reasons), we need to "exhaust" the manifold by compact sets: A sequence K_{i} of compact sets is said to provide an exhaustion of a space X if $X=\cup_{i} K_{i}$ and $K_{i} \subset \operatorname{Int}\left(K_{i+1}\right)$.
- Existence of an exhaustion of a topological manifold (with or without boundary): Consider the countable basis of coordinate balls or half-balls B_{m} (recall that their closures are compact). Let $K_{1}=\bar{B}_{1}$. Suppose K_{1}, \ldots, K_{i} have been found such that $K_{j} \subset \operatorname{Int}\left(K_{j+1}\right)$. Choose M_{i} so that $K_{i} \subset B_{1} \cup B_{2} \ldots B_{M_{i}}$. Assume that $M_{i} \geq i+1$. Now $K_{i+1}:=\bar{B}_{1} \cup \bar{B}_{2} \ldots$. Since $B_{i} \subset K_{i}$ (by inductive construction), we are done.

Returning to paracompactness

Returning to paracompactness

- Proposition:

Returning to paracompactness

- Proposition: Given a topological manifold M,

Returning to paracompactness

- Proposition: Given a topological manifold M, an open cover χ of M,

Returning to paracompactness

- Proposition: Given a topological manifold M, an open cover χ of M, any basis \mathcal{B} for M 's topology,

Returning to paracompactness

- Proposition: Given a topological manifold M, an open cover χ of M, any basis \mathcal{B} for M 's topology, there exists a countable,

Returning to paracompactness

- Proposition: Given a topological manifold M, an open cover χ of M, any basis \mathcal{B} for M 's topology, there exists a countable, locally finite refinement of χ,

Returning to paracompactness

- Proposition: Given a topological manifold M, an open cover χ of M, any basis \mathcal{B} for M 's topology, there exists a countable, locally finite refinement of χ, consisting of elements of \mathcal{B}. (

Returning to paracompactness

- Proposition: Given a topological manifold M, an open cover χ of M, any basis \mathcal{B} for M 's topology, there exists a countable, locally finite refinement of χ, consisting of elements of \mathcal{B}. (Similar if boundary is there.)

Returning to paracompactness

- Proposition: Given a topological manifold M, an open cover χ of M, any basis \mathcal{B} for M 's topology, there exists a countable, locally finite refinement of χ, consisting of elements of \mathcal{B}. (Similar if boundary is there.)
- Proof:

Returning to paracompactness

- Proposition: Given a topological manifold M, an open cover χ of M, any basis \mathcal{B} for M 's topology, there exists a countable, locally finite refinement of χ, consisting of elements of \mathcal{B}. (Similar if boundary is there.)
- Proof: Consider an exhaustion K_{i}.

Returning to paracompactness

- Proposition: Given a topological manifold M, an open cover χ of M, any basis \mathcal{B} for M 's topology, there exists a countable, locally finite refinement of χ, consisting of elements of \mathcal{B}. (Similar if boundary is there.)
- Proof: Consider an exhaustion K_{i}. Let $V_{j}=K_{j+1}-\operatorname{Int}\left(K_{j}\right)$.

Returning to paracompactness

- Proposition: Given a topological manifold M, an open cover χ of M, any basis \mathcal{B} for M 's topology, there exists a countable, locally finite refinement of χ, consisting of elements of \mathcal{B}. (Similar if boundary is there.)
- Proof: Consider an exhaustion K_{i}. Let $V_{j}=K_{j+1}-\operatorname{Int}\left(K_{j}\right)$. Cover the V_{j} 's by finitely many

Returning to paracompactness

- Proposition: Given a topological manifold M, an open cover χ of M, any basis \mathcal{B} for M 's topology, there exists a countable, locally finite refinement of χ, consisting of elements of \mathcal{B}. (Similar if boundary is there.)
- Proof: Consider an exhaustion K_{i}. Let $V_{j}=K_{j+1}-\operatorname{Int}\left(K_{j}\right)$. Cover the V_{j} 's by finitely many elements of \mathcal{B} such that

Returning to paracompactness

- Proposition: Given a topological manifold M, an open cover χ of M, any basis \mathcal{B} for M 's topology, there exists a countable, locally finite refinement of χ, consisting of elements of \mathcal{B}. (Similar if boundary is there.)
- Proof: Consider an exhaustion K_{i}. Let $V_{j}=K_{j+1}-\operatorname{Int}\left(K_{j}\right)$. Cover the V_{j} 's by finitely many elements of \mathcal{B} such that each element is in \mathcal{B} and

Returning to paracompactness

- Proposition: Given a topological manifold M, an open cover χ of M, any basis \mathcal{B} for M 's topology, there exists a countable, locally finite refinement of χ, consisting of elements of \mathcal{B}. (Similar if boundary is there.)
- Proof: Consider an exhaustion K_{i}. Let $V_{j}=K_{j+1}-\operatorname{Int}\left(K_{j}\right)$. Cover the V_{j} 's by finitely many elements of \mathcal{B} such that each element is in \mathcal{B} and in $W_{j}=K_{j+2}-\operatorname{Int}\left(K_{j-1}\right)$.

