MA 229/MA 235 - Lecture 10

IISc

Recap

Recap

- Proved existence of partitions of unity.

Recap

- Proved existence of partitions of unity.
- Applications:

Recap

- Proved existence of partitions of unity.
- Applications: Bump functions,
- Proved existence of partitions of unity.
- Applications: Bump functions, Extensions from closed sets,
- Proved existence of partitions of unity.
- Applications: Bump functions, Extensions from closed sets, Smooth exhaustions,
- Proved existence of partitions of unity.
- Applications: Bump functions, Extensions from closed sets, Smooth exhaustions, Level sets.
- Proved existence of partitions of unity.
- Applications: Bump functions, Extensions from closed sets, Smooth exhaustions, Level sets.
- Derivations on \mathbb{R}^{n} and isomorphism using directional derivatives.

Tangent vectors on manifolds

Tangent vectors on manifolds

- Let M be
- Let M be smooth manifold (with or without boundary).
- Let M be smooth manifold (with or without boundary). A linear map $w: \mathcal{C}^{\infty}(M) \rightarrow \mathbb{R}$ is called
- Let M be smooth manifold (with or without boundary). A linear map $w: \mathcal{C}^{\infty}(M) \rightarrow \mathbb{R}$ is called a derivation at p,
- Let M be smooth manifold (with or without boundary). A linear map $w: \mathcal{C}^{\infty}(M) \rightarrow \mathbb{R}$ is called a derivation at p, if $w(f g)=w(f) g(p)+f(p) w(g)$.
- Let M be smooth manifold (with or without boundary). A linear map $w: \mathcal{C}^{\infty}(M) \rightarrow \mathbb{R}$ is called a derivation at p, if $w(f g)=w(f) g(p)+f(p) w(g)$.
- The set of all derivations at p
- Let M be smooth manifold (with or without boundary). A linear map $w: \mathcal{C}^{\infty}(M) \rightarrow \mathbb{R}$ is called a derivation at p, if $w(f g)=w(f) g(p)+f(p) w(g)$.
- The set of all derivations at p can be made into a vector space over \mathbb{R}
- Let M be smooth manifold (with or without boundary). A linear map $w: \mathcal{C}^{\infty}(M) \rightarrow \mathbb{R}$ is called a derivation at p, if $w(f g)=w(f) g(p)+f(p) w(g)$.
- The set of all derivations at p can be made into a vector space over \mathbb{R} and is denoted as $T_{p} M$ (the tangent space at p).
- Let M be smooth manifold (with or without boundary). A linear map $w: \mathcal{C}^{\infty}(M) \rightarrow \mathbb{R}$ is called a derivation at p, if $w(f g)=w(f) g(p)+f(p) w(g)$.
- The set of all derivations at p can be made into a vector space over \mathbb{R} and is denoted as $T_{p} M$ (the tangent space at $p)$. An element of $T_{p} M$ is called

Tangent vectors on manifolds

- Let M be smooth manifold (with or without boundary). A linear map $w: \mathcal{C}^{\infty}(M) \rightarrow \mathbb{R}$ is called a derivation at p, if $w(f g)=w(f) g(p)+f(p) w(g)$.
- The set of all derivations at p can be made into a vector space over \mathbb{R} and is denoted as $T_{p} M$ (the tangent space at p). An element of $T_{p} M$ is called a tangent vector at p.

Tangent vectors on manifolds

- Let M be smooth manifold (with or without boundary). A linear map $w: \mathcal{C}^{\infty}(M) \rightarrow \mathbb{R}$ is called a derivation at p, if $w(f g)=w(f) g(p)+f(p) w(g)$.
- The set of all derivations at p can be made into a vector space over \mathbb{R} and is denoted as $T_{p} M$ (the tangent space at $p)$. An element of $T_{p} M$ is called a tangent vector at p.
- Proposition (how to prove?):

Tangent vectors on manifolds

- Let M be smooth manifold (with or without boundary). A linear map $w: \mathcal{C}^{\infty}(M) \rightarrow \mathbb{R}$ is called a derivation at p, if $w(f g)=w(f) g(p)+f(p) w(g)$.
- The set of all derivations at p can be made into a vector space over \mathbb{R} and is denoted as $T_{p} M$ (the tangent space at p). An element of $T_{p} M$ is called a tangent vector at p.
- Proposition (how to prove?): Suppose $p \in M, v \in T_{p} M$, and $f, g \in \mathcal{C}^{\infty}(M)$.

Tangent vectors on manifolds

- Let M be smooth manifold (with or without boundary). A linear map $w: \mathcal{C}^{\infty}(M) \rightarrow \mathbb{R}$ is called a derivation at p, if $w(f g)=w(f) g(p)+f(p) w(g)$.
- The set of all derivations at p can be made into a vector space over \mathbb{R} and is denoted as $T_{p} M$ (the tangent space at $p)$. An element of $T_{p} M$ is called a tangent vector at p.
- Proposition (how to prove?): Suppose $p \in M, v \in T_{p} M$, and $f, g \in \mathcal{C}^{\infty}(M)$. Then, if f is constant, $v(f)=0$.

Tangent vectors on manifolds

- Let M be smooth manifold (with or without boundary). A linear map $w: \mathcal{C}^{\infty}(M) \rightarrow \mathbb{R}$ is called a derivation at p, if $w(f g)=w(f) g(p)+f(p) w(g)$.
- The set of all derivations at p can be made into a vector space over \mathbb{R} and is denoted as $T_{p} M$ (the tangent space at $p)$. An element of $T_{p} M$ is called a tangent vector at p.
- Proposition (how to prove?): Suppose $p \in M, v \in T_{p} M$, and $f, g \in \mathcal{C}^{\infty}(M)$. Then, if f is constant, $v(f)=0$. Moreover, if $f(p)=g(p)=0$, then $v(f g)=0$.

Pushforward/differential of smooth maps

Pushforward/differential of smooth maps

- We need to connect

Pushforward/differential of smooth maps

- We need to connect $T_{p} M$ to $T_{p} \mathbb{R}^{n}$ using coordinate charts.

Pushforward/differential of smooth maps

- We need to connect $T_{p} M$ to $T_{p} \mathbb{R}^{n}$ using coordinate charts. To this end, we need to know

Pushforward/differential of smooth maps

- We need to connect $T_{p} M$ to $T_{p} \mathbb{R}^{n}$ using coordinate charts. To this end, we need to know how smooth maps change tangent spaces.

