MA 229/MA 235 - Lecture 24

IISc

Recap

Recap

- Differential forms bundle.
- Differential forms bundle.
- Exterior derivative and its properties.
- Differential forms bundle.
- Exterior derivative and its properties.
- Closed and exact forms.

Integration in \mathbb{R}^{n}

Integration in \mathbb{R}^{n}

- There are two ways to integrate functions

Integration in \mathbb{R}^{n}

- There are two ways to integrate functions of more than one variable.

Integration in \mathbb{R}^{n}

- There are two ways to integrate functions of more than one variable.
- Riemann integral:

Integration in \mathbb{R}^{n}

- There are two ways to integrate functions of more than one variable.
- Riemann integral: One partitions a rectangle and

Integration in \mathbb{R}^{n}

- There are two ways to integrate functions of more than one variable.
- Riemann integral: One partitions a rectangle and defines the upper and lower Riemann sums of bounded functions

Integration in \mathbb{R}^{n}

- There are two ways to integrate functions of more than one variable.
- Riemann integral: One partitions a rectangle and defines the upper and lower Riemann sums of bounded functions as in the one variable case.

Integration in \mathbb{R}^{n}

- There are two ways to integrate functions of more than one variable.
- Riemann integral: One partitions a rectangle and defines the upper and lower Riemann sums of bounded functions as in the one variable case. One can prove that

Integration in \mathbb{R}^{n}

- There are two ways to integrate functions of more than one variable.
- Riemann integral: One partitions a rectangle and defines the upper and lower Riemann sums of bounded functions as in the one variable case. One can prove that a function is Riemann integrable iff

Integration in \mathbb{R}^{n}

- There are two ways to integrate functions of more than one variable.
- Riemann integral: One partitions a rectangle and defines the upper and lower Riemann sums of bounded functions as in the one variable case. One can prove that a function is Riemann integrable iff the set of discontinuities has measure zero.

Integration in \mathbb{R}^{n}

- There are two ways to integrate functions of more than one variable.
- Riemann integral: One partitions a rectangle and defines the upper and lower Riemann sums of bounded functions as in the one variable case. One can prove that a function is Riemann integrable iff the set of discontinuities has measure zero. One can define the Riemann integral over

Integration in \mathbb{R}^{n}

- There are two ways to integrate functions of more than one variable.
- Riemann integral: One partitions a rectangle and defines the upper and lower Riemann sums of bounded functions as in the one variable case. One can prove that a function is Riemann integrable iff the set of discontinuities has measure zero. One can define the Riemann integral over arbitrary domains.

Integration in \mathbb{R}^{n}

- There are two ways to integrate functions of more than one variable.
- Riemann integral: One partitions a rectangle and defines the upper and lower Riemann sums of bounded functions as in the one variable case. One can prove that a function is Riemann integrable iff the set of discontinuities has measure zero. One can define the Riemann integral over arbitrary domains. Continuous bounded functions

Integration in \mathbb{R}^{n}

- There are two ways to integrate functions of more than one variable.
- Riemann integral: One partitions a rectangle and defines the upper and lower Riemann sums of bounded functions as in the one variable case. One can prove that a function is Riemann integrable iff the set of discontinuities has measure zero. One can define the Riemann integral over arbitrary domains. Continuous bounded functions are Riemann integrable if the boundary has measure zero.

Integration in \mathbb{R}^{n}

- There are two ways to integrate functions of more than one variable.
- Riemann integral: One partitions a rectangle and defines the upper and lower Riemann sums of bounded functions as in the one variable case. One can prove that a function is Riemann integrable iff the set of discontinuities has measure zero. One can define the Riemann integral over arbitrary domains. Continuous bounded functions are Riemann integrable if the boundary has measure zero.
- Lebesgue integral:

Integration in \mathbb{R}^{n}

- There are two ways to integrate functions of more than one variable.
- Riemann integral: One partitions a rectangle and defines the upper and lower Riemann sums of bounded functions as in the one variable case. One can prove that a function is Riemann integrable iff the set of discontinuities has measure zero. One can define the Riemann integral over arbitrary domains. Continuous bounded functions are Riemann integrable if the boundary has measure zero.
- Lebesgue integral: One constructs the Lebesgue measure using volumes of rectangles.

Integration in \mathbb{R}^{n}

- There are two ways to integrate functions of more than one variable.
- Riemann integral: One partitions a rectangle and defines the upper and lower Riemann sums of bounded functions as in the one variable case. One can prove that a function is Riemann integrable iff the set of discontinuities has measure zero. One can define the Riemann integral over arbitrary domains. Continuous bounded functions are Riemann integrable if the boundary has measure zero.
- Lebesgue integral: One constructs the Lebesgue measure using volumes of rectangles. Then one integrates simple functions and

Integration in \mathbb{R}^{n}

- There are two ways to integrate functions of more than one variable.
- Riemann integral: One partitions a rectangle and defines the upper and lower Riemann sums of bounded functions as in the one variable case. One can prove that a function is Riemann integrable iff the set of discontinuities has measure zero. One can define the Riemann integral over arbitrary domains. Continuous bounded functions are Riemann integrable if the boundary has measure zero.
- Lebesgue integral: One constructs the Lebesgue measure using volumes of rectangles. Then one integrates simple functions and approximates measurable functions by simple ones.

Integration in \mathbb{R}^{n}

- There are two ways to integrate functions of more than one variable.
- Riemann integral: One partitions a rectangle and defines the upper and lower Riemann sums of bounded functions as in the one variable case. One can prove that a function is Riemann integrable iff the set of discontinuities has measure zero. One can define the Riemann integral over arbitrary domains. Continuous bounded functions are Riemann integrable if the boundary has measure zero.
- Lebesgue integral: One constructs the Lebesgue measure using volumes of rectangles. Then one integrates simple functions and approximates measurable functions by simple ones.
- For functions with measure-zero discontinuities,

Integration in \mathbb{R}^{n}

- There are two ways to integrate functions of more than one variable.
- Riemann integral: One partitions a rectangle and defines the upper and lower Riemann sums of bounded functions as in the one variable case. One can prove that a function is Riemann integrable iff the set of discontinuities has measure zero. One can define the Riemann integral over arbitrary domains. Continuous bounded functions are Riemann integrable if the boundary has measure zero.
- Lebesgue integral: One constructs the Lebesgue measure using volumes of rectangles. Then one integrates simple functions and approximates measurable functions by simple ones.
- For functions with measure-zero discontinuities, these two coincide.

Iterated integrals and Fubini's theorem

Iterated integrals and Fubini's theorem

- Fubini:

Iterated integrals and Fubini's theorem

- Fubini: Continuous functions on compact rectangles

Iterated integrals and Fubini's theorem

- Fubini: Continuous functions on compact rectangles can be integrated one variable at a time

Iterated integrals and Fubini's theorem

- Fubini: Continuous functions on compact rectangles can be integrated one variable at a time in any order (Iterated integrals).

Iterated integrals and Fubini's theorem

- Fubini: Continuous functions on compact rectangles can be integrated one variable at a time in any order (Iterated integrals).
- Fubini's theorem

Iterated integrals and Fubini's theorem

- Fubini: Continuous functions on compact rectangles can be integrated one variable at a time in any order (Iterated integrals).
- Fubini's theorem provides a way to actually compute integrals.

Iterated integrals and Fubini's theorem

- Fubini: Continuous functions on compact rectangles can be integrated one variable at a time in any order (Iterated integrals).
- Fubini's theorem provides a way to actually compute integrals.
- Example:

Iterated integrals and Fubini's theorem

- Fubini: Continuous functions on compact rectangles can be integrated one variable at a time in any order (Iterated integrals).
- Fubini's theorem provides a way to actually compute integrals.
- Example: Integrate $f(x, y)=x^{2}+y^{2}$ over

Iterated integrals and Fubini's theorem

- Fubini: Continuous functions on compact rectangles can be integrated one variable at a time in any order (Iterated integrals).
- Fubini's theorem provides a way to actually compute integrals.
- Example: Integrate $f(x, y)=x^{2}+y^{2}$ over $x^{2}+y^{2} \leq 1$.