Returning to paracompactness

- Proposition: Given a topological manifold M, an open cover χ of M, any basis \mathcal{B} for M 's topology, there exists a countable, locally finite refinement of χ, consisting of elements of \mathcal{B}. (Similar if boundary is there.)
- Proof: Consider an exhaustion K_{i}. Let $V_{j}=K_{j+1}-\operatorname{Int}\left(K_{j}\right)$. Cover the V_{j} 's by finitely many elements of \mathcal{B} such that each element is in \mathcal{B} and in $W_{j}=K_{j+2}-\operatorname{Int}\left(K_{j-1}\right)$. Since $M=\cup_{j} V_{j}$,

Returning to paracompactness

- Proposition: Given a topological manifold M, an open cover χ of M, any basis \mathcal{B} for M 's topology, there exists a countable, locally finite refinement of χ, consisting of elements of \mathcal{B}. (Similar if boundary is there.)
- Proof: Consider an exhaustion K_{i}. Let $V_{j}=K_{j+1}-\operatorname{Int}\left(K_{j}\right)$. Cover the V_{j} 's by finitely many elements of \mathcal{B} such that each element is in \mathcal{B} and in $W_{j}=K_{j+2}-\operatorname{Int}\left(K_{j-1}\right)$. Since $M=\cup_{j} V_{j}$, these elements cover M

Returning to paracompactness

- Proposition: Given a topological manifold M, an open cover χ of M, any basis \mathcal{B} for M 's topology, there exists a countable, locally finite refinement of χ, consisting of elements of \mathcal{B}. (Similar if boundary is there.)
- Proof: Consider an exhaustion K_{i}. Let $V_{j}=K_{j+1}-\operatorname{Int}\left(K_{j}\right)$. Cover the V_{j} 's by finitely many elements of \mathcal{B} such that each element is in \mathcal{B} and in $W_{j}=K_{j+2}-\operatorname{Int}\left(K_{j-1}\right)$. Since $M=\cup_{j} V_{j}$, these elements cover M form a refinement,

Returning to paracompactness

- Proposition: Given a topological manifold M, an open cover χ of M, any basis \mathcal{B} for M 's topology, there exists a countable, locally finite refinement of χ, consisting of elements of \mathcal{B}. (Similar if boundary is there.)
- Proof: Consider an exhaustion K_{i}. Let $V_{j}=K_{j+1}-\operatorname{Int}\left(K_{j}\right)$. Cover the V_{j} 's by finitely many elements of \mathcal{B} such that each element is in \mathcal{B} and in $W_{j}=K_{j+2}-\operatorname{Int}\left(K_{j-1}\right)$. Since $M=\cup_{j} V_{j}$, these elements cover M form a refinement, and since $W_{j} \cap W_{k}=\phi$ unless $j-2 \leq k \leq j+2$, it is locally finite.

Partition-of-unity

Partition-of-unity

- Let $\chi=\left\{U_{\alpha}\right\}$ be an open cover of M.

Partition-of-unity

- Let $\chi=\left\{U_{\alpha}\right\}$ be an open cover of M. A partition-of-unity subordinate to χ is

Partition-of-unity

- Let $\chi=\left\{U_{\alpha}\right\}$ be an open cover of M. A partition-of-unity subordinate to χ is a family of smooth functions
$\rho_{\alpha}: U_{\alpha} \rightarrow \mathbb{R}_{\geq 0}$ such that

Partition-of-unity

- Let $\chi=\left\{U_{\alpha}\right\}$ be an open cover of M. A partition-of-unity subordinate to χ is a family of smooth functions
$\rho_{\alpha}: U_{\alpha} \rightarrow \mathbb{R}_{\geq 0}$ such that $0 \leq \rho_{\alpha} \leq 1$,

Partition-of-unity

- Let $\chi=\left\{U_{\alpha}\right\}$ be an open cover of M. A partition-of-unity subordinate to χ is a family of smooth functions $\rho_{\alpha}: U_{\alpha} \rightarrow \mathbb{R}_{\geq 0}$ such that $0 \leq \rho_{\alpha} \leq 1, \operatorname{supp}\left(\rho_{\alpha}\right) \subset U_{\alpha}$,

Partition-of-unity

- Let $\chi=\left\{U_{\alpha}\right\}$ be an open cover of M. A partition-of-unity subordinate to χ is a family of smooth functions $\rho_{\alpha}: U_{\alpha} \rightarrow \mathbb{R}_{\geq 0}$ such that $0 \leq \rho_{\alpha} \leq 1$, $\operatorname{supp}\left(\rho_{\alpha}\right) \subset U_{\alpha}$, the supports are locally finite, i.e.

