MA 229/MA 235 - Lecture 23

IISc

Recap

Recap

- Wedge product and its properties.

Differential forms on manifolds

Differential forms on manifolds

- We can take the disjoint union

Differential forms on manifolds

- We can take the disjoint union $\Lambda^{k} T^{*} M=\cup_{p \in M} \Lambda^{k} T_{p}^{*} M$.

Differential forms on manifolds

- We can take the disjoint union $\Lambda^{k} T^{*} M=\cup_{p \in M} \Lambda^{k} T_{p}^{*} M$.
- Suppose (U, x) is a chart.

Differential forms on manifolds

- We can take the disjoint union $\Lambda^{k} T^{*} M=\cup_{p \in M} \Lambda^{k} T_{p}^{*} M$.
- Suppose (U, x) is a chart. Since $\epsilon^{i}=d x^{i}$ is a basis for $T_{p}^{*} M$,

Differential forms on manifolds

- We can take the disjoint union $\Lambda^{k} T^{*} M=\cup_{p \in M} \Lambda^{k} T_{p}^{*} M$.
- Suppose (U, x) is a chart. Since $\epsilon^{i}=d x^{i}$ is a basis for $T_{p}^{*} M$, whenever I is an increasing multi-index,

Differential forms on manifolds

- We can take the disjoint union $\Lambda^{k} T^{*} M=\cup_{p \in M} \Lambda^{k} T_{p}^{*} M$.
- Suppose (U, x) is a chart. Since $\epsilon^{i}=d x^{i}$ is a basis for $T_{p}^{*} M$, whenever I is an increasing multi-index, $\epsilon^{I}=d x^{i_{1}} \wedge d x^{i_{2}} \ldots$ is a basis for $\Lambda^{k} T_{p}^{*} M$.

Differential forms on manifolds

- We can take the disjoint union $\Lambda^{k} T^{*} M=\cup_{p \in M} \Lambda^{k} T_{p}^{*} M$.
- Suppose (U, x) is a chart. Since $\epsilon^{i}=d x^{i}$ is a basis for $T_{p}^{*} M$, whenever I is an increasing multi-index, $\epsilon^{I}=d x^{i_{1}} \wedge d x^{i_{2}} \ldots$ is a basis for $\Lambda^{k} T_{p}^{*} M$.
- We can give $\Lambda^{k} T^{*} M$ a vector bundle structure

Differential forms on manifolds

- We can take the disjoint union $\Lambda^{k} T^{*} M=\cup_{p \in M} \Lambda^{k} T_{p}^{*} M$.
- Suppose (U, x) is a chart. Since $\epsilon^{i}=d x^{i}$ is a basis for $T_{p}^{*} M$, whenever I is an increasing multi-index, $\epsilon^{I}=d x^{i_{1}} \wedge d x^{i_{2}} \ldots$ is a basis for $\Lambda^{k} T_{p}^{*} M$.
- We can give $\Lambda^{k} T^{*} M$ a vector bundle structure using these coordinate bases.

Differential forms on manifolds

- We can take the disjoint union $\Lambda^{k} T^{*} M=\cup_{p \in M} \Lambda^{k} T_{p}^{*} M$.
- Suppose (U, x) is a chart. Since $\epsilon^{i}=d x^{i}$ is a basis for $T_{p}^{*} M$, whenever I is an increasing multi-index, $\epsilon^{I}=d x^{i_{1}} \wedge d x^{i_{2}} \ldots$ is a basis for $\Lambda^{k} T_{p}^{*} M$.
- We can give $\Lambda^{k} T^{*} M$ a vector bundle structure using these coordinate bases. A smooth section of this bundle of differential k-forms

Differential forms on manifolds

- We can take the disjoint union $\Lambda^{k} T^{*} M=\cup_{p \in M} \Lambda^{k} T_{p}^{*} M$.
- Suppose (U, x) is a chart. Since $\epsilon^{i}=d x^{i}$ is a basis for $T_{p}^{*} M$, whenever I is an increasing multi-index, $\epsilon^{I}=d x^{i_{1}} \wedge d x^{i_{2}} \ldots$ is a basis for $\Lambda^{k} T_{p}^{*} M$.
- We can give $\Lambda^{k} T^{*} M$ a vector bundle structure using these coordinate bases. A smooth section of this bundle of differential k-forms is called a k-form field (or simply a k-form).

Differential forms on manifolds

- We can take the disjoint union $\Lambda^{k} T^{*} M=\cup_{p \in M} \Lambda^{k} T_{p}^{*} M$.
- Suppose (U, x) is a chart. Since $\epsilon^{i}=d x^{i}$ is a basis for $T_{p}^{*} M$, whenever I is an increasing multi-index, $\epsilon^{I}=d x^{i_{1}} \wedge d x^{i_{2}} \ldots$ is a basis for $\Lambda^{k} T_{p}^{*} M$.
- We can give $\Lambda^{k} T^{*} M$ a vector bundle structure using these coordinate bases. A smooth section of this bundle of differential k-forms is called a k-form field (or simply a k-form). Such an object is a smooth linear combination

Differential forms on manifolds

- We can take the disjoint union $\Lambda^{k} T^{*} M=\cup_{p \in M} \Lambda^{k} T_{p}^{*} M$.
- Suppose (U, x) is a chart. Since $\epsilon^{i}=d x^{i}$ is a basis for $T_{p}^{*} M$, whenever I is an increasing multi-index, $\epsilon^{I}=d x^{i_{1}} \wedge d x^{i_{2}} \ldots$ is a basis for $\Lambda^{k} T_{p}^{*} M$.
- We can give $\Lambda^{k} T^{*} M$ a vector bundle structure using these coordinate bases. A smooth section of this bundle of differential k-forms is called a k-form field (or simply a k-form). Such an object is a smooth linear combination of $d x^{\prime}$.

Differential forms on manifolds

- We can take the disjoint union $\Lambda^{k} T^{*} M=\cup_{p \in M} \Lambda^{k} T_{p}^{*} M$.
- Suppose (U, x) is a chart. Since $\epsilon^{i}=d x^{i}$ is a basis for $T_{p}^{*} M$, whenever I is an increasing multi-index, $\epsilon^{I}=d x^{i_{1}} \wedge d x^{i_{2}} \ldots$ is a basis for $\Lambda^{k} T_{p}^{*} M$.
- We can give $\Lambda^{k} T^{*} M$ a vector bundle structure using these coordinate bases. A smooth section of this bundle of differential k-forms is called a k-form field (or simply a k-form). Such an object is a smooth linear combination of $d x^{\prime}$.
- We can define the wedge product of forms.

Differential forms on manifolds

- We can take the disjoint union $\Lambda^{k} T^{*} M=\cup_{p \in M} \Lambda^{k} T_{p}^{*} M$.
- Suppose (U, x) is a chart. Since $\epsilon^{i}=d x^{i}$ is a basis for $T_{p}^{*} M$, whenever I is an increasing multi-index, $\epsilon^{I}=d x^{i_{1}} \wedge d x^{i_{2}} \ldots$ is a basis for $\Lambda^{k} T_{p}^{*} M$.
- We can give $\Lambda^{k} T^{*} M$ a vector bundle structure using these coordinate bases. A smooth section of this bundle of differential k-forms is called a k-form field (or simply a k-form). Such an object is a smooth linear combination of $d x^{\prime}$.
- We can define the wedge product of forms. Moreover, functions are treated as 0 -forms.

Differential forms on manifolds

- We can take the disjoint union $\Lambda^{k} T^{*} M=\cup_{p \in M} \Lambda^{k} T_{p}^{*} M$.
- Suppose (U, x) is a chart. Since $\epsilon^{i}=d x^{i}$ is a basis for $T_{p}^{*} M$, whenever I is an increasing multi-index, $\epsilon^{I}=d x^{i_{1}} \wedge d x^{i_{2}} \ldots$ is a basis for $\Lambda^{k} T_{p}^{*} M$.
- We can give $\Lambda^{k} T^{*} M$ a vector bundle structure using these coordinate bases. A smooth section of this bundle of differential k-forms is called a k-form field (or simply a k-form). Such an object is a smooth linear combination of $d x^{\prime}$.
- We can define the wedge product of forms. Moreover, functions are treated as 0 -forms. $f \wedge \eta=f \eta$ if f is a function.

Pullback and wedge product

Pullback and wedge product

- Suppose $F: M \rightarrow N$ is smooth.