Iterated integrals and Fubini's theorem

- Fubini: Continuous functions on compact rectangles can be integrated one variable at a time in any order (Iterated integrals).
- Fubini's theorem provides a way to actually compute integrals.
- Example: Integrate $f(x, y)=x^{2}+y^{2}$ over $x^{2}+y^{2} \leq 1$. The circle has measure zero (why?)

Iterated integrals and Fubini's theorem

- Fubini: Continuous functions on compact rectangles can be integrated one variable at a time in any order (Iterated integrals).
- Fubini's theorem provides a way to actually compute integrals.
- Example: Integrate $f(x, y)=x^{2}+y^{2}$ over $x^{2}+y^{2} \leq 1$. The circle has measure zero (why?) Extend f by 0 outside the circle.

Iterated integrals and Fubini's theorem

- Fubini: Continuous functions on compact rectangles can be integrated one variable at a time in any order (Iterated integrals).
- Fubini's theorem provides a way to actually compute integrals.
- Example: Integrate $f(x, y)=x^{2}+y^{2}$ over $x^{2}+y^{2} \leq 1$. The circle has measure zero (why?) Extend f by 0 outside the circle. Fubini implies that

Iterated integrals and Fubini's theorem

- Fubini: Continuous functions on compact rectangles can be integrated one variable at a time in any order (Iterated integrals).
- Fubini's theorem provides a way to actually compute integrals.
- Example: Integrate $f(x, y)=x^{2}+y^{2}$ over $x^{2}+y^{2} \leq 1$. The circle has measure zero (why?) Extend f by 0 outside the circle. Fubini implies that

$$
\int_{x^{2}+y^{2} \leq 1}\left(x^{2}+y^{2}\right) d A=\int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}}\left(x^{2}+y^{2}\right) d y d x \text { (why?) }
$$

Iterated integrals and Fubini's theorem

- Fubini: Continuous functions on compact rectangles can be integrated one variable at a time in any order (Iterated integrals).
- Fubini's theorem provides a way to actually compute integrals.
- Example: Integrate $f(x, y)=x^{2}+y^{2}$ over $x^{2}+y^{2} \leq 1$. The circle has measure zero (why?) Extend f by 0 outside the circle. Fubini implies that
$\int_{x^{2}+y^{2} \leq 1}\left(x^{2}+y^{2}\right) d A=\int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}}\left(x^{2}+y^{2}\right) d y d x$ (why?) Thus it is $\int_{-1}^{1}\left(2 x^{2} \sqrt{1-x^{2}}+\frac{2}{3}\left(1-x^{2}\right)^{3 / 2}\right) d x$ which can be integrated (how?).

Volume of parallelopiped

Volume of parallelopiped

- The volume of

Volume of parallelopiped

- The volume of a parallelopiped P_{n} whose sides are \vec{a}_{i} is

Volume of parallelopiped

- The volume of a parallelopiped P_{n} whose sides are \vec{a}_{i} is $|\operatorname{det}(A)|$.

Volume of parallelopiped

- The volume of a parallelopiped P_{n} whose sides are \vec{a}_{i} is $|\operatorname{det}(A)|$.
- Sketch of proof:

Volume of parallelopiped

- The volume of a parallelopiped P_{n} whose sides are \vec{a}_{i} is $|\operatorname{det}(A)|$.
- Sketch of proof: The Lebesgue measure is translation invariant.

Volume of parallelopiped

- The volume of a parallelopiped P_{n} whose sides are \vec{a}_{i} is $|\operatorname{det}(A)|$.
- Sketch of proof: The Lebesgue measure is translation invariant. It is also invariant under

Volume of parallelopiped

- The volume of a parallelopiped P_{n} whose sides are \vec{a}_{i} is $|\operatorname{det}(A)|$.
- Sketch of proof: The Lebesgue measure is translation invariant. It is also invariant under orthonormal matrices (how?).

Volume of parallelopiped

- The volume of a parallelopiped P_{n} whose sides are \vec{a}_{i} is $|\operatorname{det}(A)|$.
- Sketch of proof: The Lebesgue measure is translation invariant. It is also invariant under orthonormal matrices (how?). Thus we can assume that

Volume of parallelopiped

- The volume of a parallelopiped P_{n} whose sides are \vec{a}_{i} is $|\operatorname{det}(A)|$.
- Sketch of proof: The Lebesgue measure is translation invariant. It is also invariant under orthonormal matrices (how?). Thus we can assume that $\vec{a}_{1}, \ldots, \vec{a}_{n-1}$ span the plane $x^{n}=0$.

Volume of parallelopiped

- The volume of a parallelopiped P_{n} whose sides are \vec{a}_{i} is $|\operatorname{det}(A)|$.
- Sketch of proof: The Lebesgue measure is translation invariant. It is also invariant under orthonormal matrices (how?). Thus we can assume that $\vec{a}_{1}, \ldots, \vec{a}_{n-1}$ span the plane $x^{n}=0 . P_{n}=\left\{P_{n-1}+s \vec{a}_{n} \mid 0 \leq s \leq 1\right\}$.

Volume of parallelopiped

- The volume of a parallelopiped P_{n} whose sides are \vec{a}_{i} is $|\operatorname{det}(A)|$.
- Sketch of proof: The Lebesgue measure is translation invariant. It is also invariant under orthonormal matrices (how?). Thus we can assume that $\vec{a}_{1}, \ldots, \vec{a}_{n-1}$ span the plane $x^{n}=0 . P_{n}=\left\{P_{n-1}+s \vec{a}_{n} \mid 0 \leq s \leq 1\right\}$. One can (exercise) "break" off a piece and translate

Volume of parallelopiped

- The volume of a parallelopiped P_{n} whose sides are \vec{a}_{i} is $|\operatorname{det}(A)|$.
- Sketch of proof: The Lebesgue measure is translation invariant. It is also invariant under orthonormal matrices (how?). Thus we can assume that $\vec{a}_{1}, \ldots, \vec{a}_{n-1}$ span the plane $x^{n}=0 . P_{n}=\left\{P_{n-1}+s \vec{a}_{n} \mid 0 \leq s \leq 1\right\}$. One can (exercise) "break" off a piece and translate to ensure that $\operatorname{vol}\left(P_{n}\right)=\operatorname{vol}\left(P_{n-1}\right) a_{n}=|\operatorname{det}(A)|$.

Change of variables - motivation

Change of variables - motivation

- Clearly the above integral

Change of variables - motivation

- Clearly the above integral could have been more easily evaluated in polar coordinates.

Change of variables - motivation

- Clearly the above integral could have been more easily evaluated in polar coordinates. But what does $d x d y$ change to?

Change of variables - motivation

- Clearly the above integral could have been more easily evaluated in polar coordinates. But what does $d x d y$ change to? Morally, it ought to be rdrd θ.

Change of variables - motivation

- Clearly the above integral could have been more easily evaluated in polar coordinates. But what does $d x d y$ change to? Morally, it ought to be rdrd θ.
- We expect that

Change of variables - motivation

- Clearly the above integral could have been more easily evaluated in polar coordinates. But what does $d x d y$ change to? Morally, it ought to be rdrd θ.
- We expect that a "small" rectangle with volume $d x^{1} d x^{2} \ldots$

Change of variables - motivation

- Clearly the above integral could have been more easily evaluated in polar coordinates. But what does $d x d y$ change to? Morally, it ought to be rdrd θ.
- We expect that a "small" rectangle with volume $d x^{1} d x^{2} \ldots$ under a change of variables $y(x)$

Change of variables - motivation

- Clearly the above integral could have been more easily evaluated in polar coordinates. But what does $d x d y$ change to? Morally, it ought to be rdrd θ.
- We expect that a "small" rectangle with volume $d x^{1} d x^{2} \ldots$ under a change of variables $y(x)$ roughly changes to a small parallelopiped (when viewed in the x-coordinates)

Change of variables - motivation

- Clearly the above integral could have been more easily evaluated in polar coordinates. But what does $d x d y$ change to? Morally, it ought to be rdrd θ.
- We expect that a "small" rectangle with volume $d x^{1} d x^{2} \ldots$ under a change of variables $y(x)$ roughly changes to a small parallelopiped (when viewed in the x-coordinates) with edges $\frac{\partial \vec{y}}{\partial x^{i}} d x^{i}$.