Partition-of-unity

- Let $\chi=\left\{U_{\alpha}\right\}$ be an open cover of M. A partition-of-unity subordinate to χ is a family of smooth functions $\rho_{\alpha}: U_{\alpha} \rightarrow \mathbb{R}_{\geq 0}$ such that $0 \leq \rho_{\alpha} \leq 1$, $\operatorname{supp}\left(\rho_{\alpha}\right) \subset U_{\alpha}$, the supports are locally finite, i.e. every point has a neighbourhood intersecting only finitely many of them,

Partition-of-unity

- Let $\chi=\left\{U_{\alpha}\right\}$ be an open cover of M. A partition-of-unity subordinate to χ is a family of smooth functions $\rho_{\alpha}: U_{\alpha} \rightarrow \mathbb{R}_{\geq 0}$ such that $0 \leq \rho_{\alpha} \leq 1$, $\operatorname{supp}\left(\rho_{\alpha}\right) \subset U_{\alpha}$, the supports are locally finite, i.e. every point has a neighbourhood intersecting only finitely many of them, $\sum_{\alpha} \rho_{\alpha}=1$.

Partition-of-unity

- Let $\chi=\left\{U_{\alpha}\right\}$ be an open cover of M. A partition-of-unity subordinate to χ is a family of smooth functions $\rho_{\alpha}: U_{\alpha} \rightarrow \mathbb{R}_{\geq 0}$ such that $0 \leq \rho_{\alpha} \leq 1$, supp $\left(\rho_{\alpha}\right) \subset U_{\alpha}$, the supports are locally finite, i.e. every point has a neighbourhood intersecting only finitely many of them, $\sum_{\alpha} \rho_{\alpha}=1$.
- Theorem:

Partition-of-unity

- Let $\chi=\left\{U_{\alpha}\right\}$ be an open cover of M. A partition-of-unity subordinate to χ is a family of smooth functions $\rho_{\alpha}: U_{\alpha} \rightarrow \mathbb{R}_{\geq 0}$ such that $0 \leq \rho_{\alpha} \leq 1$, $\operatorname{supp}\left(\rho_{\alpha}\right) \subset U_{\alpha}$, the supports are locally finite, i.e. every point has a neighbourhood intersecting only finitely many of them, $\sum_{\alpha} \rho_{\alpha}=1$.
- Theorem: Suppose M is a smooth manifold with or without boundary.

Partition-of-unity

- Let $\chi=\left\{U_{\alpha}\right\}$ be an open cover of M. A partition-of-unity subordinate to χ is a family of smooth functions $\rho_{\alpha}: U_{\alpha} \rightarrow \mathbb{R}_{\geq 0}$ such that $0 \leq \rho_{\alpha} \leq 1$, $\operatorname{supp}\left(\rho_{\alpha}\right) \subset U_{\alpha}$, the supports are locally finite, i.e. every point has a neighbourhood intersecting only finitely many of them, $\sum_{\alpha} \rho_{\alpha}=1$.
- Theorem: Suppose M is a smooth manifold with or without boundary. Let χ be an open cover of M.

Partition-of-unity

- Let $\chi=\left\{U_{\alpha}\right\}$ be an open cover of M. A partition-of-unity subordinate to χ is a family of smooth functions $\rho_{\alpha}: U_{\alpha} \rightarrow \mathbb{R}_{\geq 0}$ such that $0 \leq \rho_{\alpha} \leq 1$, $\operatorname{supp}\left(\rho_{\alpha}\right) \subset U_{\alpha}$, the supports are locally finite, i.e. every point has a neighbourhood intersecting only finitely many of them, $\sum_{\alpha} \rho_{\alpha}=1$.
- Theorem: Suppose M is a smooth manifold with or without boundary. Let χ be an open cover of M. Then there exists a smooth partition of unity subordinate to it.

Partition-of-unity

- Let $\chi=\left\{U_{\alpha}\right\}$ be an open cover of M. A partition-of-unity subordinate to χ is a family of smooth functions $\rho_{\alpha}: U_{\alpha} \rightarrow \mathbb{R}_{\geq 0}$ such that $0 \leq \rho_{\alpha} \leq 1$, $\operatorname{supp}\left(\rho_{\alpha}\right) \subset U_{\alpha}$, the supports are locally finite, i.e. every point has a neighbourhood intersecting only finitely many of them, $\sum_{\alpha} \rho_{\alpha}=1$.
- Theorem: Suppose M is a smooth manifold with or without boundary. Let χ be an open cover of M. Then there exists a smooth partition of unity subordinate to it. There also exists a partition-of-unity consisting of compact supports

Partition-of-unity

- Let $\chi=\left\{U_{\alpha}\right\}$ be an open cover of M. A partition-of-unity subordinate to χ is a family of smooth functions $\rho_{\alpha}: U_{\alpha} \rightarrow \mathbb{R}_{\geq 0}$ such that $0 \leq \rho_{\alpha} \leq 1$, $\operatorname{supp}\left(\rho_{\alpha}\right) \subset U_{\alpha}$, the supports are locally finite, i.e. every point has a neighbourhood intersecting only finitely many of them, $\sum_{\alpha} \rho_{\alpha}=1$.
- Theorem: Suppose M is a smooth manifold with or without boundary. Let χ be an open cover of M. Then there exists a smooth partition of unity subordinate to it. There also exists a partition-of-unity consisting of compact supports subordinate to a locally finite countable open refinement.