Pullback and wedge product

- Suppose $F: M \rightarrow N$ is smooth. We can define the pullback as follows:
- Suppose $F: M \rightarrow N$ is smooth. We can define the pullback as follows: If ω is a k-form field on N,
- Suppose $F: M \rightarrow N$ is smooth. We can define the pullback as follows: If ω is a k-form field on $N, F^{*} \omega$ is a k-form field on M

Pullback and wedge product

- Suppose $F: M \rightarrow N$ is smooth. We can define the pullback as follows: If ω is a k-form field on $N, F^{*} \omega$ is a k-form field on M such that $\left(F^{*} \omega\right)_{p}\left(v_{1}, \ldots\right)=\omega_{F(p)}\left(\left(F_{*}\right)_{p}\left(v_{1}\right), \ldots\right)$.

Pullback and wedge product

- Suppose $F: M \rightarrow N$ is smooth. We can define the pullback as follows: If ω is a k-form field on $N, F^{*} \omega$ is a k-form field on M such that $\left(F^{*} \omega\right)_{p}\left(v_{1}, \ldots\right)=\omega_{F(p)}\left(\left(F_{*}\right)_{p}\left(v_{1}\right), \ldots\right)$.
- For functions,

Pullback and wedge product

- Suppose $F: M \rightarrow N$ is smooth. We can define the pullback as follows: If ω is a k-form field on $N, F^{*} \omega$ is a k-form field on M such that $\left(F^{*} \omega\right)_{p}\left(v_{1}, \ldots\right)=\omega_{F(p)}\left(\left(F_{*}\right)_{p}\left(v_{1}\right), \ldots\right)$.
- For functions, by definition, $F^{*} f(p)=f(F(p))=f \circ F(p)$.

Pullback and wedge product

- Suppose $F: M \rightarrow N$ is smooth. We can define the pullback as follows: If ω is a k-form field on $N, F^{*} \omega$ is a k-form field on M such that $\left(F^{*} \omega\right)_{p}\left(v_{1}, \ldots\right)=\omega_{F(p)}\left(\left(F_{*}\right)_{p}\left(v_{1}\right), \ldots\right)$.
- For functions, by definition, $F^{*} f(p)=f(F(p))=f \circ F(p)$.
- Recall that $F^{*} d f=d F^{*} f$.

Pullback and wedge product

- Suppose $F: M \rightarrow N$ is smooth. We can define the pullback as follows: If ω is a k-form field on $N, F^{*} \omega$ is a k-form field on M such that $\left(F^{*} \omega\right)_{p}\left(v_{1}, \ldots\right)=\omega_{F(p)}\left(\left(F_{*}\right)_{p}\left(v_{1}\right), \ldots\right)$.
- For functions, by definition, $F^{*} f(p)=f(F(p))=f \circ F(p)$.
- Recall that $F^{*} d f=d F^{*} f$. Moreover, if $\omega=\omega_{i} d x^{i}$, then $F^{*} \omega=\omega_{i} \circ F d F^{i}$.

Pullback and wedge product

- Suppose $F: M \rightarrow N$ is smooth. We can define the pullback as follows: If ω is a k-form field on $N, F^{*} \omega$ is a k-form field on M such that $\left(F^{*} \omega\right)_{p}\left(v_{1}, \ldots\right)=\omega_{F(p)}\left(\left(F_{*}\right)_{p}\left(v_{1}\right), \ldots\right)$.
- For functions, by definition, $F^{*} f(p)=f(F(p))=f \circ F(p)$.
- Recall that $F^{*} d f=d F^{*} f$. Moreover, if $\omega=\omega_{i} d x^{i}$, then $F^{*} \omega=\omega_{i} \circ F d F^{i}$.
- For k-forms,

Pullback and wedge product

- Suppose $F: M \rightarrow N$ is smooth. We can define the pullback as follows: If ω is a k-form field on $N, F^{*} \omega$ is a k-form field on M such that $\left(F^{*} \omega\right)_{p}\left(v_{1}, \ldots\right)=\omega_{F(p)}\left(\left(F_{*}\right)_{p}\left(v_{1}\right), \ldots\right)$.
- For functions, by definition, $F^{*} f(p)=f(F(p))=f \circ F(p)$.
- Recall that $F^{*} d f=d F^{*} f$. Moreover, if $\omega=\omega_{i} d x^{i}$, then $F^{*} \omega=\omega_{i} \circ F d F^{i}$.
- For k-forms, the pullback is \mathbb{R}-linear (why?).

Pullback for top-forms

Pullback for top-forms

- $F^{*}(\omega \wedge \eta)=F^{*} \omega \wedge F^{*} \eta$ (why?)

Pullback for top-forms

- $F^{*}(\omega \wedge \eta)=F^{*} \omega \wedge F^{*} \eta$ (why?)
- Using this property,

Pullback for top-forms

- $F^{*}(\omega \wedge \eta)=F^{*} \omega \wedge F^{*} \eta$ (why?)
- Using this property, we can calculate pullbacks for several examples.

Pullback for top-forms

- $F^{*}(\omega \wedge \eta)=F^{*} \omega \wedge F^{*} \eta$ (why?)
- Using this property, we can calculate pullbacks for several examples.
- Suppose $\omega=f d y^{1} \ldots d y^{n}$,

Pullback for top-forms

- $F^{*}(\omega \wedge \eta)=F^{*} \omega \wedge F^{*} \eta$ (why?)
- Using this property, we can calculate pullbacks for several examples.
- Suppose $\omega=f d y^{1} \ldots d y^{n}$, then $F^{*} \omega=F^{*} f d F^{1} \ldots d F^{n}$, which

Pullback for top-forms

- $F^{*}(\omega \wedge \eta)=F^{*} \omega \wedge F^{*} \eta$ (why?)
- Using this property, we can calculate pullbacks for several examples.
- Suppose $\omega=f d y^{1} \ldots d y^{n}$, then $F^{*} \omega=F^{*} f d F^{1} \ldots d F^{n}$, which when acted on $\frac{\partial}{\partial x^{1}}, \ldots$ is

Pullback for top-forms

- $F^{*}(\omega \wedge \eta)=F^{*} \omega \wedge F^{*} \eta$ (why?)
- Using this property, we can calculate pullbacks for several examples.
- Suppose $\omega=f d y^{1} \ldots d y^{n}$, then $F^{*} \omega=F^{*} f d F^{1} \ldots d F^{n}$, which when acted on $\frac{\partial}{\partial x^{1}}, \ldots$ is $F \circ f \operatorname{det}\left(\frac{\partial F^{i}}{\partial x^{j}}\right) d x^{1} \ldots d x^{n}$.

Pullback for top-forms

- $F^{*}(\omega \wedge \eta)=F^{*} \omega \wedge F^{*} \eta$ (why?)
- Using this property, we can calculate pullbacks for several examples.
- Suppose $\omega=f d y^{1} \ldots d y^{n}$, then $F^{*} \omega=F^{*} f d F^{1} \ldots d F^{n}$, which when acted on $\frac{\partial}{\partial x^{1}}, \ldots$ is $F \circ f \operatorname{det}\left(\frac{\partial F^{i}}{\partial x^{j}}\right) d x^{1} \ldots d x^{n}$.
- In particular, $d \tilde{x}^{1} \wedge \ldots=\operatorname{det}\left(\frac{\partial \tilde{x}^{i}}{\partial x^{j}}\right) d x^{1} \wedge \ldots$.