Pushforward/differential of smooth maps

- We need to connect $T_{p} M$ to $T_{p} \mathbb{R}^{n}$ using coordinate charts. To this end, we need to know how smooth maps change tangent spaces.
- For maps between \mathbb{R}^{n},

Pushforward/differential of smooth maps

- We need to connect $T_{p} M$ to $T_{p} \mathbb{R}^{n}$ using coordinate charts. To this end, we need to know how smooth maps change tangent spaces.
- For maps between \mathbb{R}^{n}, tangent space changes can be computed
- We need to connect $T_{p} M$ to $T_{p} \mathbb{R}^{n}$ using coordinate charts. To this end, we need to know how smooth maps change tangent spaces.
- For maps between \mathbb{R}^{n}, tangent space changes can be computed using the derivative matrix
- We need to connect $T_{p} M$ to $T_{p} \mathbb{R}^{n}$ using coordinate charts. To this end, we need to know how smooth maps change tangent spaces.
- For maps between \mathbb{R}^{n}, tangent space changes can be computed using the derivative matrix which is a linear map from \mathbb{R}^{n} to itself.
- We need to connect $T_{p} M$ to $T_{p} \mathbb{R}^{n}$ using coordinate charts. To this end, we need to know how smooth maps change tangent spaces.
- For maps between \mathbb{R}^{n}, tangent space changes can be computed using the derivative matrix which is a linear map from \mathbb{R}^{n} to itself. Unfortunately, the notion of
- We need to connect $T_{p} M$ to $T_{p} \mathbb{R}^{n}$ using coordinate charts. To this end, we need to know how smooth maps change tangent spaces.
- For maps between \mathbb{R}^{n}, tangent space changes can be computed using the derivative matrix which is a linear map from \mathbb{R}^{n} to itself. Unfortunately, the notion of a linear map between manifolds makes no sense.
- We need to connect $T_{p} M$ to $T_{p} \mathbb{R}^{n}$ using coordinate charts. To this end, we need to know how smooth maps change tangent spaces.
- For maps between \mathbb{R}^{n}, tangent space changes can be computed using the derivative matrix which is a linear map from \mathbb{R}^{n} to itself. Unfortunately, the notion of a linear map between manifolds makes no sense. The best we can hope for
- We need to connect $T_{p} M$ to $T_{p} \mathbb{R}^{n}$ using coordinate charts. To this end, we need to know how smooth maps change tangent spaces.
- For maps between \mathbb{R}^{n}, tangent space changes can be computed using the derivative matrix which is a linear map from \mathbb{R}^{n} to itself. Unfortunately, the notion of a linear map between manifolds makes no sense. The best we can hope for is a linear map between tangent spaces.
- We need to connect $T_{p} M$ to $T_{p} \mathbb{R}^{n}$ using coordinate charts. To this end, we need to know how smooth maps change tangent spaces.
- For maps between \mathbb{R}^{n}, tangent space changes can be computed using the derivative matrix which is a linear map from \mathbb{R}^{n} to itself. Unfortunately, the notion of a linear map between manifolds makes no sense. The best we can hope for is a linear map between tangent spaces.
- Let M, N be manifolds (with or without boundary),
- We need to connect $T_{p} M$ to $T_{p} \mathbb{R}^{n}$ using coordinate charts. To this end, we need to know how smooth maps change tangent spaces.
- For maps between \mathbb{R}^{n}, tangent space changes can be computed using the derivative matrix which is a linear map from \mathbb{R}^{n} to itself. Unfortunately, the notion of a linear map between manifolds makes no sense. The best we can hope for is a linear map between tangent spaces.
- Let M, N be manifolds (with or without boundary), $F: M \rightarrow N$ be a smooth map.
- We need to connect $T_{p} M$ to $T_{p} \mathbb{R}^{n}$ using coordinate charts. To this end, we need to know how smooth maps change tangent spaces.
- For maps between \mathbb{R}^{n}, tangent space changes can be computed using the derivative matrix which is a linear map from \mathbb{R}^{n} to itself. Unfortunately, the notion of a linear map between manifolds makes no sense. The best we can hope for is a linear map between tangent spaces.
- Let M, N be manifolds (with or without boundary), $F: M \rightarrow N$ be a smooth map. The pushforward/differential $\left(F_{*}\right)_{p}: T_{p} M \rightarrow T_{F(p)} N$ of F at p
- We need to connect $T_{p} M$ to $T_{p} \mathbb{R}^{n}$ using coordinate charts. To this end, we need to know how smooth maps change tangent spaces.
- For maps between \mathbb{R}^{n}, tangent space changes can be computed using the derivative matrix which is a linear map from \mathbb{R}^{n} to itself. Unfortunately, the notion of a linear map between manifolds makes no sense. The best we can hope for is a linear map between tangent spaces.
- Let M, N be manifolds (with or without boundary),
$F: M \rightarrow N$ be a smooth map. The pushforward/differential $\left(F_{*}\right)_{p}: T_{p} M \rightarrow T_{F(p)} N$ of F at p is defined as the derivation $\left(F_{*}\right)_{p}(v)(f)=v(f \circ F)$. (why is it a derivation?)
- We need to connect $T_{p} M$ to $T_{p} \mathbb{R}^{n}$ using coordinate charts. To this end, we need to know how smooth maps change tangent spaces.
- For maps between \mathbb{R}^{n}, tangent space changes can be computed using the derivative matrix which is a linear map from \mathbb{R}^{n} to itself. Unfortunately, the notion of a linear map between manifolds makes no sense. The best we can hope for is a linear map between tangent spaces.
- Let M, N be manifolds (with or without boundary),
$F: M \rightarrow N$ be a smooth map. The pushforward/differential $\left(F_{*}\right)_{p}: T_{p} M \rightarrow T_{F(p)} N$ of F at p is defined as the derivation $\left(F_{*}\right)_{p}(v)(f)=v(f \circ F)$. (why is it a derivation?)
- Properties:
- We need to connect $T_{p} M$ to $T_{p} \mathbb{R}^{n}$ using coordinate charts. To this end, we need to know how smooth maps change tangent spaces.
- For maps between \mathbb{R}^{n}, tangent space changes can be computed using the derivative matrix which is a linear map from \mathbb{R}^{n} to itself. Unfortunately, the notion of a linear map between manifolds makes no sense. The best we can hope for is a linear map between tangent spaces.
- Let M, N be manifolds (with or without boundary),
$F: M \rightarrow N$ be a smooth map. The pushforward/differential $\left(F_{*}\right)_{p}: T_{p} M \rightarrow T_{F(p)} N$ of F at p is defined as the derivation $\left(F_{*}\right)_{p}(v)(f)=v(f \circ F)$. (why is it a derivation?)
- Properties: F_{*} is linear,
- We need to connect $T_{p} M$ to $T_{p} \mathbb{R}^{n}$ using coordinate charts. To this end, we need to know how smooth maps change tangent spaces.
- For maps between \mathbb{R}^{n}, tangent space changes can be computed using the derivative matrix which is a linear map from \mathbb{R}^{n} to itself. Unfortunately, the notion of a linear map between manifolds makes no sense. The best we can hope for is a linear map between tangent spaces.
- Let M, N be manifolds (with or without boundary),
$F: M \rightarrow N$ be a smooth map. The pushforward/differential $\left(F_{*}\right)_{p}: T_{p} M \rightarrow T_{F(p)} N$ of F at p is defined as the derivation $\left(F_{*}\right)_{p}(v)(f)=v(f \circ F)$. (why is it a derivation?)
- Properties: F_{*} is linear, $\left((G \circ F)_{*}\right)_{p}=\left(G_{*}\right)_{F(p)} \circ\left(F_{*}\right)_{p}$,
- We need to connect $T_{p} M$ to $T_{p} \mathbb{R}^{n}$ using coordinate charts. To this end, we need to know how smooth maps change tangent spaces.
- For maps between \mathbb{R}^{n}, tangent space changes can be computed using the derivative matrix which is a linear map from \mathbb{R}^{n} to itself. Unfortunately, the notion of a linear map between manifolds makes no sense. The best we can hope for is a linear map between tangent spaces.
- Let M, N be manifolds (with or without boundary),
$F: M \rightarrow N$ be a smooth map. The pushforward/differential $\left(F_{*}\right)_{p}: T_{p} M \rightarrow T_{F(p)} N$ of F at p is defined as the derivation $\left(F_{*}\right)_{p}(v)(f)=v(f \circ F)$. (why is it a derivation?)
- Properties: F_{*} is linear, $\left((G \circ F)_{*}\right)_{p}=\left(G_{*}\right)_{F(p)} \circ\left(F_{*}\right)_{p}$, $I_{*}=I$,
- We need to connect $T_{p} M$ to $T_{p} \mathbb{R}^{n}$ using coordinate charts. To this end, we need to know how smooth maps change tangent spaces.
- For maps between \mathbb{R}^{n}, tangent space changes can be computed using the derivative matrix which is a linear map from \mathbb{R}^{n} to itself. Unfortunately, the notion of a linear map between manifolds makes no sense. The best we can hope for is a linear map between tangent spaces.
- Let M, N be manifolds (with or without boundary),
$F: M \rightarrow N$ be a smooth map. The pushforward/differential $\left(F_{*}\right)_{p}: T_{p} M \rightarrow T_{F(p)} N$ of F at p is defined as the derivation $\left(F_{*}\right)_{p}(v)(f)=v(f \circ F)$. (why is it a derivation?)
- Properties: F_{*} is linear, $\left((G \circ F)_{*}\right)_{p}=\left(G_{*}\right)_{F(p)} \circ\left(F_{*}\right)_{p}$, $I_{*}=I$, and if F is a diffeo, then
- We need to connect $T_{p} M$ to $T_{p} \mathbb{R}^{n}$ using coordinate charts. To this end, we need to know how smooth maps change tangent spaces.
- For maps between \mathbb{R}^{n}, tangent space changes can be computed using the derivative matrix which is a linear map from \mathbb{R}^{n} to itself. Unfortunately, the notion of a linear map between manifolds makes no sense. The best we can hope for is a linear map between tangent spaces.
- Let M, N be manifolds (with or without boundary),
$F: M \rightarrow N$ be a smooth map. The pushforward/differential $\left(F_{*}\right)_{p}: T_{p} M \rightarrow T_{F(p)} N$ of F at p is defined as the derivation $\left(F_{*}\right)_{p}(v)(f)=v(f \circ F)$. (why is it a derivation?)
- Properties: F_{*} is linear, $\left((G \circ F)_{*}\right)_{p}=\left(G_{*}\right)_{F(p)} \circ\left(F_{*}\right)_{p}$, $I_{*}=I$, and if F is a diffeo, then $\left(F_{*}\right)_{p}^{-1}=\left(\left(F^{-1}\right)_{*}\right)_{F(p)}$.