Change of variables - motivation

- Clearly the above integral could have been more easily evaluated in polar coordinates. But what does $d x d y$ change to? Morally, it ought to be rdrd θ.
- We expect that a "small" rectangle with volume $d x^{1} d x^{2} \ldots$ under a change of variables $y(x)$ roughly changes to a small parallelopiped (when viewed in the x-coordinates) with edges $\frac{\partial \vec{y}}{\partial x^{i}} d x^{i}$. In the new coordinates, the volume is simply $d y^{1} d y^{2} \ldots$

Change of variables - motivation

- Clearly the above integral could have been more easily evaluated in polar coordinates. But what does $d x d y$ change to? Morally, it ought to be rdrd θ.
- We expect that a "small" rectangle with volume $d x^{1} d x^{2} \ldots$ under a change of variables $y(x)$ roughly changes to a small parallelopiped (when viewed in the x-coordinates) with edges $\frac{\partial \vec{y}}{\partial x^{i}} d x^{i}$. In the new coordinates, the volume is simply $d y^{1} d y^{2} \ldots$ Thus

Change of variables - motivation

- Clearly the above integral could have been more easily evaluated in polar coordinates. But what does $d x d y$ change to? Morally, it ought to be rdrd θ.
- We expect that a "small" rectangle with volume $d x^{1} d x^{2} \ldots$ under a change of variables $y(x)$ roughly changes to a small parallelopiped (when viewed in the x-coordinates) with edges $\frac{\partial \vec{y}}{\partial x^{i}} d x^{i}$. In the new coordinates, the volume is simply $d y^{1} d y^{2} \ldots$ Thus $d y^{1} d y^{2} \ldots=\left|\operatorname{det}\left(\frac{\partial y^{i}}{\partial x^{j}}\right)\right| d x^{1} d x^{2} \ldots$.

Change of variables - motivation

- Clearly the above integral could have been more easily evaluated in polar coordinates. But what does $d x d y$ change to? Morally, it ought to be rdrd θ.
- We expect that a "small" rectangle with volume $d x^{1} d x^{2} \ldots$ under a change of variables $y(x)$ roughly changes to a small parallelopiped (when viewed in the x-coordinates) with edges $\frac{\partial \vec{y}}{\partial x^{i}} d x^{i}$. In the new coordinates, the volume is simply $d y^{1} d y^{2} \ldots$ Thus $d y^{1} d y^{2} \ldots=\left|\operatorname{det}\left(\frac{\partial y^{i}}{\partial x^{j}}\right)\right| d x^{1} d x^{2} \ldots$.
- In other words,

Change of variables - motivation

- Clearly the above integral could have been more easily evaluated in polar coordinates. But what does $d x d y$ change to? Morally, it ought to be rdrd θ.
- We expect that a "small" rectangle with volume $d x^{1} d x^{2} \ldots$ under a change of variables $y(x)$ roughly changes to a small parallelopiped (when viewed in the x-coordinates) with edges $\frac{\partial \vec{y}}{\partial x^{i}} d x^{i}$. In the new coordinates, the volume is simply $d y^{1} d y^{2} \ldots$ Thus $d y^{1} d y^{2} \ldots=\left|\operatorname{det}\left(\frac{\partial y^{i}}{\partial x^{j}}\right)\right| d x^{1} d x^{2} \ldots$.
- In other words, we expect that

Change of variables - motivation

- Clearly the above integral could have been more easily evaluated in polar coordinates. But what does $d x d y$ change to? Morally, it ought to be rdrd θ.
- We expect that a "small" rectangle with volume $d x^{1} d x^{2} \ldots$ under a change of variables $y(x)$ roughly changes to a small parallelopiped (when viewed in the x-coordinates) with edges $\frac{\partial \vec{y}}{\partial x^{i}} d x^{i}$. In the new coordinates, the volume is simply $d y^{1} d y^{2} \ldots$ Thus $d y^{1} d y^{2} \ldots=\left|\operatorname{det}\left(\frac{\partial y^{i}}{\partial x^{j}}\right)\right| d x^{1} d x^{2} \ldots$.
- In other words, we expect that

$$
\int f(y) d V_{y}=\int f(y(x))\left|\operatorname{det}\left(\frac{\partial y^{i}}{\partial x^{j}}\right)\right| d V_{x} .
$$

Change of variables

Change of variables

- Theorem:

Change of variables

- Theorem: Let D, E be open bounded domains of integration in $\mathbb{R}^{k}($

Change of variables

- Theorem: Let D, E be open bounded domains of integration in \mathbb{R}^{k} (with boundaries of measure zero).

Change of variables

- Theorem: Let D, E be open bounded domains of integration in \mathbb{R}^{k} (with boundaries of measure zero). Suppose $f: \bar{E} \rightarrow \mathbb{R}$ is a bounded continuous function.

Change of variables

- Theorem: Let D, E be open bounded domains of integration in \mathbb{R}^{k} (with boundaries of measure zero). Suppose $f: \bar{E} \rightarrow \mathbb{R}$ is a bounded continuous function. Let $G: \bar{D} \rightarrow \bar{E}$ be a smooth map

Change of variables

- Theorem: Let D, E be open bounded domains of integration in \mathbb{R}^{k} (with boundaries of measure zero). Suppose $f: \bar{E} \rightarrow \mathbb{R}$ is a bounded continuous function. Let $G: \bar{D} \rightarrow \bar{E}$ be a smooth map that is a diffeo from D to E. Then

Change of variables

- Theorem: Let D, E be open bounded domains of integration in \mathbb{R}^{k} (with boundaries of measure zero). Suppose $f: \bar{E} \rightarrow \mathbb{R}$ is a bounded continuous function. Let $G: \bar{D} \rightarrow \bar{E}$ be a smooth map that is a diffeo from D to E. Then $\int_{E} f d V=\int_{D} f \circ G|D G| d V$.

Change of variables

- Theorem: Let D, E be open bounded domains of integration in \mathbb{R}^{k} (with boundaries of measure zero). Suppose $f: \bar{E} \rightarrow \mathbb{R}$ is a bounded continuous function. Let $G: \bar{D} \rightarrow \bar{E}$ be a smooth map that is a diffeo from D to E. Then $\int_{E} f d V=\int_{D} f \circ G|D G| d V$.
- It turns out that (proof omitted)

Change of variables

- Theorem: Let D, E be open bounded domains of integration in \mathbb{R}^{k} (with boundaries of measure zero). Suppose $f: \bar{E} \rightarrow \mathbb{R}$ is a bounded continuous function. Let $G: \bar{D} \rightarrow \bar{E}$ be a smooth map that is a diffeo from D to E. Then $\int_{E} f d V=\int_{D} f \circ G|D G| d V$.
- It turns out that (proof omitted) by an approximation argument,

Change of variables

- Theorem: Let D, E be open bounded domains of integration in \mathbb{R}^{k} (with boundaries of measure zero). Suppose $f: \bar{E} \rightarrow \mathbb{R}$ is a bounded continuous function. Let $G: \bar{D} \rightarrow \bar{E}$ be a smooth map that is a diffeo from D to E. Then $\int_{E} f d V=\int_{D} f \circ G|D G| d V$.
- It turns out that (proof omitted) by an approximation argument, it is enough to consider

Change of variables

- Theorem: Let D, E be open bounded domains of integration in \mathbb{R}^{k} (with boundaries of measure zero). Suppose $f: \bar{E} \rightarrow \mathbb{R}$ is a bounded continuous function. Let $G: \bar{D} \rightarrow \bar{E}$ be a smooth map that is a diffeo from D to E. Then $\int_{E} f d V=\int_{D} f \circ G|D G| d V$.
- It turns out that (proof omitted) by an approximation argument, it is enough to consider the case where f is a continuous compactly supported function on \mathbb{R}^{k}

Change of variables

- Theorem: Let D, E be open bounded domains of integration in \mathbb{R}^{k} (with boundaries of measure zero). Suppose $f: \bar{E} \rightarrow \mathbb{R}$ is a bounded continuous function. Let $G: \bar{D} \rightarrow \bar{E}$ be a smooth map that is a diffeo from D to E. Then $\int_{E} f d V=\int_{D} f \circ G|D G| d V$.
- It turns out that (proof omitted) by an approximation argument, it is enough to consider the case where f is a continuous compactly supported function on \mathbb{R}^{k} such that its support lies in E.