The exterior derivative

- How can we generalise the curl $\nabla \times$?
- How can we generalise the curl $\nabla \times$?
- Naively, we can try
- How can we generalise the curl $\nabla \times$?
- Naively, we can try $d \wedge \omega$, i.e.,
- How can we generalise the curl $\nabla \times$?
- Naively, we can try $d \wedge \omega$, i.e., pretend $d=\frac{\partial}{\partial x^{i}} d x^{i}$ is a
- How can we generalise the curl $\nabla \times$?
- Naively, we can try $d \wedge \omega$, i.e., pretend $d=\frac{\partial}{\partial x^{i}} d x^{i}$ is a "1-form" and take the "wedge product" with ω.
- How can we generalise the curl $\nabla \times$?
- Naively, we can try $d \wedge \omega$, i.e., pretend $d=\frac{\partial}{\partial x^{i}} d x^{i}$ is a "1-form" and take the "wedge product" with ω. This naive thing actually works!
- How can we generalise the curl $\nabla \times$?
- Naively, we can try $d \wedge \omega$, i.e., pretend $d=\frac{\partial}{\partial x^{i}} d x^{i}$ is a " 1 -form" and take the "wedge product" with ω. This naive thing actually works!
- Def:
- How can we generalise the curl $\nabla \times$?
- Naively, we can try $d \wedge \omega$, i.e., pretend $d=\frac{\partial}{\partial x^{i}} d x^{i}$ is a " 1 -form" and take the "wedge product" with ω. This naive thing actually works!
- Def: Let $\omega=\sum^{\prime} \omega_{l} d x^{\prime}$ on $U \subset \mathbb{R}^{n}$.
- How can we generalise the curl $\nabla \times$?
- Naively, we can try $d \wedge \omega$, i.e., pretend $d=\frac{\partial}{\partial x^{i}} d x^{i}$ is a "1-form" and take the "wedge product" with ω. This naive thing actually works!
- Def: Let $\omega=\sum^{\prime} \omega_{l} d x^{\prime}$ on $U \subset \mathbb{R}^{n}$. Then $d \omega:=\sum^{\prime} d \omega_{l} \wedge d x^{\prime}=\sum^{\prime} \sum \frac{\partial \omega_{l}}{\partial x^{k}} d x^{k} \wedge d x^{\prime}$.
- How can we generalise the curl $\nabla \times$?
- Naively, we can try $d \wedge \omega$, i.e., pretend $d=\frac{\partial}{\partial x^{i}} d x^{i}$ is a "1-form" and take the "wedge product" with ω. This naive thing actually works!
- Def: Let $\omega=\sum^{\prime} \omega_{1} d x^{\prime}$ on $U \subset \mathbb{R}^{n}$. Then $d \omega:=\sum^{\prime} d \omega_{I} \wedge d x^{\prime}=\sum^{\prime} \sum \frac{\partial \omega_{l}}{\partial x^{k}} d x^{k} \wedge d x^{\prime}$. This d is called the exterior derivative.
- How can we generalise the curl $\nabla \times$?
- Naively, we can try $d \wedge \omega$, i.e., pretend $d=\frac{\partial}{\partial x^{i}} d x^{i}$ is a "1-form" and take the "wedge product" with ω. This naive thing actually works!
- Def: Let $\omega=\sum^{\prime} \omega_{1} d x^{\prime}$ on $U \subset \mathbb{R}^{n}$. Then $d \omega:=\sum^{\prime} d \omega_{I} \wedge d x^{\prime}=\sum^{\prime} \sum \frac{\partial \omega_{l}}{\partial x^{k}} d x^{k} \wedge d x^{\prime}$. This d is called the exterior derivative.
- For 0-forms, i.e.,
- How can we generalise the curl $\nabla \times$?
- Naively, we can try $d \wedge \omega$, i.e., pretend $d=\frac{\partial}{\partial x^{i}} d x^{i}$ is a "1-form" and take the "wedge product" with ω. This naive thing actually works!
- Def: Let $\omega=\sum^{\prime} \omega_{1} d x^{\prime}$ on $U \subset \mathbb{R}^{n}$. Then $d \omega:=\sum^{\prime} d \omega_{\prime} \wedge d x^{\prime}=\sum^{\prime} \sum \frac{\partial \omega_{1}}{\partial x^{k}} d x^{k} \wedge d x^{\prime}$. This d is called the exterior derivative.
- For 0 -forms, i.e., functions f,
- How can we generalise the curl $\nabla \times$?
- Naively, we can try $d \wedge \omega$, i.e., pretend $d=\frac{\partial}{\partial x^{i}} d x^{i}$ is a "1-form" and take the "wedge product" with ω. This naive thing actually works!
- Def: Let $\omega=\sum^{\prime} \omega_{1} d x^{\prime}$ on $U \subset \mathbb{R}^{n}$. Then $d \omega:=\sum^{\prime} d \omega_{I} \wedge d x^{\prime}=\sum^{\prime} \sum \frac{\partial \omega_{1}}{\partial x^{k}} d x^{k} \wedge d x^{\prime}$. This d is called the exterior derivative.
- For 0 -forms, i.e., functions $f, d f$ is the usual $d f$ defined earlier.
- How can we generalise the curl $\nabla \times$?
- Naively, we can try $d \wedge \omega$, i.e., pretend $d=\frac{\partial}{\partial x^{i}} d x^{i}$ is a "1-form" and take the "wedge product" with ω. This naive thing actually works!
- Def: Let $\omega=\sum^{\prime} \omega_{1} d x^{\prime}$ on $U \subset \mathbb{R}^{n}$. Then $d \omega:=\sum^{\prime} d \omega_{I} \wedge d x^{\prime}=\sum^{\prime} \sum \frac{\partial \omega_{l}}{\partial x^{k}} d x^{k} \wedge d x^{\prime}$. This d is called the exterior derivative.
- For 0 -forms, i.e., functions $f, d f$ is the usual $d f$ defined earlier.
- For 1-forms ω,
- How can we generalise the curl $\nabla \times$?
- Naively, we can try $d \wedge \omega$, i.e., pretend $d=\frac{\partial}{\partial x^{i}} d x^{i}$ is a "1-form" and take the "wedge product" with ω. This naive thing actually works!
- Def: Let $\omega=\sum^{\prime} \omega_{1} d x^{\prime}$ on $U \subset \mathbb{R}^{n}$. Then $d \omega:=\sum^{\prime} d \omega_{I} \wedge d x^{\prime}=\sum^{\prime} \sum \frac{\partial \omega_{l}}{\partial x^{k}} d x^{k} \wedge d x^{\prime}$. This d is called the exterior derivative.
- For 0-forms, i.e., functions $f, d f$ is the usual $d f$ defined earlier.
- For 1-forms $\omega, d \omega=\sum_{i<j}\left(\frac{\partial \omega_{j}}{\partial x^{i}}-\frac{\partial \omega_{j}}{\partial x^{j}}\right) d x^{i} \wedge d x^{j}$.
- How can we generalise the curl $\nabla \times$?
- Naively, we can try $d \wedge \omega$, i.e., pretend $d=\frac{\partial}{\partial x^{i}} d x^{i}$ is a "1-form" and take the "wedge product" with ω. This naive thing actually works!
- Def: Let $\omega=\sum^{\prime} \omega_{l} d x^{\prime}$ on $U \subset \mathbb{R}^{n}$. Then $d \omega:=\sum^{\prime} d \omega_{I} \wedge d x^{\prime}=\sum^{\prime} \sum \frac{\partial \omega_{l}}{\partial x^{k}} d x^{k} \wedge d x^{\prime}$. This d is called the exterior derivative.
- For 0 -forms, i.e., functions $f, d f$ is the usual $d f$ defined earlier.
- For 1-forms $\omega, d \omega=\sum_{i<j}\left(\frac{\partial \omega_{j}}{\partial x^{i}}-\frac{\partial \omega_{j}}{\partial x^{j}}\right) d x^{i} \wedge d x^{j}$.
- It coincides with the usual curl in \mathbb{R}^{3}.

Properties

Properties

- d is \mathbb{R}-linear. (Easy.)

Properties

- d is \mathbb{R}-linear. (Easy.)
- $d(\omega \wedge \eta)=d \omega \wedge \eta+(-1)^{k} \omega \wedge d \eta$. (

Properties

- d is \mathbb{R}-linear. (Easy.)
- $d(\omega \wedge \eta)=d \omega \wedge \eta+(-1)^{k} \omega \wedge d \eta$.
$\left(d\left(\sum^{\prime} \omega_{1} \eta_{J} d x^{\prime} \wedge d x^{J}\right)=\sum^{\prime} \eta_{J} d \omega_{I} \wedge d x^{\prime} \wedge d x^{J}+\sum^{\prime} \omega_{I} d \eta_{J} \wedge\right.$ $d x^{\prime} \wedge d x^{J}=d \omega \wedge \eta+\sum^{\prime}(-1)^{k} \omega \wedge d \eta$.)

Properties

- d is \mathbb{R}-linear. (Easy.)
- $d(\omega \wedge \eta)=d \omega \wedge \eta+(-1)^{k} \omega \wedge d \eta$.
$\left(d\left(\sum^{\prime} \omega_{1} \eta_{J} d x^{\prime} \wedge d x^{J}\right)=\sum^{\prime} \eta_{J} d \omega_{I} \wedge d x^{\prime} \wedge d x^{J}+\sum^{\prime} \omega_{I} d \eta_{J} \wedge\right.$ $d x^{\prime} \wedge d x^{J}=d \omega \wedge \eta+\sum^{\prime}(-1)^{k} \omega \wedge d \eta$.)
- $d^{2}=d \circ d=0$.

