
MA 229/MA 235 - Lecture 23

IISc

Forms 1/10



Recap

Wedge product and its properties.

Forms 2/10



Recap

Wedge product and its properties.

Forms 2/10



Differential forms on manifolds

We can take the disjoint union ΛkT ∗M = ∪p∈MΛkT ∗pM.

Suppose (U, x) is a chart. Since εi = dx i is a basis for T ∗pM,

whenever I is an increasing multi-index, εI = dx i1 ∧ dx i2 . . . is
a basis for ΛkT ∗pM.

We can give ΛkT ∗M a vector bundle structure using these
coordinate bases. A smooth section of this bundle of
differential k-forms is called a k-form field (or simply a
k-form). Such an object is a smooth linear combination of
dx I .

We can define the wedge product of forms. Moreover,
functions are treated as 0-forms. f ∧ η = f η if f is a function.
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Pullback and wedge product

Suppose F : M → N is smooth. We can define the pullback
as follows: If ω is a k-form field on N, F ∗ω is a k-form field
on M such that (F ∗ω)p(v1, . . .) = ωF (p)((F∗)p(v1), . . .).

For functions, by definition, F ∗f (p) = f (F (p)) = f ◦ F (p).

Recall that F ∗df = dF ∗f . Moreover, if ω = ωidx
i , then

F ∗ω = ωi ◦ FdF i .

For k-forms, the pullback is R-linear (why?).
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Pullback for top-forms

F ∗(ω ∧ η) = F ∗ω ∧ F ∗η (why?)

Using this property, we can calculate pullbacks for several
examples.

Suppose ω = fdy1 . . . dyn, then F ∗ω = F ∗fdF 1 . . . dF n, which
when acted on ∂

∂x1
, . . . is F ◦ f det(∂F

i

∂x j
)dx1 . . . dxn.

In particular, dx̃1 ∧ . . . = det(∂x̃
i

∂x j
)dx1 ∧ . . ..
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The exterior derivative

How can we generalise the curl ∇×?

Naively, we can try d ∧ ω, i.e., pretend d = ∂
∂x i

dx i is a
“1-form” and take the “wedge product” with ω. This naive
thing actually works!

Def: Let ω =
∑′ ωIdx

I on U ⊂ Rn. Then
dω :=

∑′ dωI ∧ dx I =
∑′∑ ∂ωI

∂xk
dxk ∧ dx I . This d is called

the exterior derivative.

For 0-forms, i.e., functions f , df is the usual df defined earlier.

For 1-forms ω, dω =
∑

i<j(
∂ωj

∂x i
− ∂ωi

∂x j
)dx i ∧ dx j .

It coincides with the usual curl in R3.
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Properties

d is R-linear. (Easy.)

d(ω ∧ η) = dω ∧ η + (−1)kω ∧ dη.
(d(

∑′ ωIηJdx
I ∧ dxJ) =

∑′ ηJdωI ∧ dx I ∧ dxJ +
∑′ ωIdηJ ∧

dx I ∧ dxJ = dω ∧ η +
∑′(−1)kω ∧ dη.)

d2 = d ◦ d = 0. (It is true for 0-forms (why?) So
d(dω) = d(d

∑′ ωI ∧ dx I ) = 0− d
∑′ ωId(dx I ) = 0.)

If F : U → V is a smooth map, then F ∗(dω) = d(F ∗ω). (So
0-forms, F ∗df (X ) = dF ∗f as before. Now F ∗(d

∑′ ωIdx
I ) =∑′ F ∗dωI ∧ F ∗dx I =

∑′ dF ∗ωI ∧ F ∗dx I = d(F ∗ω).)
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On manifolds

Suppose M is a smooth manifold with or without boundary.

Theorem: There are unique operators d : Ωk(M)→ Ωk+1(M)
satisfying the first three properties above and df (X ) = X (f ).
Moreover, in any chart, dω =

∑′ dωI ∧ dx I .

Proof: If there are two such operators,
(d1 − d2)ω = d1ωI ∧ dx I + 0− d2ωI ∧ dx I + 0 = 0. Define
dω := φ∗(dRn(φ−1)∗ω). R-linearity is clear.
d(ω ∧ η) = φ∗(dRn(φ−1)∗(ω ∧ η)) =
φ∗(dRn(φ−1)∗ω∧(φ−1)∗η)+(−1)kφ∗((φ−1)∗ω∧dRn(φ−1)∗η) =
dω ∧ η + (−1)kω ∧ dη. As for the third property,
d ◦ dω = φ∗(dRn(φ−1)∗φ∗(dRn(φ−1)∗ω) = 0. Lastly,
φ∗(dRn(φ−1)∗f (X ) = X (f ) (why?) dω is given by the
expression above (why?)

It is easy to show that F ∗dω = dF ∗ω (why?)
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Closed forms and exact forms

In physics, a common question is if ∇× ~F = ~0, then is
~F = ∇f ?

The analogous question for forms is if dω = 0 (closed form),
is ω = dη (exact form)?

Here is an example: ω = xdy−ydx
x2+y2 . dω = 0 (why?) but

ω 6= df . Indeed, if ω = df , then ∂f
∂x = x

x2+y2 ,
∂f
∂y = − y

x2+y2 .

Consider
∫
∇f .d~r = 0 but it also equals

∫ 2π
0 dθ = 2π (why?)

One can in fact prove that every closed 1-form on R2 − 0 is
cω + dη for some c . So it seems that this question has to do
with the shape of the domain.
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∂y = − y

x2+y2 .

Consider
∫
∇f .d~r = 0 but it also equals

∫ 2π
0 dθ = 2π (why?)

One can in fact prove that every closed 1-form on R2 − 0 is
cω + dη for some c . So it seems that this question has to do
with the shape of the domain.
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Poincaré lemma and de Rham cohomology

Poincaé lemma: Suppose ω is a closed k-form on Rn, then it
is exact.

De Rham cohomology: Hk(M) = closed k−forms
exact ones .

H0(M) = Rk where k is the number of connected
components (why?)

H1(R2 − 0) = R. Hk(M) = 0 when k > n (why?)
Hk(Rn) = 0 for k > 0.

It turns out that the de Rham cohomology coincides with
singular cohomology. So it is invariant under homeomorphism.
(Thus showing how hard it is to distinguish between smooth
structures.)
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Poincaé lemma: Suppose ω is a closed k-form on Rn,

then it
is exact.

De Rham cohomology: Hk(M) = closed k−forms
exact ones .

H0(M) = Rk where k is the number of connected
components (why?)

H1(R2 − 0) = R. Hk(M) = 0 when k > n (why?)
Hk(Rn) = 0 for k > 0.

It turns out that the de Rham cohomology coincides with
singular cohomology. So it is invariant under homeomorphism.
(Thus showing how hard it is to distinguish between smooth
structures.)

Forms 10/10
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