Some more properties

Some more properties

- Let M be a manifold with or without boundary.

Some more properties

- Let M be a manifold with or without boundary.
- Locality:

Some more properties

- Let M be a manifold with or without boundary.
- Locality: Suppose $v \in T_{p} M$.

Some more properties

- Let M be a manifold with or without boundary.
- Locality: Suppose $v \in T_{p} M$. If $f, g \in \mathcal{C}^{\infty}(M)$ agree on a neighbourhood U of p,

Some more properties

- Let M be a manifold with or without boundary.
- Locality: Suppose $v \in T_{p} M$. If $f, g \in \mathcal{C}^{\infty}(M)$ agree on a neighbourhood U of p, then $v(f)=v(g)$.

Some more properties

- Let M be a manifold with or without boundary.
- Locality: Suppose $v \in T_{p} M$. If $f, g \in \mathcal{C}^{\infty}(M)$ agree on a neighbourhood U of p, then $v(f)=v(g)$.
- Proof:

Some more properties

- Let M be a manifold with or without boundary.
- Locality: Suppose $v \in T_{p} M$. If $f, g \in \mathcal{C}^{\infty}(M)$ agree on a neighbourhood U of p, then $v(f)=v(g)$.
- Proof: Let $\rho: M \rightarrow \mathbb{R}$ be a bump

Some more properties

- Let M be a manifold with or without boundary.
- Locality: Suppose $v \in T_{p} M$. If $f, g \in \mathcal{C}^{\infty}(M)$ agree on a neighbourhood U of p, then $v(f)=v(g)$.
- Proof: Let $\rho: M \rightarrow \mathbb{R}$ be a bump such that $\rho=1$ on $V \subset U$ and $\operatorname{supp}(\rho) \subset U$.

Some more properties

- Let M be a manifold with or without boundary.
- Locality: Suppose $v \in T_{p} M$. If $f, g \in \mathcal{C}^{\infty}(M)$ agree on a neighbourhood U of p, then $v(f)=v(g)$.
- Proof: Let $\rho: M \rightarrow \mathbb{R}$ be a bump such that $\rho=1$ on $V \subset U$ and $\operatorname{supp}(\rho) \subset U$. Then $\rho(f-g)=0$ on M.

Some more properties

- Let M be a manifold with or without boundary.
- Locality: Suppose $v \in T_{p} M$. If $f, g \in \mathcal{C}^{\infty}(M)$ agree on a neighbourhood U of p, then $v(f)=v(g)$.
- Proof: Let $\rho: M \rightarrow \mathbb{R}$ be a bump such that $\rho=1$ on $V \subset U$ and $\operatorname{supp}(\rho) \subset U$. Then $\rho(f-g)=0$ on M. Now $0=v(\rho(f-g))=0+\rho(p) v(f-g)=v(f-g)$.

Some more properties

- Let M be a manifold with or without boundary.
- Locality: Suppose $v \in T_{p} M$. If $f, g \in \mathcal{C}^{\infty}(M)$ agree on a neighbourhood U of p, then $v(f)=v(g)$.
- Proof: Let $\rho: M \rightarrow \mathbb{R}$ be a bump such that $\rho=1$ on $V \subset U$ and $\operatorname{supp}(\rho) \subset U$. Then $\rho(f-g)=0$ on M. Now $0=v(\rho(f-g))=0+\rho(p) v(f-g)=v(f-g)$.
- Identification for open submanifolds:

Some more properties

- Let M be a manifold with or without boundary.
- Locality: Suppose $v \in T_{p} M$. If $f, g \in \mathcal{C}^{\infty}(M)$ agree on a neighbourhood U of p, then $v(f)=v(g)$.
- Proof: Let $\rho: M \rightarrow \mathbb{R}$ be a bump such that $\rho=1$ on $V \subset U$ and $\operatorname{supp}(\rho) \subset U$. Then $\rho(f-g)=0$ on M. Now $0=v(\rho(f-g))=0+\rho(p) v(f-g)=v(f-g)$.
- Identification for open submanifolds: Let $U \subset M$ be an open subset.

Some more properties

- Let M be a manifold with or without boundary.
- Locality: Suppose $v \in T_{p} M$. If $f, g \in \mathcal{C}^{\infty}(M)$ agree on a neighbourhood U of p, then $v(f)=v(g)$.
- Proof: Let $\rho: M \rightarrow \mathbb{R}$ be a bump such that $\rho=1$ on $V \subset U$ and $\operatorname{supp}(\rho) \subset U$. Then $\rho(f-g)=0$ on M. Now $0=v(\rho(f-g))=0+\rho(p) v(f-g)=v(f-g)$.
- Identification for open submanifolds: Let $U \subset M$ be an open subset. Then $\left(i_{*}\right)_{p}: T_{p} U \rightarrow T_{p} M$ is an isomorphism for all $p \in U$.