Properties

- d is \mathbb{R}-linear. (Easy.)
- $d(\omega \wedge \eta)=d \omega \wedge \eta+(-1)^{k} \omega \wedge d \eta$.
$\left(d\left(\sum^{\prime} \omega_{I} \eta_{J} d x^{\prime} \wedge d x^{J}\right)=\sum^{\prime} \eta_{J} d \omega_{I} \wedge d x^{\prime} \wedge d x^{J}+\sum^{\prime} \omega_{I} d \eta_{J} \wedge\right.$ $d x^{\prime} \wedge d x^{J}=d \omega \wedge \eta+\sum^{\prime}(-1)^{k} \omega \wedge d \eta$.)
- $d^{2}=d \circ d=0$. (It is true for 0 -forms (why?)

Properties

- d is \mathbb{R}-linear. (Easy.)
- $d(\omega \wedge \eta)=d \omega \wedge \eta+(-1)^{k} \omega \wedge d \eta$.
$\left(d\left(\sum^{\prime} \omega_{1} \eta_{J} d x^{\prime} \wedge d x^{J}\right)=\sum^{\prime} \eta_{J} d \omega_{I} \wedge d x^{\prime} \wedge d x^{J}+\sum^{\prime} \omega_{I} d \eta_{J} \wedge\right.$ $d x^{\prime} \wedge d x^{J}=d \omega \wedge \eta+\sum^{\prime}(-1)^{k} \omega \wedge d \eta$.)
- $d^{2}=d \circ d=0$. (It is true for 0 -forms (why?) So $d(d \omega)=d\left(d \sum^{\prime} \omega_{l} \wedge d x^{\prime}\right)=0-d \sum^{\prime} \omega_{l} d\left(d x^{\prime}\right)=0$.)

Properties

- d is \mathbb{R}-linear. (Easy.)
- $d(\omega \wedge \eta)=d \omega \wedge \eta+(-1)^{k} \omega \wedge d \eta$.
$\left(d\left(\sum^{\prime} \omega_{1} \eta_{J} d x^{\prime} \wedge d x^{J}\right)=\sum^{\prime} \eta_{J} d \omega_{I} \wedge d x^{\prime} \wedge d x^{J}+\sum^{\prime} \omega_{I} d \eta_{J} \wedge\right.$ $d x^{\prime} \wedge d x^{J}=d \omega \wedge \eta+\sum^{\prime}(-1)^{k} \omega \wedge d \eta$.)
- $d^{2}=d \circ d=0$. (It is true for 0 -forms (why?) So $d(d \omega)=d\left(d \sum^{\prime} \omega_{l} \wedge d x^{\prime}\right)=0-d \sum^{\prime} \omega_{l} d\left(d x^{\prime}\right)=0$.)
- If $F: U \rightarrow V$ is a smooth map,

Properties

- d is \mathbb{R}-linear. (Easy.)
- $d(\omega \wedge \eta)=d \omega \wedge \eta+(-1)^{k} \omega \wedge d \eta$.
$\left(d\left(\sum^{\prime} \omega_{1} \eta_{J} d x^{\prime} \wedge d x^{J}\right)=\sum^{\prime} \eta_{J} d \omega_{I} \wedge d x^{\prime} \wedge d x^{J}+\sum^{\prime} \omega_{I} d \eta_{J} \wedge\right.$ $d x^{\prime} \wedge d x^{J}=d \omega \wedge \eta+\sum^{\prime}(-1)^{k} \omega \wedge d \eta$.)
- $d^{2}=d \circ d=0$. (It is true for 0 -forms (why?) So $d(d \omega)=d\left(d \sum^{\prime} \omega_{l} \wedge d x^{\prime}\right)=0-d \sum^{\prime} \omega_{l} d\left(d x^{\prime}\right)=0$.)
- If $F: U \rightarrow V$ is a smooth map, then $F^{*}(d \omega)=d\left(F^{*} \omega\right)$. (

Properties

- d is \mathbb{R}-linear. (Easy.)
- $d(\omega \wedge \eta)=d \omega \wedge \eta+(-1)^{k} \omega \wedge d \eta$.
$\left(d\left(\sum^{\prime} \omega_{1} \eta_{J} d x^{\prime} \wedge d x^{J}\right)=\sum^{\prime} \eta_{J} d \omega_{I} \wedge d x^{\prime} \wedge d x^{J}+\sum^{\prime} \omega_{I} d \eta_{J} \wedge\right.$ $d x^{\prime} \wedge d x^{J}=d \omega \wedge \eta+\sum^{\prime}(-1)^{k} \omega \wedge d \eta$.)
- $d^{2}=d \circ d=0$. (It is true for 0 -forms (why?) So $d(d \omega)=d\left(d \sum^{\prime} \omega_{l} \wedge d x^{\prime}\right)=0-d \sum^{\prime} \omega_{l} d\left(d x^{\prime}\right)=0$.)
- If $F: U \rightarrow V$ is a smooth map, then $F^{*}(d \omega)=d\left(F^{*} \omega\right)$. (So 0 -forms,

Properties

- d is \mathbb{R}-linear. (Easy.)
- $d(\omega \wedge \eta)=d \omega \wedge \eta+(-1)^{k} \omega \wedge d \eta$.
$\left(d\left(\sum^{\prime} \omega_{1} \eta_{J} d x^{\prime} \wedge d x^{J}\right)=\sum^{\prime} \eta_{J} d \omega_{I} \wedge d x^{\prime} \wedge d x^{J}+\sum^{\prime} \omega_{I} d \eta_{J} \wedge\right.$ $d x^{\prime} \wedge d x^{J}=d \omega \wedge \eta+\sum^{\prime}(-1)^{k} \omega \wedge d \eta$.)
- $d^{2}=d \circ d=0$. (It is true for 0 -forms (why?) So $d(d \omega)=d\left(d \sum^{\prime} \omega_{l} \wedge d x^{\prime}\right)=0-d \sum^{\prime} \omega_{l} d\left(d x^{\prime}\right)=0$.)
- If $F: U \rightarrow V$ is a smooth map, then $F^{*}(d \omega)=d\left(F^{*} \omega\right)$. (So 0 -forms, $F^{*} d f(X)=d F^{*} f$ as before. Now

Properties

- d is \mathbb{R}-linear. (Easy.)
- $d(\omega \wedge \eta)=d \omega \wedge \eta+(-1)^{k} \omega \wedge d \eta$.
$\left(d\left(\sum^{\prime} \omega_{l} \eta_{J} d x^{\prime} \wedge d x^{J}\right)=\sum^{\prime} \eta_{J} d \omega_{I} \wedge d x^{\prime} \wedge d x^{J}+\sum^{\prime} \omega_{l} d \eta_{J} \wedge\right.$ $d x^{\prime} \wedge d x^{J}=d \omega \wedge \eta+\sum^{\prime}(-1)^{k} \omega \wedge d \eta$.)
- $d^{2}=d \circ d=0$. (It is true for 0 -forms (why?) So $d(d \omega)=d\left(d \sum^{\prime} \omega_{l} \wedge d x^{\prime}\right)=0-d \sum^{\prime} \omega_{l} d\left(d x^{\prime}\right)=0$.)
- If $F: U \rightarrow V$ is a smooth map, then $F^{*}(d \omega)=d\left(F^{*} \omega\right)$. (So 0 -forms, $F^{*} d f(X)=d F^{*} f$ as before. Now $F^{*}\left(d \sum^{\prime} \omega_{1} d x^{\prime}\right)=$ $\sum^{\prime} F^{*} d \omega_{l} \wedge F^{*} d x^{\prime}=\sum^{\prime} d F^{*} \omega_{l} \wedge F^{*} d x^{\prime}=d\left(F^{*} \omega\right)$.)

On manifolds

On manifolds

- Suppose M is a smooth manifold with or without boundary.

On manifolds

- Suppose M is a smooth manifold with or without boundary.
- Theorem:

On manifolds

- Suppose M is a smooth manifold with or without boundary.
- Theorem: There are unique operators $d: \Omega^{k}(M) \rightarrow \Omega^{k+1}(M)$

On manifolds

- Suppose M is a smooth manifold with or without boundary.
- Theorem: There are unique operators $d: \Omega^{k}(M) \rightarrow \Omega^{k+1}(M)$ satisfying the first three properties above and

On manifolds

- Suppose M is a smooth manifold with or without boundary.
- Theorem: There are unique operators $d: \Omega^{k}(M) \rightarrow \Omega^{k+1}(M)$ satisfying the first three properties above and $d f(X)=X(f)$.