Comparison with one variable

Comparison with one variable

- Before we embark on the proof,

Comparison with one variable

- Before we embark on the proof, in one variable,

Comparison with one variable

- Before we embark on the proof, in one variable, the theorem would read as

Comparison with one variable

- Before we embark on the proof, in one variable, the theorem would read as $\int_{E} f(y) d y=\int_{D} f(y(x))\left|y^{\prime}(x)\right| d x$.

Comparison with one variable

- Before we embark on the proof, in one variable, the theorem would read as $\int_{E} f(y) d y=\int_{D} f(y(x))\left|y^{\prime}(x)\right| d x$.
- The absolute value is puzzling!

Comparison with one variable

- Before we embark on the proof, in one variable, the theorem would read as $\int_{E} f(y) d y=\int_{D} f(y(x))\left|y^{\prime}(x)\right| d x$.
- The absolute value is puzzling! Let's look at an example:

Comparison with one variable

- Before we embark on the proof, in one variable, the theorem would read as $\int_{E} f(y) d y=\int_{D} f(y(x))\left|y^{\prime}(x)\right| d x$.
- The absolute value is puzzling! Let's look at an example:

$$
\int_{2}^{1} \cos (1 / x) \frac{-d x}{x^{2}}=\int_{1 / 2}^{1} \cos (y) d y=\sin (1)-\sin (1 / 2) .
$$

Comparison with one variable

- Before we embark on the proof, in one variable, the theorem would read as $\int_{E} f(y) d y=\int_{D} f(y(x))\left|y^{\prime}(x)\right| d x$.
- The absolute value is puzzling! Let's look at an example: $\int_{2}^{1} \cos (1 / x) \frac{-d x}{x^{2}}=\int_{1 / 2}^{1} \cos (y) d y=\sin (1)-\sin (1 / 2)$. The key point is that

Comparison with one variable

- Before we embark on the proof, in one variable, the theorem would read as $\int_{E} f(y) d y=\int_{D} f(y(x))\left|y^{\prime}(x)\right| d x$.
- The absolute value is puzzling! Let's look at an example:
$\int_{2}^{1} \cos (1 / x) \frac{-d x}{x^{2}}=\int_{1 / 2}^{1} \cos (y) d y=\sin (1)-\sin (1 / 2)$. The key point is that the limits are from 2 to 1 !

Comparison with one variable

- Before we embark on the proof, in one variable, the theorem would read as $\int_{E} f(y) d y=\int_{D} f(y(x))\left|y^{\prime}(x)\right| d x$.
- The absolute value is puzzling! Let's look at an example:
$\int_{2}^{1} \cos (1 / x) \frac{-d x}{x^{2}}=\int_{1 / 2}^{1} \cos (y) d y=\sin (1)-\sin (1 / 2)$. The key point is that the limits are from 2 to 1 ! If we insist

Comparison with one variable

- Before we embark on the proof, in one variable, the theorem would read as $\int_{E} f(y) d y=\int_{D} f(y(x))\left|y^{\prime}(x)\right| d x$.
- The absolute value is puzzling! Let's look at an example:
$\int_{2}^{1} \cos (1 / x) \frac{-d x}{x^{2}}=\int_{1 / 2}^{1} \cos (y) d y=\sin (1)-\sin (1 / 2)$. The key point is that the limits are from 2 to 1 ! If we insist on limits being from lower numbers to higher numbers,

Comparison with one variable

- Before we embark on the proof, in one variable, the theorem would read as $\int_{E} f(y) d y=\int_{D} f(y(x))\left|y^{\prime}(x)\right| d x$.
- The absolute value is puzzling! Let's look at an example:
$\int_{2}^{1} \cos (1 / x) \frac{-d x}{x^{2}}=\int_{1 / 2}^{1} \cos (y) d y=\sin (1)-\sin (1 / 2)$. The key point is that the limits are from 2 to 1 ! If we insist on limits being from lower numbers to higher numbers, then the integral is $\int_{1}^{2} \cos (1 / x) \frac{d x}{x^{2}}=\int_{1}^{2} \cos (1 / x)\left|\frac{-1}{x^{2}}\right| d x$.

Comparison with one variable

- Before we embark on the proof, in one variable, the theorem would read as $\int_{E} f(y) d y=\int_{D} f(y(x))\left|y^{\prime}(x)\right| d x$.
- The absolute value is puzzling! Let's look at an example:
$\int_{2}^{1} \cos (1 / x) \frac{-d x}{x^{2}}=\int_{1 / 2}^{1} \cos (y) d y=\sin (1)-\sin (1 / 2)$. The key point is that the limits are from 2 to 1 ! If we insist on limits being from lower numbers to higher numbers, then the integral is $\int_{1}^{2} \cos (1 / x) \frac{d x}{x^{2}}=\int_{1}^{2} \cos (1 / x)\left|\frac{-1}{x^{2}}\right| d x$.
- However, if we want to take

Comparison with one variable

- Before we embark on the proof, in one variable, the theorem would read as $\int_{E} f(y) d y=\int_{D} f(y(x))\left|y^{\prime}(x)\right| d x$.
- The absolute value is puzzling! Let's look at an example:
$\int_{2}^{1} \cos (1 / x) \frac{-d x}{x^{2}}=\int_{1 / 2}^{1} \cos (y) d y=\sin (1)-\sin (1 / 2)$. The key point is that the limits are from 2 to 1 ! If we insist on limits being from lower numbers to higher numbers, then the integral is $\int_{1}^{2} \cos (1 / x) \frac{d x}{x^{2}}=\int_{1}^{2} \cos (1 / x)\left|\frac{-1}{x^{2}}\right| d x$.
- However, if we want to take $d y=y^{\prime}(x) d x$ more seriously,

Comparison with one variable

- Before we embark on the proof, in one variable, the theorem would read as $\int_{E} f(y) d y=\int_{D} f(y(x))\left|y^{\prime}(x)\right| d x$.
- The absolute value is puzzling! Let's look at an example:
$\int_{2}^{1} \cos (1 / x) \frac{-d x}{x^{2}}=\int_{1 / 2}^{1} \cos (y) d y=\sin (1)-\sin (1 / 2)$. The key point is that the limits are from 2 to 1 ! If we insist on limits being from lower numbers to higher numbers, then the integral is $\int_{1}^{2} \cos (1 / x) \frac{d x}{x^{2}}=\int_{1}^{2} \cos (1 / x)\left|\frac{-1}{x^{2}}\right| d x$.
- However, if we want to take $d y=y^{\prime}(x) d x$ more seriously, then $d y, d x$ ought to be 1 -forms.