Some more properties

- Let M be a manifold with or without boundary.
- Locality: Suppose $v \in T_{p} M$. If $f, g \in \mathcal{C}^{\infty}(M)$ agree on a neighbourhood U of p, then $v(f)=v(g)$.
- Proof: Let $\rho: M \rightarrow \mathbb{R}$ be a bump such that $\rho=1$ on $V \subset U$ and $\operatorname{supp}(\rho) \subset U$. Then $\rho(f-g)=0$ on M. Now $0=v(\rho(f-g))=0+\rho(p) v(f-g)=v(f-g)$.
- Identification for open submanifolds: Let $U \subset M$ be an open subset. Then $\left(i_{*}\right)_{p}: T_{p} U \rightarrow T_{p} M$ is an isomorphism for all $p \in U$.
- Proof:

Some more properties

- Let M be a manifold with or without boundary.
- Locality: Suppose $v \in T_{p} M$. If $f, g \in \mathcal{C}^{\infty}(M)$ agree on a neighbourhood U of p, then $v(f)=v(g)$.
- Proof: Let $\rho: M \rightarrow \mathbb{R}$ be a bump such that $\rho=1$ on $V \subset U$ and $\operatorname{supp}(\rho) \subset U$. Then $\rho(f-g)=0$ on M. Now $0=v(\rho(f-g))=0+\rho(p) v(f-g)=v(f-g)$.
- Identification for open submanifolds: Let $U \subset M$ be an open subset. Then $\left(i_{*}\right)_{p}: T_{p} U \rightarrow T_{p} M$ is an isomorphism for all $p \in U$.
- Proof: 1-1: If $\left(i_{*}\right)_{p}(v)=0$, then

Some more properties

- Let M be a manifold with or without boundary.
- Locality: Suppose $v \in T_{p} M$. If $f, g \in \mathcal{C}^{\infty}(M)$ agree on a neighbourhood U of p, then $v(f)=v(g)$.
- Proof: Let $\rho: M \rightarrow \mathbb{R}$ be a bump such that $\rho=1$ on $V \subset U$ and $\operatorname{supp}(\rho) \subset U$. Then $\rho(f-g)=0$ on M. Now $0=v(\rho(f-g))=0+\rho(p) v(f-g)=v(f-g)$.
- Identification for open submanifolds: Let $U \subset M$ be an open subset. Then $\left(i_{*}\right)_{p}: T_{p} U \rightarrow T_{p} M$ is an isomorphism for all $p \in U$.
- Proof: 1-1: If $\left(i_{*}\right)_{p}(v)=0$, then whenever $f \in C^{\infty}(M)$, and

Some more properties

- Let M be a manifold with or without boundary.
- Locality: Suppose $v \in T_{p} M$. If $f, g \in \mathcal{C}^{\infty}(M)$ agree on a neighbourhood U of p, then $v(f)=v(g)$.
- Proof: Let $\rho: M \rightarrow \mathbb{R}$ be a bump such that $\rho=1$ on $V \subset U$ and $\operatorname{supp}(\rho) \subset U$. Then $\rho(f-g)=0$ on M. Now $0=v(\rho(f-g))=0+\rho(p) v(f-g)=v(f-g)$.
- Identification for open submanifolds: Let $U \subset M$ be an open subset. Then $\left(i_{*}\right)_{p}: T_{p} U \rightarrow T_{p} M$ is an isomorphism for all $p \in U$.
- Proof: 1-1: If $\left(i_{*}\right)_{p}(v)=0$, then whenever $f \in C^{\infty}(M)$, and $v\left(f \|_{u}\right)=0$, then

Some more properties

- Let M be a manifold with or without boundary.
- Locality: Suppose $v \in T_{p} M$. If $f, g \in \mathcal{C}^{\infty}(M)$ agree on a neighbourhood U of p, then $v(f)=v(g)$.
- Proof: Let $\rho: M \rightarrow \mathbb{R}$ be a bump such that $\rho=1$ on $V \subset U$ and $\operatorname{supp}(\rho) \subset U$. Then $\rho(f-g)=0$ on M. Now $0=v(\rho(f-g))=0+\rho(p) v(f-g)=v(f-g)$.
- Identification for open submanifolds: Let $U \subset M$ be an open subset. Then $\left(i_{*}\right)_{p}: T_{p} U \rightarrow T_{p} M$ is an isomorphism for all $p \in U$.
- Proof: 1-1: If $\left(i_{*}\right)_{p}(v)=0$, then whenever $f \in C^{\infty}(M)$, and $v\left(f \|_{U}\right)=0$, then suppose $g \in C^{\infty}(U)$.

Some more properties

- Let M be a manifold with or without boundary.
- Locality: Suppose $v \in T_{p} M$. If $f, g \in \mathcal{C}^{\infty}(M)$ agree on a neighbourhood U of p, then $v(f)=v(g)$.
- Proof: Let $\rho: M \rightarrow \mathbb{R}$ be a bump such that $\rho=1$ on $V \subset U$ and $\operatorname{supp}(\rho) \subset U$. Then $\rho(f-g)=0$ on M. Now $0=v(\rho(f-g))=0+\rho(p) v(f-g)=v(f-g)$.
- Identification for open submanifolds: Let $U \subset M$ be an open subset. Then $\left(i_{*}\right)_{p}: T_{p} U \rightarrow T_{p} M$ is an isomorphism for all $p \in U$.
- Proof: 1-1: If $\left(i_{*}\right)_{p}(v)=0$, then whenever $f \in C^{\infty}(M)$, and $v\left(f \|_{U}\right)=0$, then suppose $g \in C^{\infty}(U)$. Let $\rho: M \rightarrow \mathbb{R}$ be a bump function equal to 1 in a neighbourhood of p and

Some more properties

- Let M be a manifold with or without boundary.
- Locality: Suppose $v \in T_{p} M$. If $f, g \in \mathcal{C}^{\infty}(M)$ agree on a neighbourhood U of p, then $v(f)=v(g)$.
- Proof: Let $\rho: M \rightarrow \mathbb{R}$ be a bump such that $\rho=1$ on $V \subset U$ and $\operatorname{supp}(\rho) \subset U$. Then $\rho(f-g)=0$ on M. Now $0=v(\rho(f-g))=0+\rho(p) v(f-g)=v(f-g)$.
- Identification for open submanifolds: Let $U \subset M$ be an open subset. Then $\left(i_{*}\right)_{p}: T_{p} U \rightarrow T_{p} M$ is an isomorphism for all $p \in U$.
- Proof: 1-1: If $\left(i_{*}\right)_{p}(v)=0$, then whenever $f \in C^{\infty}(M)$, and $v\left(f \|_{U}\right)=0$, then suppose $g \in C^{\infty}(U)$. Let $\rho: M \rightarrow \mathbb{R}$ be a bump function equal to 1 in a neighbourhood of p and $\operatorname{supp}(\rho) \subset U$.