On manifolds

- Suppose M is a smooth manifold with or without boundary.
- Theorem: There are unique operators $d: \Omega^{k}(M) \rightarrow \Omega^{k+1}(M)$ satisfying the first three properties above and $d f(X)=X(f)$. Moreover, in any chart,

On manifolds

- Suppose M is a smooth manifold with or without boundary.
- Theorem: There are unique operators $d: \Omega^{k}(M) \rightarrow \Omega^{k+1}(M)$ satisfying the first three properties above and $d f(X)=X(f)$. Moreover, in any chart, $d \omega=\sum^{\prime} d \omega_{I} \wedge d x^{\prime}$.

On manifolds

- Suppose M is a smooth manifold with or without boundary.
- Theorem: There are unique operators $d: \Omega^{k}(M) \rightarrow \Omega^{k+1}(M)$ satisfying the first three properties above and $d f(X)=X(f)$. Moreover, in any chart, $d \omega=\sum^{\prime} d \omega_{I} \wedge d x^{\prime}$.
- Proof:

On manifolds

- Suppose M is a smooth manifold with or without boundary.
- Theorem: There are unique operators $d: \Omega^{k}(M) \rightarrow \Omega^{k+1}(M)$ satisfying the first three properties above and $d f(X)=X(f)$. Moreover, in any chart, $d \omega=\sum^{\prime} d \omega_{I} \wedge d x^{\prime}$.
- Proof: If there are two such operators,

On manifolds

- Suppose M is a smooth manifold with or without boundary.
- Theorem: There are unique operators $d: \Omega^{k}(M) \rightarrow \Omega^{k+1}(M)$ satisfying the first three properties above and $d f(X)=X(f)$. Moreover, in any chart, $d \omega=\sum^{\prime} d \omega_{I} \wedge d x^{\prime}$.
- Proof: If there are two such operators, $\left(d_{1}-d_{2}\right) \omega=d_{1} \omega_{I} \wedge d x^{\prime}+0-d_{2} \omega_{I} \wedge d x^{\prime}+0=0$.

On manifolds

- Suppose M is a smooth manifold with or without boundary.
- Theorem: There are unique operators $d: \Omega^{k}(M) \rightarrow \Omega^{k+1}(M)$ satisfying the first three properties above and $d f(X)=X(f)$. Moreover, in any chart, $d \omega=\sum^{\prime} d \omega_{I} \wedge d x^{\prime}$.
- Proof: If there are two such operators, $\left(d_{1}-d_{2}\right) \omega=d_{1} \omega_{l} \wedge d x^{\prime}+0-d_{2} \omega_{l} \wedge d x^{\prime}+0=0$. Define $d \omega:=\phi^{*}\left(d_{\mathbb{R}^{n}}\left(\phi^{-1}\right)^{*} \omega\right)$.

On manifolds

- Suppose M is a smooth manifold with or without boundary.
- Theorem: There are unique operators $d: \Omega^{k}(M) \rightarrow \Omega^{k+1}(M)$ satisfying the first three properties above and $d f(X)=X(f)$. Moreover, in any chart, $d \omega=\sum^{\prime} d \omega_{\mathrm{I}} \wedge d x^{\prime}$.
- Proof: If there are two such operators, $\left(d_{1}-d_{2}\right) \omega=d_{1} \omega_{l} \wedge d x^{\prime}+0-d_{2} \omega_{l} \wedge d x^{\prime}+0=0$. Define $d \omega:=\phi^{*}\left(d_{\mathbb{R}^{n}}\left(\phi^{-1}\right)^{*} \omega\right)$. \mathbb{R}-linearity is clear.

On manifolds

- Suppose M is a smooth manifold with or without boundary.
- Theorem: There are unique operators $d: \Omega^{k}(M) \rightarrow \Omega^{k+1}(M)$ satisfying the first three properties above and $d f(X)=X(f)$. Moreover, in any chart, $d \omega=\sum^{\prime} d \omega_{I} \wedge d x^{\prime}$.
- Proof: If there are two such operators, $\left(d_{1}-d_{2}\right) \omega=d_{1} \omega_{l} \wedge d x^{\prime}+0-d_{2} \omega_{l} \wedge d x^{\prime}+0=0$. Define $d \omega:=\phi^{*}\left(d_{\mathbb{R}^{n}}\left(\phi^{-1}\right)^{*} \omega\right)$. \mathbb{R}-linearity is clear.
$d(\omega \wedge \eta)=\phi^{*}\left(d_{\mathbb{R}^{n}}\left(\phi^{-1}\right)^{*}(\omega \wedge \eta)\right)=$
$\phi^{*}\left(d_{\mathbb{R}^{n}}\left(\phi^{-1}\right)^{*} \omega \wedge\left(\phi^{-1}\right)^{*} \eta\right)+(-1)^{k} \phi^{*}\left(\left(\phi^{-1}\right)^{*} \omega \wedge d_{\mathbb{R}^{n}}\left(\phi^{-1}\right)^{*} \eta\right)=$ $d \omega \wedge \eta+(-1)^{k} \omega \wedge d \eta$.

On manifolds

- Suppose M is a smooth manifold with or without boundary.
- Theorem: There are unique operators $d: \Omega^{k}(M) \rightarrow \Omega^{k+1}(M)$ satisfying the first three properties above and $d f(X)=X(f)$. Moreover, in any chart, $d \omega=\sum^{\prime} d \omega_{I} \wedge d x^{\prime}$.
- Proof: If there are two such operators, $\left(d_{1}-d_{2}\right) \omega=d_{1} \omega_{l} \wedge d x^{\prime}+0-d_{2} \omega_{l} \wedge d x^{\prime}+0=0$. Define $d \omega:=\phi^{*}\left(d_{\mathbb{R}^{n}}\left(\phi^{-1}\right)^{*} \omega\right)$. \mathbb{R}-linearity is clear.
$d(\omega \wedge \eta)=\phi^{*}\left(d_{\mathbb{R}^{n}}\left(\phi^{-1}\right)^{*}(\omega \wedge \eta)\right)=$
$\phi^{*}\left(d_{\mathbb{R}^{n}}\left(\phi^{-1}\right)^{*} \omega \wedge\left(\phi^{-1}\right)^{*} \eta\right)+(-1)^{k} \phi^{*}\left(\left(\phi^{-1}\right)^{*} \omega \wedge d_{\mathbb{R}^{n}}\left(\phi^{-1}\right)^{*} \eta\right)=$ $d \omega \wedge \eta+(-1)^{k} \omega \wedge d \eta$. As for the third property,

On manifolds

- Suppose M is a smooth manifold with or without boundary.
- Theorem: There are unique operators $d: \Omega^{k}(M) \rightarrow \Omega^{k+1}(M)$ satisfying the first three properties above and $d f(X)=X(f)$. Moreover, in any chart, $d \omega=\sum^{\prime} d \omega_{I} \wedge d x^{\prime}$.
- Proof: If there are two such operators, $\left(d_{1}-d_{2}\right) \omega=d_{1} \omega_{l} \wedge d x^{\prime}+0-d_{2} \omega_{l} \wedge d x^{\prime}+0=0$. Define $d \omega:=\phi^{*}\left(d_{\mathbb{R}^{n}}\left(\phi^{-1}\right)^{*} \omega\right)$. \mathbb{R}-linearity is clear.
$d(\omega \wedge \eta)=\phi^{*}\left(d_{\mathbb{R}^{n}}\left(\phi^{-1}\right)^{*}(\omega \wedge \eta)\right)=$
$\phi^{*}\left(d_{\mathbb{R}^{n}}\left(\phi^{-1}\right)^{*} \omega \wedge\left(\phi^{-1}\right)^{*} \eta\right)+(-1)^{k} \phi^{*}\left(\left(\phi^{-1}\right)^{*} \omega \wedge d_{\mathbb{R}^{n}}\left(\phi^{-1}\right)^{*} \eta\right)=$ $d \omega \wedge \eta+(-1)^{k} \omega \wedge d \eta$. As for the third property, $d \circ d \omega=\phi^{*}\left(d_{\mathbb{R}^{n}}\left(\phi^{-1}\right)^{*} \phi^{*}\left(d_{\mathbb{R}^{n}}\left(\phi^{-1}\right)^{*} \omega\right)=0\right.$.

