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Recap

Differential forms bundle.

Exterior derivative and its properties.

Closed and exact forms.
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Integration in Rn

There are two ways to integrate functions of more than one
variable.

Riemann integral: One partitions a rectangle and defines the
upper and lower Riemann sums of bounded functions as in the
one variable case. One can prove that a function is Riemann
integrable iff the set of discontinuities has measure zero. One
can define the Riemann integral over arbitrary domains.
Continuous bounded functions are Riemann integrable if the
boundary has measure zero.

Lebesgue integral: One constructs the Lebesgue measure using
volumes of rectangles. Then one integrates simple functions
and approximates measurable functions by simple ones.

For functions with measure-zero discontinuities, these two
coincide.
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Iterated integrals and Fubini’s theorem

Fubini: Continuous functions on compact rectangles can be
integrated one variable at a time in any order (Iterated
integrals).

Fubini’s theorem provides a way to actually compute integrals.

Example: Integrate f (x , y) = x2 + y2 over x2 + y2 ≤ 1. The
circle has measure zero (why?) Extend f by 0 outside the
circle. Fubini implies that∫
x2+y2≤1(x2 + y2)dA =

∫ 1
−1
∫ √1−x2
−
√
1−x2(x2 + y2)dydx (why?)

Thus it is
∫ 1
−1(2x2

√
1− x2 + 2

3(1− x2)3/2)dx which can be
integrated (how?).
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Volume of parallelopiped

The volume of a parallelopiped Pn whose sides are ~ai is
| det(A)|.
Sketch of proof: The Lebesgue measure is translation
invariant. It is also invariant under orthonormal matrices
(how?). Thus we can assume that ~a1, . . . , ~an−1 span the plane
xn = 0. Pn = {Pn−1 + s~an | 0 ≤ s ≤ 1}. One can (exercise)
“break” off a piece and translate to ensure that
vol(Pn) = vol(Pn−1)an = | det(A)|.
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Change of variables - motivation

Clearly the above integral could have been more easily
evaluated in polar coordinates. But what does dxdy change
to? Morally, it ought to be rdrdθ.

We expect that a “small” rectangle with volume dx1dx2 . . .
under a change of variables y(x) roughly changes to a small
parallelopiped (when viewed in the x-coordinates) with edges
∂~y
∂x i

dx i . In the new coordinates, the volume is simply

dy1dy2 . . .. Thus dy1dy2 . . . = | det
(
∂y i

∂x j

)
|dx1dx2 . . ..

In other words, we expect that∫
f (y)dVy =

∫
f (y(x))| det

(
∂y i

∂x j

)
|dVx .
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Change of variables

Theorem: Let D,E be open bounded domains of integration
in Rk (with boundaries of measure zero). Suppose f : Ē → R
is a bounded continuous function. Let G : D̄ → Ē be a
smooth map that is a diffeo from D to E . Then∫
E fdV =

∫
D f ◦ G |DG |dV .

It turns out that (proof omitted) by an approximation
argument, it is enough to consider the case where f is a
continuous compactly supported function on Rk such that its
support lies in E .
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Comparison with one variable

Before we embark on the proof, in one variable, the theorem
would read as

∫
E f (y)dy =

∫
D f (y(x))|y ′(x)|dx .

The absolute value is puzzling! Let’s look at an example:∫ 1
2 cos(1/x)−dx

x2
=
∫ 1
1/2 cos(y)dy = sin(1)− sin(1/2). The key

point is that the limits are from 2 to 1! If we insist on limits
being from lower numbers to higher numbers, then the
integral is

∫ 2
1 cos(1/x)dx

x2
=
∫ 2
1 cos(1/x)|−1

x2
|dx .

However, if we want to take dy = y ′(x)dx more seriously,
then dy , dx ought to be 1-forms. However, if we want to
define integration only for 1-forms (as opposed to functions),
then we must restrict ourselves to change of variables whose
y ′ is > 0. We shall return to this connection with forms later.
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1 cos(1/x)|−1

x2
|dx .

However, if we want to take dy = y ′(x)dx more seriously,
then dy , dx ought to be 1-forms. However, if we want to
define integration only for 1-forms (as opposed to functions),
then we must restrict ourselves to change of variables whose
y ′ is > 0. We shall return to this connection with forms later.
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Proof of the special case of change of variables

We want to prove the result for some special kinds of change
of variables. Then we want to write any G as a composition
of these special kinds.

Firstly, by Fubini, the theorem is true when G merely
exchanges two coordinates.

Secondly, this theorem is true if we consider primitive
mappings, that is, ones that change at most one coordinate,
i.e., G (x) = (x1, . . . , x i−1, g(x), x i+1, . . .) (why?).

Thirdly, if the theorem is true for P,Q, then if S = P ◦ Q,∫
f (z)dz =

∫
f (P(y))|DP(y)|dy =∫

f (S(x))|DP(Q(x))||DQ(x)|dx =
∫
f (S(x))|DS(x)|dx .

Fourthly, it turns out (proof in Rudin by IFT one variable at a
time) that every T is locally
T (x) = T (a) + B1 ◦ . . .Bk−1Gk−1 ◦ . . .G1(x − a) where Bi

are identity or flips, and Gi are primitive. So if the support of
f lies in a small neighbourhood where this decomposition
holds, we are done. Otherwise use a partition-of-unity.
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Integration of forms

Ideally, on a manifold, we would like to define the integral of a
function f : M → R as

∫
f =

∑
i

∫
ρi fdx

1dx2 . . . where ρi are
partitions-of-unity.

The problem is that if we change coordinates, then the
integrals change! Heck even in Rn, if f is compactly
supported, if we take a smooth diffeo T : Rn → Rn, then the
integrals will not be the same. The modulus of the Jacobian
kicks in.

So the bottom line is that we cannot hope to define the
integral of a function f : M → R. However, taking the dx i

seriously as 1-forms, we notice that the Jacobian factor is
almost exactly how forms change under coordinate changes!

Thus, to begin with, let U be an open subset of Rn or Hn.
Let ω = fdx1 ∧ dx2 ∧ . . . be an n-form that is compactly
supported on U. We define

∫
U ω :=

∫
U fdx1dx2 . . . (simply

erase the wedges!).
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