Some more properties

- Let M be a manifold with or without boundary.
- Locality: Suppose $v \in T_{p} M$. If $f, g \in \mathcal{C}^{\infty}(M)$ agree on a neighbourhood U of p, then $v(f)=v(g)$.
- Proof: Let $\rho: M \rightarrow \mathbb{R}$ be a bump such that $\rho=1$ on $V \subset U$ and $\operatorname{supp}(\rho) \subset U$. Then $\rho(f-g)=0$ on M. Now $0=v(\rho(f-g))=0+\rho(p) v(f-g)=v(f-g)$.
- Identification for open submanifolds: Let $U \subset M$ be an open subset. Then $\left(i_{*}\right)_{p}: T_{p} U \rightarrow T_{p} M$ is an isomorphism for all $p \in U$.
- Proof: 1-1: If $\left(i_{*}\right)_{p}(v)=0$, then whenever $f \in C^{\infty}(M)$, and $v\left(f \|_{U}\right)=0$, then suppose $g \in C^{\infty}(U)$. Let $\rho: M \rightarrow \mathbb{R}$ be a bump function equal to 1 in a neighbourhood of p and $\operatorname{supp}(\rho) \subset U$. Thus $\rho g: M \rightarrow \mathbb{R}$ agrees with f in a neighbourhood of p.
- Let M be a manifold with or without boundary.
- Locality: Suppose $v \in T_{p} M$. If $f, g \in \mathcal{C}^{\infty}(M)$ agree on a neighbourhood U of p, then $v(f)=v(g)$.
- Proof: Let $\rho: M \rightarrow \mathbb{R}$ be a bump such that $\rho=1$ on $V \subset U$ and $\operatorname{supp}(\rho) \subset U$. Then $\rho(f-g)=0$ on M. Now $0=v(\rho(f-g))=0+\rho(p) v(f-g)=v(f-g)$.
- Identification for open submanifolds: Let $U \subset M$ be an open subset. Then $\left(i_{*}\right)_{p}: T_{p} U \rightarrow T_{p} M$ is an isomorphism for all $p \in U$.
- Proof: 1-1: If $\left(i_{*}\right)_{p}(v)=0$, then whenever $f \in C^{\infty}(M)$, and $v\left(f \|_{U}\right)=0$, then suppose $g \in C^{\infty}(U)$. Let $\rho: M \rightarrow \mathbb{R}$ be a bump function equal to 1 in a neighbourhood of p and $\operatorname{supp}(\rho) \subset U$. Thus $\rho g: M \rightarrow \mathbb{R}$ agrees with f in a neighbourhood of p. Hence $v(\rho g)=0=v(g)$ because ρg agrees with g in a neighbourhood of p.
- Let M be a manifold with or without boundary.
- Locality: Suppose $v \in T_{p} M$. If $f, g \in \mathcal{C}^{\infty}(M)$ agree on a neighbourhood U of p, then $v(f)=v(g)$.
- Proof: Let $\rho: M \rightarrow \mathbb{R}$ be a bump such that $\rho=1$ on $V \subset U$ and $\operatorname{supp}(\rho) \subset U$. Then $\rho(f-g)=0$ on M. Now $0=v(\rho(f-g))=0+\rho(p) v(f-g)=v(f-g)$.
- Identification for open submanifolds: Let $U \subset M$ be an open subset. Then $\left(i_{*}\right)_{p}: T_{p} U \rightarrow T_{p} M$ is an isomorphism for all $p \in U$.
- Proof: 1-1: If $\left(i_{*}\right)_{p}(v)=0$, then whenever $f \in C^{\infty}(M)$, and $v\left(f \|_{U}\right)=0$, then suppose $g \in C^{\infty}(U)$. Let $\rho: M \rightarrow \mathbb{R}$ be a bump function equal to 1 in a neighbourhood of p and $\operatorname{supp}(\rho) \subset U$. Thus $\rho g: M \rightarrow \mathbb{R}$ agrees with f in a neighbourhood of p. Hence $v(\rho g)=0=v(g)$ because ρg agrees with g in a neighbourhood of p. Thus $v=0$.

Some more properties

Some more properties

- Onto:

Some more properties

- Onto: Let $w \in T_{p} M$. Given $f \in C^{\infty}(U)$,

Some more properties

- Onto: Let $w \in T_{p} M$. Given $f \in C^{\infty}(U)$, define $v(f)=w(\rho f)$.

Some more properties

- Onto: Let $w \in T_{p} M$. Given $f \in C^{\infty}(U)$, define $v(f)=w(\rho f)$. We claim that $w\left(\rho_{1} f\right)=w\left(\rho_{2} f\right)$ if ρ_{1}, ρ_{2} are two bump functions around p.

Some more properties

- Onto: Let $w \in T_{p} M$. Given $f \in C^{\infty}(U)$, define $v(f)=w(\rho f)$. We claim that $w\left(\rho_{1} f\right)=w\left(\rho_{2} f\right)$ if ρ_{1}, ρ_{2} are two bump functions around p. Indeed, $w\left(\left(\rho_{1}-\rho_{2}\right) f\right)=0$ because $\left(\rho_{1}-\rho_{2}\right) f$

Some more properties

- Onto: Let $w \in T_{p} M$. Given $f \in C^{\infty}(U)$, define $v(f)=w(\rho f)$. We claim that $w\left(\rho_{1} f\right)=w\left(\rho_{2} f\right)$ if ρ_{1}, ρ_{2} are two bump functions around p. Indeed, $w\left(\left(\rho_{1}-\rho_{2}\right) f\right)=0$ because $\left(\rho_{1}-\rho_{2}\right) f$ agrees with the constant function zero in a neighbourhood of p.

Some more properties

- Onto: Let $w \in T_{p} M$. Given $f \in C^{\infty}(U)$, define $v(f)=w(\rho f)$. We claim that $w\left(\rho_{1} f\right)=w\left(\rho_{2} f\right)$ if ρ_{1}, ρ_{2} are two bump functions around p. Indeed, $w\left(\left(\rho_{1}-\rho_{2}\right) f\right)=0$ because $\left(\rho_{1}-\rho_{2}\right) f$ agrees with the constant function zero in a neighbourhood of p. Thus,

$$
v(f g)=w(\rho f g)=w\left(\rho^{2} f g\right)=w(\rho f) g(p)+w(\rho g) f(p)
$$

Some more properties

- Onto: Let $w \in T_{p} M$. Given $f \in C^{\infty}(U)$, define $v(f)=w(\rho f)$. We claim that $w\left(\rho_{1} f\right)=w\left(\rho_{2} f\right)$ if ρ_{1}, ρ_{2} are two bump functions around p. Indeed, $w\left(\left(\rho_{1}-\rho_{2}\right) f\right)=0$ because $\left(\rho_{1}-\rho_{2}\right) f$ agrees with the constant function zero in a neighbourhood of p. Thus, $v(f g)=w(\rho f g)=w\left(\rho^{2} f g\right)=w(\rho f) g(p)+w(\rho g) f(p)$. Thus $v \in T_{p} U$ and