Comparison with one variable

- Before we embark on the proof, in one variable, the theorem would read as $\int_{E} f(y) d y=\int_{D} f(y(x))\left|y^{\prime}(x)\right| d x$.
- The absolute value is puzzling! Let's look at an example:
$\int_{2}^{1} \cos (1 / x) \frac{-d x}{x^{2}}=\int_{1 / 2}^{1} \cos (y) d y=\sin (1)-\sin (1 / 2)$. The key point is that the limits are from 2 to 1 ! If we insist on limits being from lower numbers to higher numbers, then the integral is $\int_{1}^{2} \cos (1 / x) \frac{d x}{x^{2}}=\int_{1}^{2} \cos (1 / x)\left|\frac{-1}{x^{2}}\right| d x$.
- However, if we want to take $d y=y^{\prime}(x) d x$ more seriously, then $d y, d x$ ought to be 1 -forms. However, if we want to

Comparison with one variable

- Before we embark on the proof, in one variable, the theorem would read as $\int_{E} f(y) d y=\int_{D} f(y(x))\left|y^{\prime}(x)\right| d x$.
- The absolute value is puzzling! Let's look at an example:
$\int_{2}^{1} \cos (1 / x) \frac{-d x}{x^{2}}=\int_{1 / 2}^{1} \cos (y) d y=\sin (1)-\sin (1 / 2)$. The key point is that the limits are from 2 to 1 ! If we insist on limits being from lower numbers to higher numbers, then the integral is $\int_{1}^{2} \cos (1 / x) \frac{d x}{x^{2}}=\int_{1}^{2} \cos (1 / x)\left|\frac{-1}{x^{2}}\right| d x$.
- However, if we want to take $d y=y^{\prime}(x) d x$ more seriously, then $d y, d x$ ought to be 1-forms. However, if we want to define integration only for

Comparison with one variable

- Before we embark on the proof, in one variable, the theorem would read as $\int_{E} f(y) d y=\int_{D} f(y(x))\left|y^{\prime}(x)\right| d x$.
- The absolute value is puzzling! Let's look at an example:
$\int_{2}^{1} \cos (1 / x) \frac{-d x}{x^{2}}=\int_{1 / 2}^{1} \cos (y) d y=\sin (1)-\sin (1 / 2)$. The key point is that the limits are from 2 to 1 ! If we insist on limits being from lower numbers to higher numbers, then the integral is $\int_{1}^{2} \cos (1 / x) \frac{d x}{x^{2}}=\int_{1}^{2} \cos (1 / x)\left|\frac{-1}{x^{2}}\right| d x$.
- However, if we want to take $d y=y^{\prime}(x) d x$ more seriously, then $d y, d x$ ought to be 1-forms. However, if we want to define integration only for 1 -forms (as opposed to functions),

Comparison with one variable

- Before we embark on the proof, in one variable, the theorem would read as $\int_{E} f(y) d y=\int_{D} f(y(x))\left|y^{\prime}(x)\right| d x$.
- The absolute value is puzzling! Let's look at an example:
$\int_{2}^{1} \cos (1 / x) \frac{-d x}{x^{2}}=\int_{1 / 2}^{1} \cos (y) d y=\sin (1)-\sin (1 / 2)$. The key point is that the limits are from 2 to 1 ! If we insist on limits being from lower numbers to higher numbers, then the integral is $\int_{1}^{2} \cos (1 / x) \frac{d x}{x^{2}}=\int_{1}^{2} \cos (1 / x)\left|\frac{-1}{x^{2}}\right| d x$.
- However, if we want to take $d y=y^{\prime}(x) d x$ more seriously, then $d y, d x$ ought to be 1-forms. However, if we want to define integration only for 1 -forms (as opposed to functions), then we must restrict ourselves to

Comparison with one variable

- Before we embark on the proof, in one variable, the theorem would read as $\int_{E} f(y) d y=\int_{D} f(y(x))\left|y^{\prime}(x)\right| d x$.
- The absolute value is puzzling! Let's look at an example:
$\int_{2}^{1} \cos (1 / x) \frac{-d x}{x^{2}}=\int_{1 / 2}^{1} \cos (y) d y=\sin (1)-\sin (1 / 2)$. The key point is that the limits are from 2 to 1 ! If we insist on limits being from lower numbers to higher numbers, then the integral is $\int_{1}^{2} \cos (1 / x) \frac{d x}{x^{2}}=\int_{1}^{2} \cos (1 / x)\left|\frac{-1}{x^{2}}\right| d x$.
- However, if we want to take $d y=y^{\prime}(x) d x$ more seriously, then $d y, d x$ ought to be 1-forms. However, if we want to define integration only for 1 -forms (as opposed to functions), then we must restrict ourselves to change of variables whose y^{\prime} is >0.

Comparison with one variable

- Before we embark on the proof, in one variable, the theorem would read as $\int_{E} f(y) d y=\int_{D} f(y(x))\left|y^{\prime}(x)\right| d x$.
- The absolute value is puzzling! Let's look at an example:
$\int_{2}^{1} \cos (1 / x) \frac{-d x}{x^{2}}=\int_{1 / 2}^{1} \cos (y) d y=\sin (1)-\sin (1 / 2)$. The key point is that the limits are from 2 to 1 ! If we insist on limits being from lower numbers to higher numbers, then the integral is $\int_{1}^{2} \cos (1 / x) \frac{d x}{x^{2}}=\int_{1}^{2} \cos (1 / x)\left|\frac{-1}{x^{2}}\right| d x$.
- However, if we want to take $d y=y^{\prime}(x) d x$ more seriously, then $d y, d x$ ought to be 1-forms. However, if we want to define integration only for 1 -forms (as opposed to functions), then we must restrict ourselves to change of variables whose y^{\prime} is >0. We shall return to this connection with forms later.