On manifolds

- Suppose M is a smooth manifold with or without boundary.
- Theorem: There are unique operators $d: \Omega^{k}(M) \rightarrow \Omega^{k+1}(M)$ satisfying the first three properties above and $d f(X)=X(f)$. Moreover, in any chart, $d \omega=\sum^{\prime} d \omega_{I} \wedge d x^{\prime}$.
- Proof: If there are two such operators, $\left(d_{1}-d_{2}\right) \omega=d_{1} \omega_{l} \wedge d x^{\prime}+0-d_{2} \omega_{l} \wedge d x^{\prime}+0=0$. Define $d \omega:=\phi^{*}\left(d_{\mathbb{R}^{n}}\left(\phi^{-1}\right)^{*} \omega\right)$. \mathbb{R}-linearity is clear.
$d(\omega \wedge \eta)=\phi^{*}\left(d_{\mathbb{R}^{n}}\left(\phi^{-1}\right)^{*}(\omega \wedge \eta)\right)=$
$\phi^{*}\left(d_{\mathbb{R}^{n}}\left(\phi^{-1}\right)^{*} \omega \wedge\left(\phi^{-1}\right)^{*} \eta\right)+(-1)^{k} \phi^{*}\left(\left(\phi^{-1}\right)^{*} \omega \wedge d_{\mathbb{R}^{n}}\left(\phi^{-1}\right)^{*} \eta\right)=$ $d \omega \wedge \eta+(-1)^{k} \omega \wedge d \eta$. As for the third property, $d \circ d \omega=\phi^{*}\left(d_{\mathbb{R}^{n}}\left(\phi^{-1}\right)^{*} \phi^{*}\left(d_{\mathbb{R}^{n}}\left(\phi^{-1}\right)^{*} \omega\right)=0\right.$. Lastly,

On manifolds

- Suppose M is a smooth manifold with or without boundary.
- Theorem: There are unique operators $d: \Omega^{k}(M) \rightarrow \Omega^{k+1}(M)$ satisfying the first three properties above and $d f(X)=X(f)$. Moreover, in any chart, $d \omega=\sum^{\prime} d \omega_{I} \wedge d x^{\prime}$.
- Proof: If there are two such operators, $\left(d_{1}-d_{2}\right) \omega=d_{1} \omega_{l} \wedge d x^{\prime}+0-d_{2} \omega_{l} \wedge d x^{\prime}+0=0$. Define $d \omega:=\phi^{*}\left(d_{\mathbb{R}^{n}}\left(\phi^{-1}\right)^{*} \omega\right)$. \mathbb{R}-linearity is clear.
$d(\omega \wedge \eta)=\phi^{*}\left(d_{\mathbb{R}^{n}}\left(\phi^{-1}\right)^{*}(\omega \wedge \eta)\right)=$
$\phi^{*}\left(d_{\mathbb{R}^{n}}\left(\phi^{-1}\right)^{*} \omega \wedge\left(\phi^{-1}\right)^{*} \eta\right)+(-1)^{k} \phi^{*}\left(\left(\phi^{-1}\right)^{*} \omega \wedge d_{\mathbb{R}^{n}}\left(\phi^{-1}\right)^{*} \eta\right)=$ $d \omega \wedge \eta+(-1)^{k} \omega \wedge d \eta$. As for the third property, $d \circ d \omega=\phi^{*}\left(d_{\mathbb{R}^{n}}\left(\phi^{-1}\right)^{*} \phi^{*}\left(d_{\mathbb{R}^{n}}\left(\phi^{-1}\right)^{*} \omega\right)=0\right.$. Lastly, $\phi^{*}\left(d_{\mathbb{R}^{n}}\left(\phi^{-1}\right)^{*} f(X)=X(f)\right.$ (why?)

On manifolds

- Suppose M is a smooth manifold with or without boundary.
- Theorem: There are unique operators $d: \Omega^{k}(M) \rightarrow \Omega^{k+1}(M)$ satisfying the first three properties above and $d f(X)=X(f)$. Moreover, in any chart, $d \omega=\sum^{\prime} d \omega_{1} \wedge d x^{\prime}$.
- Proof: If there are two such operators, $\left(d_{1}-d_{2}\right) \omega=d_{1} \omega_{l} \wedge d x^{\prime}+0-d_{2} \omega_{l} \wedge d x^{\prime}+0=0$. Define $d \omega:=\phi^{*}\left(d_{\mathbb{R}^{n}}\left(\phi^{-1}\right)^{*} \omega\right)$. \mathbb{R}-linearity is clear.
$d(\omega \wedge \eta)=\phi^{*}\left(d_{\mathbb{R}^{n}}\left(\phi^{-1}\right)^{*}(\omega \wedge \eta)\right)=$
$\phi^{*}\left(d_{\mathbb{R}^{n}}\left(\phi^{-1}\right)^{*} \omega \wedge\left(\phi^{-1}\right)^{*} \eta\right)+(-1)^{k} \phi^{*}\left(\left(\phi^{-1}\right)^{*} \omega \wedge d_{\mathbb{R}^{n}}\left(\phi^{-1}\right)^{*} \eta\right)=$ $d \omega \wedge \eta+(-1)^{k} \omega \wedge d \eta$. As for the third property, $d \circ d \omega=\phi^{*}\left(d_{\mathbb{R}^{n}}\left(\phi^{-1}\right)^{*} \phi^{*}\left(d_{\mathbb{R}^{n}}\left(\phi^{-1}\right)^{*} \omega\right)=0\right.$. Lastly, $\phi^{*}\left(d_{\mathbb{R}^{n}}\left(\phi^{-1}\right)^{*} f(X)=X(f)\right.$ (why?) $d \omega$ is given by the expression above (why?)

On manifolds

- Suppose M is a smooth manifold with or without boundary.
- Theorem: There are unique operators $d: \Omega^{k}(M) \rightarrow \Omega^{k+1}(M)$ satisfying the first three properties above and $d f(X)=X(f)$. Moreover, in any chart, $d \omega=\sum^{\prime} d \omega_{I} \wedge d x^{\prime}$.
- Proof: If there are two such operators, $\left(d_{1}-d_{2}\right) \omega=d_{1} \omega_{l} \wedge d x^{\prime}+0-d_{2} \omega_{l} \wedge d x^{\prime}+0=0$. Define $d \omega:=\phi^{*}\left(d_{\mathbb{R}^{n}}\left(\phi^{-1}\right)^{*} \omega\right)$. \mathbb{R}-linearity is clear.
$d(\omega \wedge \eta)=\phi^{*}\left(d_{\mathbb{R}^{n}}\left(\phi^{-1}\right)^{*}(\omega \wedge \eta)\right)=$
$\phi^{*}\left(d_{\mathbb{R}^{n}}\left(\phi^{-1}\right)^{*} \omega \wedge\left(\phi^{-1}\right)^{*} \eta\right)+(-1)^{k} \phi^{*}\left(\left(\phi^{-1}\right)^{*} \omega \wedge d_{\mathbb{R}^{n}}\left(\phi^{-1}\right)^{*} \eta\right)=$ $d \omega \wedge \eta+(-1)^{k} \omega \wedge d \eta$. As for the third property, $d \circ d \omega=\phi^{*}\left(d_{\mathbb{R}^{n}}\left(\phi^{-1}\right)^{*} \phi^{*}\left(d_{\mathbb{R}^{n}}\left(\phi^{-1}\right)^{*} \omega\right)=0\right.$. Lastly, $\phi^{*}\left(d_{\mathbb{R}^{n}}\left(\phi^{-1}\right)^{*} f(X)=X(f)\right.$ (why?) $d \omega$ is given by the expression above (why?)
- It is easy to show that

On manifolds

- Suppose M is a smooth manifold with or without boundary.
- Theorem: There are unique operators $d: \Omega^{k}(M) \rightarrow \Omega^{k+1}(M)$ satisfying the first three properties above and $d f(X)=X(f)$. Moreover, in any chart, $d \omega=\sum^{\prime} d \omega_{I} \wedge d x^{\prime}$.
- Proof: If there are two such operators, $\left(d_{1}-d_{2}\right) \omega=d_{1} \omega_{l} \wedge d x^{\prime}+0-d_{2} \omega_{l} \wedge d x^{\prime}+0=0$. Define $d \omega:=\phi^{*}\left(d_{\mathbb{R}^{n}}\left(\phi^{-1}\right)^{*} \omega\right)$. \mathbb{R}-linearity is clear.
$d(\omega \wedge \eta)=\phi^{*}\left(d_{\mathbb{R}^{n}}\left(\phi^{-1}\right)^{*}(\omega \wedge \eta)\right)=$
$\phi^{*}\left(d_{\mathbb{R}^{n}}\left(\phi^{-1}\right)^{*} \omega \wedge\left(\phi^{-1}\right)^{*} \eta\right)+(-1)^{k} \phi^{*}\left(\left(\phi^{-1}\right)^{*} \omega \wedge d_{\mathbb{R}^{n}}\left(\phi^{-1}\right)^{*} \eta\right)=$ $d \omega \wedge \eta+(-1)^{k} \omega \wedge d \eta$. As for the third property, $d \circ d \omega=\phi^{*}\left(d_{\mathbb{R}^{n}}\left(\phi^{-1}\right)^{*} \phi^{*}\left(d_{\mathbb{R}^{n}}\left(\phi^{-1}\right)^{*} \omega\right)=0\right.$. Lastly, $\phi^{*}\left(d_{\mathbb{R}^{n}}\left(\phi^{-1}\right)^{*} f(X)=X(f)\right.$ (why?) $d \omega$ is given by the expression above (why?)
- It is easy to show that $F^{*} d \omega=d F^{*} \omega$ (why?)