Some more properties

- Onto: Let $w \in T_{p} M$. Given $f \in C^{\infty}(U)$, define $v(f)=w(\rho f)$. We claim that $w\left(\rho_{1} f\right)=w\left(\rho_{2} f\right)$ if ρ_{1}, ρ_{2} are two bump functions around p. Indeed, $w\left(\left(\rho_{1}-\rho_{2}\right) f\right)=0$ because $\left(\rho_{1}-\rho_{2}\right) f$ agrees with the constant function zero in a neighbourhood of p. Thus,

$$
\begin{aligned}
& v(f g)=w(\rho f g)=w\left(\rho^{2} f g\right)=w(\rho f) g(p)+w(\rho g) f(p) . \text { Thus } \\
& v \in T_{p} U \text { and } i_{*}(v)(f)=v\left(\left.f\right|_{U}\right)=w\left(\left.\rho f\right|_{U}\right)=w(\rho f) .
\end{aligned}
$$

Some more properties

- Onto: Let $w \in T_{p} M$. Given $f \in C^{\infty}(U)$, define $v(f)=w(\rho f)$. We claim that $w\left(\rho_{1} f\right)=w\left(\rho_{2} f\right)$ if ρ_{1}, ρ_{2} are two bump functions around p. Indeed, $w\left(\left(\rho_{1}-\rho_{2}\right) f\right)=0$ because $\left(\rho_{1}-\rho_{2}\right) f$ agrees with the constant function zero in a neighbourhood of p. Thus,

$$
\begin{aligned}
& v(f g)=w(\rho f g)=w\left(\rho^{2} f g\right)=w(\rho f) g(p)+w(\rho g) f(p) . \text { Thus } \\
& v \in T_{p} U \text { and } i_{*}(v)(f)=v\left(\left.f\right|_{U}\right)=w\left(\left.\rho f\right|_{U}\right)=w(\rho f) .
\end{aligned}
$$

- Since this isomorphism is

Some more properties

- Onto: Let $w \in T_{p} M$. Given $f \in C^{\infty}(U)$, define $v(f)=w(\rho f)$. We claim that $w\left(\rho_{1} f\right)=w\left(\rho_{2} f\right)$ if ρ_{1}, ρ_{2} are two bump functions around p. Indeed, $w\left(\left(\rho_{1}-\rho_{2}\right) f\right)=0$ because $\left(\rho_{1}-\rho_{2}\right) f$ agrees with the constant function zero in a neighbourhood of p. Thus,

$$
\begin{aligned}
& v(f g)=w(\rho f g)=w\left(\rho^{2} f g\right)=w(\rho f) g(p)+w(\rho g) f(p) . \text { Thus } \\
& v \in T_{p} U \text { and } i_{*}(v)(f)=v\left(\left.f\right|_{U}\right)=w\left(\left.\rho f\right|_{U}\right)=w(\rho f) .
\end{aligned}
$$

- Since this isomorphism is independent of choices,

Some more properties

- Onto: Let $w \in T_{p} M$. Given $f \in C^{\infty}(U)$, define $v(f)=w(\rho f)$. We claim that $w\left(\rho_{1} f\right)=w\left(\rho_{2} f\right)$ if ρ_{1}, ρ_{2} are two bump functions around p. Indeed, $w\left(\left(\rho_{1}-\rho_{2}\right) f\right)=0$ because $\left(\rho_{1}-\rho_{2}\right) f$ agrees with the constant function zero in a neighbourhood of p. Thus, $v(f g)=w(\rho f g)=w\left(\rho^{2} f g\right)=w(\rho f) g(p)+w(\rho g) f(p)$. Thus $v \in T_{p} U$ and $i_{*}(v)(f)=v\left(\left.f\right|_{U}\right)=w\left(\left.\rho f\right|_{U}\right)=w(\rho f)$.
- Since this isomorphism is independent of choices, we abuse notation and

Some more properties

- Onto: Let $w \in T_{p} M$. Given $f \in C^{\infty}(U)$, define $v(f)=w(\rho f)$. We claim that $w\left(\rho_{1} f\right)=w\left(\rho_{2} f\right)$ if ρ_{1}, ρ_{2} are two bump functions around p. Indeed, $w\left(\left(\rho_{1}-\rho_{2}\right) f\right)=0$ because $\left(\rho_{1}-\rho_{2}\right) f$ agrees with the constant function zero in a neighbourhood of p. Thus, $v(f g)=w(\rho f g)=w\left(\rho^{2} f g\right)=w(\rho f) g(p)+w(\rho g) f(p)$. Thus $v \in T_{p} U$ and $i_{*}(v)(f)=v\left(\left.f\right|_{U}\right)=w\left(\left.\rho f\right|_{U}\right)=w(\rho f)$.
- Since this isomorphism is independent of choices, we abuse notation and identify $T_{p} U$ with $T_{p} M$ without mentioning the same.

Some more properties

- Onto: Let $w \in T_{p} M$. Given $f \in C^{\infty}(U)$, define $v(f)=w(\rho f)$. We claim that $w\left(\rho_{1} f\right)=w\left(\rho_{2} f\right)$ if ρ_{1}, ρ_{2} are two bump functions around p. Indeed, $w\left(\left(\rho_{1}-\rho_{2}\right) f\right)=0$ because $\left(\rho_{1}-\rho_{2}\right) f$ agrees with the constant function zero in a neighbourhood of p. Thus, $v(f g)=w(\rho f g)=w\left(\rho^{2} f g\right)=w(\rho f) g(p)+w(\rho g) f(p)$. Thus $v \in T_{p} U$ and $i_{*}(v)(f)=v\left(\left.f\right|_{U}\right)=w\left(\left.\rho f\right|_{U}\right)=w(\rho f)$.
- Since this isomorphism is independent of choices, we abuse notation and identify $T_{p} U$ with $T_{p} M$ without mentioning the same.
- Dimension:

Some more properties

- Onto: Let $w \in T_{p} M$. Given $f \in C^{\infty}(U)$, define $v(f)=w(\rho f)$. We claim that $w\left(\rho_{1} f\right)=w\left(\rho_{2} f\right)$ if ρ_{1}, ρ_{2} are two bump functions around p. Indeed, $w\left(\left(\rho_{1}-\rho_{2}\right) f\right)=0$ because $\left(\rho_{1}-\rho_{2}\right) f$ agrees with the constant function zero in a neighbourhood of p. Thus, $v(f g)=w(\rho f g)=w\left(\rho^{2} f g\right)=w(\rho f) g(p)+w(\rho g) f(p)$. Thus $v \in T_{p} U$ and $i_{*}(v)(f)=v\left(\left.f\right|_{U}\right)=w\left(\left.\rho f\right|_{U}\right)=w(\rho f)$.
- Since this isomorphism is independent of choices, we abuse notation and identify $T_{p} U$ with $T_{p} M$ without mentioning the same.
- Dimension: If M is an n-dimensional manifold (without boundary), then