Proof of the special case of change of variables

Proof of the special case of change of variables

- We want to
- We want to prove the result for some special kinds of change of variables.
- We want to prove the result for some special kinds of change of variables. Then we want to write
- We want to prove the result for some special kinds of change of variables. Then we want to write any G as a composition of
- We want to prove the result for some special kinds of change of variables. Then we want to write any G as a composition of these special kinds.
- We want to prove the result for some special kinds of change of variables. Then we want to write any G as a composition of these special kinds.
- Firstly, by Fubini,
- We want to prove the result for some special kinds of change of variables. Then we want to write any G as a composition of these special kinds.
- Firstly, by Fubini, the theorem is true when G merely exchanges two coordinates.
- We want to prove the result for some special kinds of change of variables. Then we want to write any G as a composition of these special kinds.
- Firstly, by Fubini, the theorem is true when G merely exchanges two coordinates.
- Secondly,
- We want to prove the result for some special kinds of change of variables. Then we want to write any G as a composition of these special kinds.
- Firstly, by Fubini, the theorem is true when G merely exchanges two coordinates.
- Secondly, this theorem is true
- We want to prove the result for some special kinds of change of variables. Then we want to write any G as a composition of these special kinds.
- Firstly, by Fubini, the theorem is true when G merely exchanges two coordinates.
- Secondly, this theorem is true if we consider primitive mappings,
- We want to prove the result for some special kinds of change of variables. Then we want to write any G as a composition of these special kinds.
- Firstly, by Fubini, the theorem is true when G merely exchanges two coordinates.
- Secondly, this theorem is true if we consider primitive mappings, that is, ones that change
- We want to prove the result for some special kinds of change of variables. Then we want to write any G as a composition of these special kinds.
- Firstly, by Fubini, the theorem is true when G merely exchanges two coordinates.
- Secondly, this theorem is true if we consider primitive mappings, that is, ones that change at most one coordinate, i.e.,
- We want to prove the result for some special kinds of change of variables. Then we want to write any G as a composition of these special kinds.
- Firstly, by Fubini, the theorem is true when G merely exchanges two coordinates.
- Secondly, this theorem is true if we consider primitive mappings, that is, ones that change at most one coordinate, i.e., $G(x)=\left(x^{1}, \ldots, x^{i-1}, g(x), x^{i+1}, \ldots\right)($ why?).
- We want to prove the result for some special kinds of change of variables. Then we want to write any G as a composition of these special kinds.
- Firstly, by Fubini, the theorem is true when G merely exchanges two coordinates.
- Secondly, this theorem is true if we consider primitive mappings, that is, ones that change at most one coordinate, i.e., $G(x)=\left(x^{1}, \ldots, x^{i-1}, g(x), x^{i+1}, \ldots\right)$ (why?).
- Thirdly,
- We want to prove the result for some special kinds of change of variables. Then we want to write any G as a composition of these special kinds.
- Firstly, by Fubini, the theorem is true when G merely exchanges two coordinates.
- Secondly, this theorem is true if we consider primitive mappings, that is, ones that change at most one coordinate, i.e., $G(x)=\left(x^{1}, \ldots, x^{i-1}, g(x), x^{i+1}, \ldots\right)$ (why?).
- Thirdly, if the theorem is true for
- We want to prove the result for some special kinds of change of variables. Then we want to write any G as a composition of these special kinds.
- Firstly, by Fubini, the theorem is true when G merely exchanges two coordinates.
- Secondly, this theorem is true if we consider primitive mappings, that is, ones that change at most one coordinate, i.e., $G(x)=\left(x^{1}, \ldots, x^{i-1}, g(x), x^{i+1}, \ldots\right)$ (why?).
- Thirdly, if the theorem is true for P, Q, then if $S=P \circ Q$,
- We want to prove the result for some special kinds of change of variables. Then we want to write any G as a composition of these special kinds.
- Firstly, by Fubini, the theorem is true when G merely exchanges two coordinates.
- Secondly, this theorem is true if we consider primitive mappings, that is, ones that change at most one coordinate, i.e., $G(x)=\left(x^{1}, \ldots, x^{i-1}, g(x), x^{i+1}, \ldots\right)($ why?).
- Thirdly, if the theorem is true for P, Q, then if $S=P \circ Q$, $\int f(z) d z=\int f(P(y))|D P(y)| d y=$ $\int f(S(x))|D P(Q(x))||D Q(x)| d x=\int f(S(x))|D S(x)| d x$.
- We want to prove the result for some special kinds of change of variables. Then we want to write any G as a composition of these special kinds.
- Firstly, by Fubini, the theorem is true when G merely exchanges two coordinates.
- Secondly, this theorem is true if we consider primitive mappings, that is, ones that change at most one coordinate, i.e., $G(x)=\left(x^{1}, \ldots, x^{i-1}, g(x), x^{i+1}, \ldots\right)($ why?).
- Thirdly, if the theorem is true for P, Q, then if $S=P \circ Q$, $\int f(z) d z=\int f(P(y))|D P(y)| d y=$ $\int f(S(x))|D P(Q(x))||D Q(x)| d x=\int f(S(x))|D S(x)| d x$.
- Fourthly,
- We want to prove the result for some special kinds of change of variables. Then we want to write any G as a composition of these special kinds.
- Firstly, by Fubini, the theorem is true when G merely exchanges two coordinates.
- Secondly, this theorem is true if we consider primitive mappings, that is, ones that change at most one coordinate, i.e., $G(x)=\left(x^{1}, \ldots, x^{i-1}, g(x), x^{i+1}, \ldots\right)$ (why?).
- Thirdly, if the theorem is true for P, Q, then if $S=P \circ Q$, $\int f(z) d z=\int f(P(y))|D P(y)| d y=$ $\int f(S(x))|D P(Q(x))||D Q(x)| d x=\int f(S(x))|D S(x)| d x$.
- Fourthly, it turns out (proof in Rudin by IFT one variable at a time)
- We want to prove the result for some special kinds of change of variables. Then we want to write any G as a composition of these special kinds.
- Firstly, by Fubini, the theorem is true when G merely exchanges two coordinates.
- Secondly, this theorem is true if we consider primitive mappings, that is, ones that change at most one coordinate, i.e., $G(x)=\left(x^{1}, \ldots, x^{i-1}, g(x), x^{i+1}, \ldots\right)$ (why?).
- Thirdly, if the theorem is true for P, Q, then if $S=P \circ Q$, $\int f(z) d z=\int f(P(y))|D P(y)| d y=$ $\int f(S(x))|D P(Q(x))||D Q(x)| d x=\int f(S(x))|D S(x)| d x$.
- Fourthly, it turns out (proof in Rudin by IFT one variable at a time) that every T is locally
- We want to prove the result for some special kinds of change of variables. Then we want to write any G as a composition of these special kinds.
- Firstly, by Fubini, the theorem is true when G merely exchanges two coordinates.
- Secondly, this theorem is true if we consider primitive mappings, that is, ones that change at most one coordinate, i.e., $G(x)=\left(x^{1}, \ldots, x^{i-1}, g(x), x^{i+1}, \ldots\right)$ (why?).
- Thirdly, if the theorem is true for P, Q, then if $S=P \circ Q$, $\int f(z) d z=\int f(P(y))|D P(y)| d y=$ $\int f(S(x))|D P(Q(x))||D Q(x)| d x=\int f(S(x))|D S(x)| d x$.
- Fourthly, it turns out (proof in Rudin by IFT one variable at a time) that every T is locally
$T(x)=T(a)+B_{1} \circ \ldots B_{k-1} G_{k-1} \circ \ldots G_{1}(x-a)$ where
- We want to prove the result for some special kinds of change of variables. Then we want to write any G as a composition of these special kinds.
- Firstly, by Fubini, the theorem is true when G merely exchanges two coordinates.
- Secondly, this theorem is true if we consider primitive mappings, that is, ones that change at most one coordinate, i.e., $G(x)=\left(x^{1}, \ldots, x^{i-1}, g(x), x^{i+1}, \ldots\right)$ (why?).
- Thirdly, if the theorem is true for P, Q, then if $S=P \circ Q$, $\int f(z) d z=\int f(P(y))|D P(y)| d y=$ $\int f(S(x))|D P(Q(x))||D Q(x)| d x=\int f(S(x))|D S(x)| d x$.
- Fourthly, it turns out (proof in Rudin by IFT one variable at a time) that every T is locally
$T(x)=T(a)+B_{1} \circ \ldots B_{k-1} G_{k-1} \circ \ldots G_{1}(x-a)$ where B_{i} are identity or flips, and
- We want to prove the result for some special kinds of change of variables. Then we want to write any G as a composition of these special kinds.
- Firstly, by Fubini, the theorem is true when G merely exchanges two coordinates.
- Secondly, this theorem is true if we consider primitive mappings, that is, ones that change at most one coordinate, i.e., $G(x)=\left(x^{1}, \ldots, x^{i-1}, g(x), x^{i+1}, \ldots\right)$ (why?).
- Thirdly, if the theorem is true for P, Q, then if $S=P \circ Q$, $\int f(z) d z=\int f(P(y))|D P(y)| d y=$ $\int f(S(x))|D P(Q(x))||D Q(x)| d x=\int f(S(x))|D S(x)| d x$.
- Fourthly, it turns out (proof in Rudin by IFT one variable at a time) that every T is locally
$T(x)=T(a)+B_{1} \circ \ldots B_{k-1} G_{k-1} \circ \ldots G_{1}(x-a)$ where B_{i} are identity or flips, and G_{i} are primitive.
- We want to prove the result for some special kinds of change of variables. Then we want to write any G as a composition of these special kinds.
- Firstly, by Fubini, the theorem is true when G merely exchanges two coordinates.
- Secondly, this theorem is true if we consider primitive mappings, that is, ones that change at most one coordinate, i.e., $G(x)=\left(x^{1}, \ldots, x^{i-1}, g(x), x^{i+1}, \ldots\right)$ (why?).
- Thirdly, if the theorem is true for P, Q, then if $S=P \circ Q$, $\int f(z) d z=\int f(P(y))|D P(y)| d y=$ $\int f(S(x))|D P(Q(x))||D Q(x)| d x=\int f(S(x))|D S(x)| d x$.
- Fourthly, it turns out (proof in Rudin by IFT one variable at a time) that every T is locally
$T(x)=T(a)+B_{1} \circ \ldots B_{k-1} G_{k-1} \circ \ldots G_{1}(x-a)$ where B_{i} are identity or flips, and G_{i} are primitive. So if the support of f
- We want to prove the result for some special kinds of change of variables. Then we want to write any G as a composition of these special kinds.
- Firstly, by Fubini, the theorem is true when G merely exchanges two coordinates.
- Secondly, this theorem is true if we consider primitive mappings, that is, ones that change at most one coordinate, i.e., $G(x)=\left(x^{1}, \ldots, x^{i-1}, g(x), x^{i+1}, \ldots\right)$ (why?).
- Thirdly, if the theorem is true for P, Q, then if $S=P \circ Q$, $\int f(z) d z=\int f(P(y))|D P(y)| d y=$ $\int f(S(x))|D P(Q(x))||D Q(x)| d x=\int f(S(x))|D S(x)| d x$.
- Fourthly, it turns out (proof in Rudin by IFT one variable at a time) that every T is locally
$T(x)=T(a)+B_{1} \circ \ldots B_{k-1} G_{k-1} \circ \ldots G_{1}(x-a)$ where B_{i} are identity or flips, and G_{i} are primitive. So if the support of f lies in a small neighbourhood where this decomposition holds,
- We want to prove the result for some special kinds of change of variables. Then we want to write any G as a composition of these special kinds.
- Firstly, by Fubini, the theorem is true when G merely exchanges two coordinates.
- Secondly, this theorem is true if we consider primitive mappings, that is, ones that change at most one coordinate, i.e., $G(x)=\left(x^{1}, \ldots, x^{i-1}, g(x), x^{i+1}, \ldots\right)$ (why?).
- Thirdly, if the theorem is true for P, Q, then if $S=P \circ Q$, $\int f(z) d z=\int f(P(y))|D P(y)| d y=$ $\int f(S(x))|D P(Q(x))||D Q(x)| d x=\int f(S(x))|D S(x)| d x$.
- Fourthly, it turns out (proof in Rudin by IFT one variable at a time) that every T is locally
$T(x)=T(a)+B_{1} \circ \ldots B_{k-1} G_{k-1} \circ \ldots G_{1}(x-a)$ where B_{i} are identity or flips, and G_{i} are primitive. So if the support of f lies in a small neighbourhood where this decomposition holds, we are done.
- We want to prove the result for some special kinds of change of variables. Then we want to write any G as a composition of these special kinds.
- Firstly, by Fubini, the theorem is true when G merely exchanges two coordinates.
- Secondly, this theorem is true if we consider primitive mappings, that is, ones that change at most one coordinate, i.e., $G(x)=\left(x^{1}, \ldots, x^{i-1}, g(x), x^{i+1}, \ldots\right)$ (why?).
- Thirdly, if the theorem is true for P, Q, then if $S=P \circ Q$, $\int f(z) d z=\int f(P(y))|D P(y)| d y=$ $\int f(S(x))|D P(Q(x))||D Q(x)| d x=\int f(S(x))|D S(x)| d x$.
- Fourthly, it turns out (proof in Rudin by IFT one variable at a time) that every T is locally
$T(x)=T(a)+B_{1} \circ \ldots B_{k-1} G_{k-1} \circ \ldots G_{1}(x-a)$ where B_{i} are identity or flips, and G_{i} are primitive. So if the support of f lies in a small neighbourhood where this decomposition holds, we are done. Otherwise use a partition-of-unity.