Closed forms and exact forms

Closed forms and exact forms

- In physics,

Closed forms and exact forms

- In physics, a common question is

Closed forms and exact forms

- In physics, a common question is if $\nabla \times \vec{F}=\overrightarrow{0}$, then is $\vec{F}=\nabla f$?

Closed forms and exact forms

- In physics, a common question is if $\nabla \times \vec{F}=\overrightarrow{0}$, then is $\vec{F}=\nabla f$?
- The analogous question for

Closed forms and exact forms

- In physics, a common question is if $\nabla \times \vec{F}=\overrightarrow{0}$, then is $\vec{F}=\nabla f$?
- The analogous question for forms is if $d \omega=0$ (closed form),

Closed forms and exact forms

- In physics, a common question is if $\nabla \times \vec{F}=\overrightarrow{0}$, then is $\vec{F}=\nabla f$?
- The analogous question for forms is if $d \omega=0$ (closed form), is $\omega=d \eta$ (exact form)?

Closed forms and exact forms

- In physics, a common question is if $\nabla \times \vec{F}=\overrightarrow{0}$, then is $\vec{F}=\nabla f$?
- The analogous question for forms is if $d \omega=0$ (closed form), is $\omega=d \eta$ (exact form)?
- Here is an example:

Closed forms and exact forms

- In physics, a common question is if $\nabla \times \vec{F}=\overrightarrow{0}$, then is $\vec{F}=\nabla f$?
- The analogous question for forms is if $d \omega=0$ (closed form), is $\omega=d \eta$ (exact form)?
- Here is an example: $\omega=\frac{x d y-y d x}{x^{2}+y^{2}}$.

Closed forms and exact forms

- In physics, a common question is if $\nabla \times \vec{F}=\overrightarrow{0}$, then is $\vec{F}=\nabla f$?
- The analogous question for forms is if $d \omega=0$ (closed form), is $\omega=d \eta$ (exact form)?
- Here is an example: $\omega=\frac{x d y-y d x}{x^{2}+y^{2}} . d \omega=0$ (why?) but

Closed forms and exact forms

- In physics, a common question is if $\nabla \times \vec{F}=\overrightarrow{0}$, then is $\vec{F}=\nabla f$?
- The analogous question for forms is if $d \omega=0$ (closed form), is $\omega=d \eta$ (exact form)?
- Here is an example: $\omega=\frac{x d y-y d x}{x^{2}+y^{2}} . d \omega=0$ (why?) but $\omega \neq d f$.

Closed forms and exact forms

- In physics, a common question is if $\nabla \times \vec{F}=\overrightarrow{0}$, then is $\vec{F}=\nabla f$?
- The analogous question for forms is if $d \omega=0$ (closed form), is $\omega=d \eta$ (exact form)?
- Here is an example: $\omega=\frac{x d y-y d x}{x^{2}+y^{2}} . d \omega=0$ (why?) but $\omega \neq d f$. Indeed, if $\omega=d f$,

Closed forms and exact forms

- In physics, a common question is if $\nabla \times \vec{F}=\overrightarrow{0}$, then is $\vec{F}=\nabla f$?
- The analogous question for forms is if $d \omega=0$ (closed form), is $\omega=d \eta$ (exact form)?
- Here is an example: $\omega=\frac{x d y-y d x}{x^{2}+y^{2}} . d \omega=0$ (why?) but $\omega \neq d f$. Indeed, if $\omega=d f$, then $\frac{\partial f}{\partial x}=\frac{x}{x^{2}+y^{2}}, \frac{\partial f}{\partial y}=-\frac{y}{x^{2}+y^{2}}$.

Closed forms and exact forms

- In physics, a common question is if $\nabla \times \vec{F}=\overrightarrow{0}$, then is $\vec{F}=\nabla f$?
- The analogous question for forms is if $d \omega=0$ (closed form), is $\omega=d \eta$ (exact form)?
- Here is an example: $\omega=\frac{x d y-y d x}{x^{2}+y^{2}} . d \omega=0$ (why?) but $\omega \neq d f$. Indeed, if $\omega=d f$, then $\frac{\partial f}{\partial x}=\frac{x}{x^{2}+y^{2}}, \frac{\partial f}{\partial y}=-\frac{y}{x^{2}+y^{2}}$. Consider $\int \nabla f . d \vec{r}=0$ but it also equals

Closed forms and exact forms

- In physics, a common question is if $\nabla \times \vec{F}=\overrightarrow{0}$, then is $\vec{F}=\nabla f$?
- The analogous question for forms is if $d \omega=0$ (closed form), is $\omega=d \eta$ (exact form)?
- Here is an example: $\omega=\frac{x d y-y d x}{x^{2}+y^{2}} . d \omega=0$ (why?) but $\omega \neq d f$. Indeed, if $\omega=d f$, then $\frac{\partial f}{\partial x}=\frac{x}{x^{2}+y^{2}}, \frac{\partial f}{\partial y}=-\frac{y}{x^{2}+y^{2}}$. Consider $\int \nabla f . d \vec{r}=0$ but it also equals $\int_{0}^{2 \pi} d \theta=2 \pi$ (why?)

Closed forms and exact forms

- In physics, a common question is if $\nabla \times \vec{F}=\overrightarrow{0}$, then is $\vec{F}=\nabla f$?
- The analogous question for forms is if $d \omega=0$ (closed form), is $\omega=d \eta$ (exact form)?
- Here is an example: $\omega=\frac{x d y-y d x}{x^{2}+y^{2}} . d \omega=0$ (why?) but $\omega \neq d f$. Indeed, if $\omega=d f$, then $\frac{\partial f}{\partial x}=\frac{x}{x^{2}+y^{2}}, \frac{\partial f}{\partial y}=-\frac{y}{x^{2}+y^{2}}$. Consider $\int \nabla f . d \vec{r}=0$ but it also equals $\int_{0}^{2 \pi} d \theta=2 \pi$ (why?)
- One can in fact prove that

Closed forms and exact forms

- In physics, a common question is if $\nabla \times \vec{F}=\overrightarrow{0}$, then is $\vec{F}=\nabla f$?
- The analogous question for forms is if $d \omega=0$ (closed form), is $\omega=d \eta$ (exact form)?
- Here is an example: $\omega=\frac{x d y-y d x}{x^{2}+y^{2}} . d \omega=0$ (why?) but $\omega \neq d f$. Indeed, if $\omega=d f$, then $\frac{\partial f}{\partial x}=\frac{x}{x^{2}+y^{2}}, \frac{\partial f}{\partial y}=-\frac{y}{x^{2}+y^{2}}$. Consider $\int \nabla f . d \vec{r}=0$ but it also equals $\int_{0}^{2 \pi} d \theta=2 \pi$ (why?)
- One can in fact prove that every closed 1-form on $\mathbb{R}^{2}-0$ is

Closed forms and exact forms

- In physics, a common question is if $\nabla \times \vec{F}=\overrightarrow{0}$, then is $\vec{F}=\nabla f$?
- The analogous question for forms is if $d \omega=0$ (closed form), is $\omega=d \eta$ (exact form)?
- Here is an example: $\omega=\frac{x d y-y d x}{x^{2}+y^{2}} . d \omega=0$ (why?) but $\omega \neq d f$. Indeed, if $\omega=d f$, then $\frac{\partial f}{\partial x}=\frac{x}{x^{2}+y^{2}}, \frac{\partial f}{\partial y}=-\frac{y}{x^{2}+y^{2}}$. Consider $\int \nabla f . d \vec{r}=0$ but it also equals $\int_{0}^{2 \pi} d \theta=2 \pi$ (why?)
- One can in fact prove that every closed 1-form on $\mathbb{R}^{2}-0$ is $c \omega+d \eta$ for some c.