Some more properties

- Onto: Let $w \in T_{p} M$. Given $f \in C^{\infty}(U)$, define $v(f)=w(\rho f)$. We claim that $w\left(\rho_{1} f\right)=w\left(\rho_{2} f\right)$ if ρ_{1}, ρ_{2} are two bump functions around p. Indeed, $w\left(\left(\rho_{1}-\rho_{2}\right) f\right)=0$ because $\left(\rho_{1}-\rho_{2}\right) f$ agrees with the constant function zero in a neighbourhood of p. Thus, $v(f g)=w(\rho f g)=w\left(\rho^{2} f g\right)=w(\rho f) g(p)+w(\rho g) f(p)$. Thus $v \in T_{p} U$ and $i_{*}(v)(f)=v\left(\left.f\right|_{U}\right)=w\left(\left.\rho f\right|_{U}\right)=w(\rho f)$.
- Since this isomorphism is independent of choices, we abuse notation and identify $T_{p} U$ with $T_{p} M$ without mentioning the same.
- Dimension: If M is an n-dimensional manifold (without boundary), then $T_{p} M$ is n-dimensional. (

Some more properties

- Onto: Let $w \in T_{p} M$. Given $f \in C^{\infty}(U)$, define $v(f)=w(\rho f)$. We claim that $w\left(\rho_{1} f\right)=w\left(\rho_{2} f\right)$ if ρ_{1}, ρ_{2} are two bump functions around p. Indeed, $w\left(\left(\rho_{1}-\rho_{2}\right) f\right)=0$ because $\left(\rho_{1}-\rho_{2}\right) f$ agrees with the constant function zero in a neighbourhood of p. Thus, $v(f g)=w(\rho f g)=w\left(\rho^{2} f g\right)=w(\rho f) g(p)+w(\rho g) f(p)$. Thus $v \in T_{p} U$ and $i_{*}(v)(f)=v\left(\left.f\right|_{U}\right)=w\left(\left.\rho f\right|_{U}\right)=w(\rho f)$.
- Since this isomorphism is independent of choices, we abuse notation and identify $T_{p} U$ with $T_{p} M$ without mentioning the same.
- Dimension: If M is an n-dimensional manifold (without boundary), then $T_{p} M$ is n-dimensional. (This is applicable

Some more properties

- Onto: Let $w \in T_{p} M$. Given $f \in C^{\infty}(U)$, define $v(f)=w(\rho f)$. We claim that $w\left(\rho_{1} f\right)=w\left(\rho_{2} f\right)$ if ρ_{1}, ρ_{2} are two bump functions around p. Indeed, $w\left(\left(\rho_{1}-\rho_{2}\right) f\right)=0$ because $\left(\rho_{1}-\rho_{2}\right) f$ agrees with the constant function zero in a neighbourhood of p. Thus, $v(f g)=w(\rho f g)=w\left(\rho^{2} f g\right)=w(\rho f) g(p)+w(\rho g) f(p)$. Thus $v \in T_{p} U$ and $i_{*}(v)(f)=v\left(\left.f\right|_{U}\right)=w\left(\left.\rho f\right|_{U}\right)=w(\rho f)$.
- Since this isomorphism is independent of choices, we abuse notation and identify $T_{p} U$ with $T_{p} M$ without mentioning the same.
- Dimension: If M is an n-dimensional manifold (without boundary), then $T_{p} M$ is n-dimensional. (This is applicable even to interior points

Some more properties

- Onto: Let $w \in T_{p} M$. Given $f \in C^{\infty}(U)$, define $v(f)=w(\rho f)$. We claim that $w\left(\rho_{1} f\right)=w\left(\rho_{2} f\right)$ if ρ_{1}, ρ_{2} are two bump functions around p. Indeed, $w\left(\left(\rho_{1}-\rho_{2}\right) f\right)=0$ because $\left(\rho_{1}-\rho_{2}\right) f$ agrees with the constant function zero in a neighbourhood of p. Thus, $v(f g)=w(\rho f g)=w\left(\rho^{2} f g\right)=w(\rho f) g(p)+w(\rho g) f(p)$. Thus $v \in T_{p} U$ and $i_{*}(v)(f)=v\left(\left.f\right|_{U}\right)=w\left(\left.\rho f\right|_{U}\right)=w(\rho f)$.
- Since this isomorphism is independent of choices, we abuse notation and identify $T_{p} U$ with $T_{p} M$ without mentioning the same.
- Dimension: If M is an n-dimensional manifold (without boundary), then $T_{p} M$ is n-dimensional. (This is applicable even to interior points on manifolds-with-boundary.)

Some more properties

- Onto: Let $w \in T_{p} M$. Given $f \in C^{\infty}(U)$, define $v(f)=w(\rho f)$. We claim that $w\left(\rho_{1} f\right)=w\left(\rho_{2} f\right)$ if ρ_{1}, ρ_{2} are two bump functions around p. Indeed, $w\left(\left(\rho_{1}-\rho_{2}\right) f\right)=0$ because $\left(\rho_{1}-\rho_{2}\right) f$ agrees with the constant function zero in a neighbourhood of p. Thus, $v(f g)=w(\rho f g)=w\left(\rho^{2} f g\right)=w(\rho f) g(p)+w(\rho g) f(p)$. Thus $v \in T_{p} U$ and $i_{*}(v)(f)=v\left(\left.f\right|_{U}\right)=w\left(\left.\rho f\right|_{U}\right)=w(\rho f)$.
- Since this isomorphism is independent of choices, we abuse notation and identify $T_{p} U$ with $T_{p} M$ without mentioning the same.
- Dimension: If M is an n-dimensional manifold (without boundary), then $T_{p} M$ is n-dimensional. (This is applicable even to interior points on manifolds-with-boundary.)
- Proof:

Some more properties

- Onto: Let $w \in T_{p} M$. Given $f \in C^{\infty}(U)$, define $v(f)=w(\rho f)$. We claim that $w\left(\rho_{1} f\right)=w\left(\rho_{2} f\right)$ if ρ_{1}, ρ_{2} are two bump functions around p. Indeed, $w\left(\left(\rho_{1}-\rho_{2}\right) f\right)=0$ because $\left(\rho_{1}-\rho_{2}\right) f$ agrees with the constant function zero in a neighbourhood of p. Thus, $v(f g)=w(\rho f g)=w\left(\rho^{2} f g\right)=w(\rho f) g(p)+w(\rho g) f(p)$. Thus $v \in T_{p} U$ and $i_{*}(v)(f)=v\left(\left.f\right|_{U}\right)=w\left(\left.\rho f\right|_{U}\right)=w(\rho f)$.
- Since this isomorphism is independent of choices, we abuse notation and identify $T_{p} U$ with $T_{p} M$ without mentioning the same.
- Dimension: If M is an n-dimensional manifold (without boundary), then $T_{p} M$ is n-dimensional. (This is applicable even to interior points on manifolds-with-boundary.)
- Proof:Let (ϕ, U) be a coordinate chart around p.

Some more properties

- Onto: Let $w \in T_{p} M$. Given $f \in C^{\infty}(U)$, define $v(f)=w(\rho f)$. We claim that $w\left(\rho_{1} f\right)=w\left(\rho_{2} f\right)$ if ρ_{1}, ρ_{2} are two bump functions around p. Indeed, $w\left(\left(\rho_{1}-\rho_{2}\right) f\right)=0$ because $\left(\rho_{1}-\rho_{2}\right) f$ agrees with the constant function zero in a neighbourhood of p. Thus, $v(f g)=w(\rho f g)=w\left(\rho^{2} f g\right)=w(\rho f) g(p)+w(\rho g) f(p)$. Thus $v \in T_{p} U$ and $i_{*}(v)(f)=v\left(\left.f\right|_{U}\right)=w\left(\left.\rho f\right|_{U}\right)=w(\rho f)$.
- Since this isomorphism is independent of choices, we abuse notation and identify $T_{p} U$ with $T_{p} M$ without mentioning the same.
- Dimension: If M is an n-dimensional manifold (without boundary), then $T_{p} M$ is n-dimensional. (This is applicable even to interior points on manifolds-with-boundary.)
- Proof:Let (ϕ, U) be a coordinate chart around p. Then $\left(\phi_{*}\right)_{p}: T_{p} U=T_{p} M \rightarrow T_{\phi(p)}(\phi(U))=T_{\phi(p)} \mathbb{R}^{n}=\mathbb{R}^{n}$ is an isomorphism.