Integration of forms

Integration of forms

- Ideally,

Integration of forms

- Ideally, on a manifold,

Integration of forms

- Ideally, on a manifold, we would like to define the integral of a function $f: M \rightarrow \mathbb{R}$ as

Integration of forms

- Ideally, on a manifold, we would like to define the integral of a function $f: M \rightarrow \mathbb{R}$ as $\int f=\sum_{i} \int \rho_{i} f d x^{1} d x^{2} \ldots$ where

Integration of forms

- Ideally, on a manifold, we would like to define the integral of a function $f: M \rightarrow \mathbb{R}$ as $\int f=\sum_{i} \int \rho_{i} f d x^{1} d x^{2} \ldots$ where ρ_{i} are partitions-of-unity.

Integration of forms

- Ideally, on a manifold, we would like to define the integral of a function $f: M \rightarrow \mathbb{R}$ as $\int f=\sum_{i} \int \rho_{i} f d x^{1} d x^{2} \ldots$ where ρ_{i} are partitions-of-unity.
- The problem is that

Integration of forms

- Ideally, on a manifold, we would like to define the integral of a function $f: M \rightarrow \mathbb{R}$ as $\int f=\sum_{i} \int \rho_{i} f d x^{1} d x^{2} \ldots$ where ρ_{i} are partitions-of-unity.
- The problem is that if we change coordinates,

Integration of forms

- Ideally, on a manifold, we would like to define the integral of a function $f: M \rightarrow \mathbb{R}$ as $\int f=\sum_{i} \int \rho_{i} f d x^{1} d x^{2} \ldots$ where ρ_{i} are partitions-of-unity.
- The problem is that if we change coordinates, then the integrals change!

Integration of forms

- Ideally, on a manifold, we would like to define the integral of a function $f: M \rightarrow \mathbb{R}$ as $\int f=\sum_{i} \int \rho_{i} f d x^{1} d x^{2} \ldots$ where ρ_{i} are partitions-of-unity.
- The problem is that if we change coordinates, then the integrals change! Heck even in \mathbb{R}^{n}, if f is compactly supported,

Integration of forms

- Ideally, on a manifold, we would like to define the integral of a function $f: M \rightarrow \mathbb{R}$ as $\int f=\sum_{i} \int \rho_{i} f d x^{1} d x^{2} \ldots$ where ρ_{i} are partitions-of-unity.
- The problem is that if we change coordinates, then the integrals change! Heck even in \mathbb{R}^{n}, if f is compactly supported, if we take a smooth diffeo $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$,

Integration of forms

- Ideally, on a manifold, we would like to define the integral of a function $f: M \rightarrow \mathbb{R}$ as $\int f=\sum_{i} \int \rho_{i} f d x^{1} d x^{2} \ldots$ where ρ_{i} are partitions-of-unity.
- The problem is that if we change coordinates, then the integrals change! Heck even in \mathbb{R}^{n}, if f is compactly supported, if we take a smooth diffeo $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, then the integrals will not be the same.

Integration of forms

- Ideally, on a manifold, we would like to define the integral of a function $f: M \rightarrow \mathbb{R}$ as $\int f=\sum_{i} \int \rho_{i} f d x^{1} d x^{2} \ldots$ where ρ_{i} are partitions-of-unity.
- The problem is that if we change coordinates, then the integrals change! Heck even in \mathbb{R}^{n}, if f is compactly supported, if we take a smooth diffeo $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, then the integrals will not be the same. The modulus of the Jacobian kicks in.

Integration of forms

- Ideally, on a manifold, we would like to define the integral of a function $f: M \rightarrow \mathbb{R}$ as $\int f=\sum_{i} \int \rho_{i} f d x^{1} d x^{2} \ldots$ where ρ_{i} are partitions-of-unity.
- The problem is that if we change coordinates, then the integrals change! Heck even in \mathbb{R}^{n}, if f is compactly supported, if we take a smooth diffeo $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, then the integrals will not be the same. The modulus of the Jacobian kicks in.
- So the bottom line is that we cannot hope to define

Integration of forms

- Ideally, on a manifold, we would like to define the integral of a function $f: M \rightarrow \mathbb{R}$ as $\int f=\sum_{i} \int \rho_{i} f d x^{1} d x^{2} \ldots$ where ρ_{i} are partitions-of-unity.
- The problem is that if we change coordinates, then the integrals change! Heck even in \mathbb{R}^{n}, if f is compactly supported, if we take a smooth diffeo $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, then the integrals will not be the same. The modulus of the Jacobian kicks in.
- So the bottom line is that we cannot hope to define the integral of a function $f: M \rightarrow \mathbb{R}$.

Integration of forms

- Ideally, on a manifold, we would like to define the integral of a function $f: M \rightarrow \mathbb{R}$ as $\int f=\sum_{i} \int \rho_{i} f d x^{1} d x^{2} \ldots$ where ρ_{i} are partitions-of-unity.
- The problem is that if we change coordinates, then the integrals change! Heck even in \mathbb{R}^{n}, if f is compactly supported, if we take a smooth diffeo $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, then the integrals will not be the same. The modulus of the Jacobian kicks in.
- So the bottom line is that we cannot hope to define the integral of a function $f: M \rightarrow \mathbb{R}$. However, taking the $d x^{i}$ seriously as 1 -forms,

Integration of forms

- Ideally, on a manifold, we would like to define the integral of a function $f: M \rightarrow \mathbb{R}$ as $\int f=\sum_{i} \int \rho_{i} f d x^{1} d x^{2} \ldots$ where ρ_{i} are partitions-of-unity.
- The problem is that if we change coordinates, then the integrals change! Heck even in \mathbb{R}^{n}, if f is compactly supported, if we take a smooth diffeo $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, then the integrals will not be the same. The modulus of the Jacobian kicks in.
- So the bottom line is that we cannot hope to define the integral of a function $f: M \rightarrow \mathbb{R}$. However, taking the $d x^{i}$ seriously as 1 -forms, we notice that the Jacobian factor

Integration of forms

- Ideally, on a manifold, we would like to define the integral of a function $f: M \rightarrow \mathbb{R}$ as $\int f=\sum_{i} \int \rho_{i} f d x^{1} d x^{2} \ldots$ where ρ_{i} are partitions-of-unity.
- The problem is that if we change coordinates, then the integrals change! Heck even in \mathbb{R}^{n}, if f is compactly supported, if we take a smooth diffeo $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, then the integrals will not be the same. The modulus of the Jacobian kicks in.
- So the bottom line is that we cannot hope to define the integral of a function $f: M \rightarrow \mathbb{R}$. However, taking the $d x^{i}$ seriously as 1 -forms, we notice that the Jacobian factor is almost exactly how forms change under coordinate changes!

