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@ We can take the disjoint union AKT*M = U,y AT M.

o Suppose (U, x) is a chart. Since ¢ = dx' is a basis for ToM,
whenever [ is an increasing multi-index, el =dxt ANdx2 ... is
a basis for Ak T;,‘M.

@ We can give A T*M a vector bundle structure using these
coordinate bases. A smooth section of this bundle of
differential k-forms is called a k-form field (or simply a
k-form). Such an object is a smooth linear combination of
dx’.

@ We can define the wedge product of forms. Moreover,
functions are treated as O-forms. f An = fn if f is a function.
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@ Suppose F : M — N is smooth. We can define the pullback
as follows: If w is a k-form field on N, F*w is a k-form field
on M such that (F*w)p(vl, .. ) = wF(p)((F*)p(vl), .. )

e For functions, by definition, F*f(p) = f(F(p)) = f o F(p).

@ Recall that F*df = dF*f. Moreover, if w = w;dx’, then
F*w = w;j o FdF'.

e For k-forms, the pullback is R-linear (why?).
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Pullback for top-forms

o F*(wAn)=F*wA F*n (why?)

@ Using this property, we can calculate pullbacks for several
examples.

e Suppose w = fdyl...dy", then F*w = F*fdF'...dF", which
when acted on 527, .. . is F o fdet(55 )dx! ... dx".

o In particular, d¥1 A ... = det(g—ﬂ)dx1 A
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o Naively, we can try d Aw, i.e., pretend d = 8‘9
“1-form” and take the "wedge product” with w. This naive
thing actually works!

o Def: Letw = Z/w,dx on U C R". Then
dw =" dw; Adx! = 'S0 2dxk A dx!. This d is called

the exterior derivative.
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The exterior derivative

@ How can we generalise the curl V7

o Naively, we can try d Aw, i.e., pretend d = 8‘9
“1-form” and take the "wedge product” with w. This naive
thing actually works!

o Def: Letw = Z/w,dx on U C R". Then
dw =" dw; Adx! = 'S0 2dxk A dx!. This d is called
the exterior derivative.

@ For O-forms, i.e., functions f, df is the usual df defined earlier.

e For 1-forms w, dw =3_,_; g‘)‘:{ - g‘)‘;’)dx A dxd.

@ It coincides with the usual curl in R3.
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e If F: U— V is a smooth map, then F*(dw) = d(F*w). (So
0-forms, F*df(X) = dF*f as before. Now F*(d > w;dx') =
S Frdw; A Frdx! =Y dF*w; A Frdx! = d(F*w).)
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¢*(drn (¢~ WA(S7) )+ (= 1) G (971 ) wAdrn(d™1)*n) =
dw An 4 (—1)kw A dn. As for the third property,
d o dw = ¢ (dun(6 1) 6" (den(6~1)"w) = 0. Lastly,
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expression above (why?)
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@ The analogous question for forms is if dw = 0 (closed form),

is w = dn (exact form)?
xdy — ydx

@ Here is an example: w = Ty
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@ In physics, a common question is if V X F =0, then is
F=VIf?

@ The analogous question for forms is if dw = 0 (closed form),
is w = dn (exact form)?

. . dy—yd,
@ Here is an example: w = XX§+§2X. dw =0 (why?) but

w # df. Indeed, if w = df, then % = X21y2,g—§ = —#}/2.

Consider [ Vf.dF=0 but it also equals f027r df = 2w (why?)
@ One can in fact prove that every closed 1-form on R? — 0 is

cw + dn for some c. So it seems that this question has to do

with the shape of the domain.
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Poincaré lemma and de Rham cohomology

@ Poincaé lemma: Suppose w is a closed k-form on R”, then it
is exact.

o De Rham cohomology: H(M) = clesed k=rforms

o HO(M) = R¥ where k is the number of connected
components (why?)

o HY(R? —0) =R. H*(M) =0 when k > n (why?)

H*(R") = 0 for k > 0.

@ It turns out that the de Rham cohomology coincides with
singular cohomology. So it is invariant under homeomorphism.
(Thus showing how hard it is to distinguish between smooth
structures.)
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