Closed forms and exact forms

- In physics, a common question is if $\nabla \times \vec{F}=\overrightarrow{0}$, then is $\vec{F}=\nabla f$?
- The analogous question for forms is if $d \omega=0$ (closed form), is $\omega=d \eta$ (exact form)?
- Here is an example: $\omega=\frac{x d y-y d x}{x^{2}+y^{2}} . d \omega=0$ (why?) but $\omega \neq d f$. Indeed, if $\omega=d f$, then $\frac{\partial f}{\partial x}=\frac{x}{x^{2}+y^{2}}, \frac{\partial f}{\partial y}=-\frac{y}{x^{2}+y^{2}}$. Consider $\int \nabla f . d \vec{r}=0$ but it also equals $\int_{0}^{2 \pi} d \theta=2 \pi$ (why?)
- One can in fact prove that every closed 1-form on $\mathbb{R}^{2}-0$ is $c \omega+d \eta$ for some c. So it seems that

Closed forms and exact forms

- In physics, a common question is if $\nabla \times \vec{F}=\overrightarrow{0}$, then is $\vec{F}=\nabla f$?
- The analogous question for forms is if $d \omega=0$ (closed form), is $\omega=d \eta$ (exact form)?
- Here is an example: $\omega=\frac{x d y-y d x}{x^{2}+y^{2}} . d \omega=0$ (why?) but $\omega \neq d f$. Indeed, if $\omega=d f$, then $\frac{\partial f}{\partial x}=\frac{x}{x^{2}+y^{2}}, \frac{\partial f}{\partial y}=-\frac{y}{x^{2}+y^{2}}$. Consider $\int \nabla f . d \vec{r}=0$ but it also equals $\int_{0}^{2 \pi} d \theta=2 \pi$ (why?)
- One can in fact prove that every closed 1-form on $\mathbb{R}^{2}-0$ is $c \omega+d \eta$ for some c. So it seems that this question has to do with the shape of the domain.

Poincaré lemma and de Rham cohomology

Poincaré lemma and de Rham cohomology

- Poincaé lemma:

Poincaré lemma and de Rham cohomology

- Poincaé lemma: Suppose ω is a closed k-form on \mathbb{R}^{n},

Poincaré lemma and de Rham cohomology

- Poincaé lemma: Suppose ω is a closed k-form on \mathbb{R}^{n}, then it is exact.

Poincaré lemma and de Rham cohomology

- Poincaé lemma: Suppose ω is a closed k-form on \mathbb{R}^{n}, then it is exact.
- De Rham cohomology:

Poincaré lemma and de Rham cohomology

- Poincaé lemma: Suppose ω is a closed k-form on \mathbb{R}^{n}, then it is exact.
- De Rham cohomology: $H^{k}(M)=\frac{\text { closed } k \text {-forms }}{\text { exact ones }}$.
- Poincaé lemma: Suppose ω is a closed k-form on \mathbb{R}^{n}, then it is exact.
- De Rham cohomology: $H^{k}(M)=\frac{\text { closed } k \text {-forms }}{\text { exact ones }}$.
- $H^{0}(M)=\mathbb{R}^{k}$ where k is the number of connected components (why?)
- Poincaé lemma: Suppose ω is a closed k-form on \mathbb{R}^{n}, then it is exact.
- De Rham cohomology: $H^{k}(M)=\frac{\text { closed } k \text {-forms }}{\text { exact ones }}$.
- $H^{0}(M)=\mathbb{R}^{k}$ where k is the number of connected components (why?)
- $H^{1}\left(\mathbb{R}^{2}-0\right)=\mathbb{R}$.
- Poincaé lemma: Suppose ω is a closed k-form on \mathbb{R}^{n}, then it is exact.
- De Rham cohomology: $H^{k}(M)=\frac{\text { closed } k \text {-forms }}{\text { exact ones }}$.
- $H^{0}(M)=\mathbb{R}^{k}$ where k is the number of connected components (why?)
- $H^{1}\left(\mathbb{R}^{2}-0\right)=\mathbb{R} \cdot H^{k}(M)=0$ when $k>n$ (why?)
- Poincaé lemma: Suppose ω is a closed k-form on \mathbb{R}^{n}, then it is exact.
- De Rham cohomology: $H^{k}(M)=\frac{\text { closed } k \text {-forms }}{\text { exact ones }}$.
- $H^{0}(M)=\mathbb{R}^{k}$ where k is the number of connected components (why?)
- $H^{1}\left(\mathbb{R}^{2}-0\right)=\mathbb{R} . H^{k}(M)=0$ when $k>n$ (why?) $H^{k}\left(\mathbb{R}^{n}\right)=0$ for $k>0$.
- Poincaé lemma: Suppose ω is a closed k-form on \mathbb{R}^{n}, then it is exact.
- De Rham cohomology: $H^{k}(M)=\frac{\text { closed } k \text {-forms }}{\text { exact ones }}$.
- $H^{0}(M)=\mathbb{R}^{k}$ where k is the number of connected components (why?)
- $H^{1}\left(\mathbb{R}^{2}-0\right)=\mathbb{R} \cdot H^{k}(M)=0$ when $k>n$ (why?) $H^{k}\left(\mathbb{R}^{n}\right)=0$ for $k>0$.
- It turns out that
- Poincaé lemma: Suppose ω is a closed k-form on \mathbb{R}^{n}, then it is exact.
- De Rham cohomology: $H^{k}(M)=\frac{\text { closed } k \text {-forms }}{\text { exact ones }}$.
- $H^{0}(M)=\mathbb{R}^{k}$ where k is the number of connected components (why?)
- $H^{1}\left(\mathbb{R}^{2}-0\right)=\mathbb{R} . H^{k}(M)=0$ when $k>n$ (why?) $H^{k}\left(\mathbb{R}^{n}\right)=0$ for $k>0$.
- It turns out that the de Rham cohomology coincides with singular cohomology.
- Poincaé lemma: Suppose ω is a closed k-form on \mathbb{R}^{n}, then it is exact.
- De Rham cohomology: $H^{k}(M)=\frac{\text { closed } k \text {-forms }}{\text { exact ones }}$.
- $H^{0}(M)=\mathbb{R}^{k}$ where k is the number of connected components (why?)
- $H^{1}\left(\mathbb{R}^{2}-0\right)=\mathbb{R} . H^{k}(M)=0$ when $k>n$ (why?) $H^{k}\left(\mathbb{R}^{n}\right)=0$ for $k>0$.
- It turns out that the de Rham cohomology coincides with singular cohomology. So it is invariant under homeomorphism. (
- Poincaé lemma: Suppose ω is a closed k-form on \mathbb{R}^{n}, then it is exact.
- De Rham cohomology: $H^{k}(M)=\frac{\text { closed } k \text {-forms }}{\text { exact ones }}$.
- $H^{0}(M)=\mathbb{R}^{k}$ where k is the number of connected components (why?)
- $H^{1}\left(\mathbb{R}^{2}-0\right)=\mathbb{R} . H^{k}(M)=0$ when $k>n$ (why?) $H^{k}\left(\mathbb{R}^{n}\right)=0$ for $k>0$.
- It turns out that the de Rham cohomology coincides with singular cohomology. So it is invariant under homeomorphism. (Thus showing how hard it is
- Poincaé lemma: Suppose ω is a closed k-form on \mathbb{R}^{n}, then it is exact.
- De Rham cohomology: $H^{k}(M)=\frac{\text { closed } k \text {-forms }}{\text { exact ones }}$.
- $H^{0}(M)=\mathbb{R}^{k}$ where k is the number of connected components (why?)
- $H^{1}\left(\mathbb{R}^{2}-0\right)=\mathbb{R} . H^{k}(M)=0$ when $k>n$ (why?) $H^{k}\left(\mathbb{R}^{n}\right)=0$ for $k>0$.
- It turns out that the de Rham cohomology coincides with singular cohomology. So it is invariant under homeomorphism. (Thus showing how hard it is to distinguish between smooth structures.)