Integration of forms

- Ideally, on a manifold, we would like to define the integral of a function $f: M \rightarrow \mathbb{R}$ as $\int f=\sum_{i} \int \rho_{i} f d x^{1} d x^{2} \ldots$ where ρ_{i} are partitions-of-unity.
- The problem is that if we change coordinates, then the integrals change! Heck even in \mathbb{R}^{n}, if f is compactly supported, if we take a smooth diffeo $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, then the integrals will not be the same. The modulus of the Jacobian kicks in.
- So the bottom line is that we cannot hope to define the integral of a function $f: M \rightarrow \mathbb{R}$. However, taking the $d x^{i}$ seriously as 1 -forms, we notice that the Jacobian factor is almost exactly how forms change under coordinate changes!
- Thus,

Integration of forms

- Ideally, on a manifold, we would like to define the integral of a function $f: M \rightarrow \mathbb{R}$ as $\int f=\sum_{i} \int \rho_{i} f d x^{1} d x^{2} \ldots$ where ρ_{i} are partitions-of-unity.
- The problem is that if we change coordinates, then the integrals change! Heck even in \mathbb{R}^{n}, if f is compactly supported, if we take a smooth diffeo $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, then the integrals will not be the same. The modulus of the Jacobian kicks in.
- So the bottom line is that we cannot hope to define the integral of a function $f: M \rightarrow \mathbb{R}$. However, taking the $d x^{i}$ seriously as 1 -forms, we notice that the Jacobian factor is almost exactly how forms change under coordinate changes!
- Thus, to begin with,

Integration of forms

- Ideally, on a manifold, we would like to define the integral of a function $f: M \rightarrow \mathbb{R}$ as $\int f=\sum_{i} \int \rho_{i} f d x^{1} d x^{2} \ldots$ where ρ_{i} are partitions-of-unity.
- The problem is that if we change coordinates, then the integrals change! Heck even in \mathbb{R}^{n}, if f is compactly supported, if we take a smooth diffeo $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, then the integrals will not be the same. The modulus of the Jacobian kicks in.
- So the bottom line is that we cannot hope to define the integral of a function $f: M \rightarrow \mathbb{R}$. However, taking the $d x^{i}$ seriously as 1 -forms, we notice that the Jacobian factor is almost exactly how forms change under coordinate changes!
- Thus, to begin with, let U be an open subset of

Integration of forms

- Ideally, on a manifold, we would like to define the integral of a function $f: M \rightarrow \mathbb{R}$ as $\int f=\sum_{i} \int \rho_{i} f d x^{1} d x^{2} \ldots$ where ρ_{i} are partitions-of-unity.
- The problem is that if we change coordinates, then the integrals change! Heck even in \mathbb{R}^{n}, if f is compactly supported, if we take a smooth diffeo $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, then the integrals will not be the same. The modulus of the Jacobian kicks in.
- So the bottom line is that we cannot hope to define the integral of a function $f: M \rightarrow \mathbb{R}$. However, taking the $d x^{i}$ seriously as 1 -forms, we notice that the Jacobian factor is almost exactly how forms change under coordinate changes!
- Thus, to begin with, let U be an open subset of \mathbb{R}^{n} or \mathbb{H}^{n}.

Integration of forms

- Ideally, on a manifold, we would like to define the integral of a function $f: M \rightarrow \mathbb{R}$ as $\int f=\sum_{i} \int \rho_{i} f d x^{1} d x^{2} \ldots$ where ρ_{i} are partitions-of-unity.
- The problem is that if we change coordinates, then the integrals change! Heck even in \mathbb{R}^{n}, if f is compactly supported, if we take a smooth diffeo $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, then the integrals will not be the same. The modulus of the Jacobian kicks in.
- So the bottom line is that we cannot hope to define the integral of a function $f: M \rightarrow \mathbb{R}$. However, taking the $d x^{i}$ seriously as 1 -forms, we notice that the Jacobian factor is almost exactly how forms change under coordinate changes!
- Thus, to begin with, let U be an open subset of \mathbb{R}^{n} or \mathbb{H}^{n}. Let $\omega=f d x^{1} \wedge d x^{2} \wedge \ldots$ be an n-form that is

Integration of forms

- Ideally, on a manifold, we would like to define the integral of a function $f: M \rightarrow \mathbb{R}$ as $\int f=\sum_{i} \int \rho_{i} f d x^{1} d x^{2} \ldots$ where ρ_{i} are partitions-of-unity.
- The problem is that if we change coordinates, then the integrals change! Heck even in \mathbb{R}^{n}, if f is compactly supported, if we take a smooth diffeo $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, then the integrals will not be the same. The modulus of the Jacobian kicks in.
- So the bottom line is that we cannot hope to define the integral of a function $f: M \rightarrow \mathbb{R}$. However, taking the $d x^{i}$ seriously as 1 -forms, we notice that the Jacobian factor is almost exactly how forms change under coordinate changes!
- Thus, to begin with, let U be an open subset of \mathbb{R}^{n} or \mathbb{H}^{n}. Let $\omega=f d x^{1} \wedge d x^{2} \wedge \ldots$ be an n-form that is compactly supported on U.

Integration of forms

- Ideally, on a manifold, we would like to define the integral of a function $f: M \rightarrow \mathbb{R}$ as $\int f=\sum_{i} \int \rho_{i} f d x^{1} d x^{2} \ldots$ where ρ_{i} are partitions-of-unity.
- The problem is that if we change coordinates, then the integrals change! Heck even in \mathbb{R}^{n}, if f is compactly supported, if we take a smooth diffeo $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, then the integrals will not be the same. The modulus of the Jacobian kicks in.
- So the bottom line is that we cannot hope to define the integral of a function $f: M \rightarrow \mathbb{R}$. However, taking the $d x^{i}$ seriously as 1 -forms, we notice that the Jacobian factor is almost exactly how forms change under coordinate changes!
- Thus, to begin with, let U be an open subset of \mathbb{R}^{n} or \mathbb{H}^{n}. Let $\omega=f d x^{1} \wedge d x^{2} \wedge \ldots$ be an n-form that is compactly supported on U. We define $\int_{U} \omega:=\int_{U} f d x^{1} d x^{2} \ldots$ (

Integration of forms

- Ideally, on a manifold, we would like to define the integral of a function $f: M \rightarrow \mathbb{R}$ as $\int f=\sum_{i} \int \rho_{i} f d x^{1} d x^{2} \ldots$ where ρ_{i} are partitions-of-unity.
- The problem is that if we change coordinates, then the integrals change! Heck even in \mathbb{R}^{n}, if f is compactly supported, if we take a smooth diffeo $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, then the integrals will not be the same. The modulus of the Jacobian kicks in.
- So the bottom line is that we cannot hope to define the integral of a function $f: M \rightarrow \mathbb{R}$. However, taking the $d x^{i}$ seriously as 1 -forms, we notice that the Jacobian factor is almost exactly how forms change under coordinate changes!
- Thus, to begin with, let U be an open subset of \mathbb{R}^{n} or \mathbb{H}^{n}. Let $\omega=f d x^{1} \wedge d x^{2} \wedge \ldots$ be an n-form that is compactly supported on U. We define $\int_{U} \omega:=\int_{U} f d x^{1} d x^{2} \ldots$ (simply erase the wedges!).