Manifolds-with-boundary

Manifolds-with-boundary

- Unfortunately,

Manifolds-with-boundary

- Unfortunately, this theorem cannot be directly applied

Manifolds-with-boundary

- Unfortunately, this theorem cannot be directly applied to the boundary points on manifolds-with-boundary. (

Manifolds-with-boundary

- Unfortunately, this theorem cannot be directly applied to the boundary points on manifolds-with-boundary. (Because \mathbb{H}^{n} is not an open subset of \mathbb{R}^{n}.)

Manifolds-with-boundary

- Unfortunately, this theorem cannot be directly applied to the boundary points on manifolds-with-boundary. (Because \mathbb{H}^{n} is not an open subset of \mathbb{R}^{n}.) So what is the dimension of $T_{p} M$ for a boundary point?

Manifolds-with-boundary

- Unfortunately, this theorem cannot be directly applied to the boundary points on manifolds-with-boundary. (Because \mathbb{H}^{n} is not an open subset of \mathbb{R}^{n}.) So what is the dimension of $T_{p} M$ for a boundary point? Is it n or $n-1$? (

Manifolds-with-boundary

- Unfortunately, this theorem cannot be directly applied to the boundary points on manifolds-with-boundary. (Because \mathbb{H}^{n} is not an open subset of \mathbb{R}^{n}.) So what is the dimension of $T_{p} M$ for a boundary point? Is it n or $n-1$? (Spoiler alert: It is n.)

Manifolds-with-boundary

- Unfortunately, this theorem cannot be directly applied to the boundary points on manifolds-with-boundary. (Because \mathbb{H}^{n} is not an open subset of \mathbb{R}^{n}.) So what is the dimension of $T_{p} M$ for a boundary point? Is it n or $n-1$? (Spoiler alert: It is n.)
- For any $a \in \partial \mathbb{H}^{n}$,

Manifolds-with-boundary

- Unfortunately, this theorem cannot be directly applied to the boundary points on manifolds-with-boundary. (Because \mathbb{H}^{n} is not an open subset of \mathbb{R}^{n}.) So what is the dimension of $T_{p} M$ for a boundary point? Is it n or $n-1$? (Spoiler alert: It is n.)
- For any $a \in \partial \mathbb{H}^{n},\left(i_{*}\right)_{a}: T_{a} \mathbb{H}^{n} \rightarrow T_{a} \mathbb{R}^{n}$ is an isomorphism.

Manifolds-with-boundary

- Unfortunately, this theorem cannot be directly applied to the boundary points on manifolds-with-boundary. (Because \mathbb{H}^{n} is not an open subset of \mathbb{R}^{n}.) So what is the dimension of $T_{p} M$ for a boundary point? Is it n or $n-1$? (Spoiler alert: It is n.)
- For any $a \in \partial \mathbb{H}^{n},\left(i_{*}\right)_{a}: T_{a} \mathbb{H}^{n} \rightarrow T_{a} \mathbb{R}^{n}$ is an isomorphism.
- Proof:

Manifolds-with-boundary

- Unfortunately, this theorem cannot be directly applied to the boundary points on manifolds-with-boundary. (Because \mathbb{H}^{n} is not an open subset of \mathbb{R}^{n}.) So what is the dimension of $T_{p} M$ for a boundary point? Is it n or $n-1$? (Spoiler alert: It is n.)
- For any $a \in \partial \mathbb{H}^{n},\left(i_{*}\right)_{a}: T_{a} \mathbb{H}^{n} \rightarrow T_{a} \mathbb{R}^{n}$ is an isomorphism.
- Proof: 1-1:

Manifolds-with-boundary

- Unfortunately, this theorem cannot be directly applied to the boundary points on manifolds-with-boundary. (Because \mathbb{H}^{n} is not an open subset of \mathbb{R}^{n}.) So what is the dimension of $T_{p} M$ for a boundary point? Is it n or $n-1$? (Spoiler alert: It is n.)
- For any $a \in \partial \mathbb{H}^{n},\left(i_{*}\right)_{a}: T_{a} \mathbb{H}^{n} \rightarrow T_{a} \mathbb{R}^{n}$ is an isomorphism.
- Proof: 1-1: Let $v \in T_{a} \mathbb{H}^{n}$ such that $i_{*} v=0$,

Manifolds-with-boundary

- Unfortunately, this theorem cannot be directly applied to the boundary points on manifolds-with-boundary. (Because \mathbb{H}^{n} is not an open subset of \mathbb{R}^{n}.) So what is the dimension of $T_{p} M$ for a boundary point? Is it n or $n-1$? (Spoiler alert: It is n.)
- For any $a \in \partial \mathbb{H}^{n},\left(i_{*}\right)_{a}: T_{a} \mathbb{H}^{n} \rightarrow T_{a} \mathbb{R}^{n}$ is an isomorphism.
- Proof: 1-1: Let $v \in T_{a} \mathbb{H}^{n}$ such that $i_{*} v=0$, and $f \in C^{\infty}\left(\mathbb{H}^{n}\right)$.

Manifolds-with-boundary

- Unfortunately, this theorem cannot be directly applied to the boundary points on manifolds-with-boundary. (Because \mathbb{H}^{n} is not an open subset of \mathbb{R}^{n}.) So what is the dimension of $T_{p} M$ for a boundary point? Is it n or $n-1$? (Spoiler alert: It is n.)
- For any $a \in \partial \mathbb{H}^{n},\left(i_{*}\right)_{a}: T_{a} \mathbb{H}^{n} \rightarrow T_{a} \mathbb{R}^{n}$ is an isomorphism.
- Proof: 1-1: Let $v \in T_{a} \mathbb{H}^{n}$ such that $i_{*} v=0$, and $f \in C^{\infty}\left(\mathbb{H}^{n}\right)$. Let \tilde{f} be a smooth extension to \mathbb{R}^{n}.

Manifolds-with-boundary

- Unfortunately, this theorem cannot be directly applied to the boundary points on manifolds-with-boundary. (Because \mathbb{H}^{n} is not an open subset of \mathbb{R}^{n}.) So what is the dimension of $T_{p} M$ for a boundary point? Is it n or $n-1$? (Spoiler alert: It is n.)
- For any $a \in \partial \mathbb{H}^{n},\left(i_{*}\right)_{a}: T_{a} \mathbb{H}^{n} \rightarrow T_{a} \mathbb{R}^{n}$ is an isomorphism.
- Proof: 1-1: Let $v \in T_{a} \mathbb{H}^{n}$ such that $i_{*} v=0$, and $f \in C^{\infty}\left(\mathbb{H}^{n}\right)$. Let \tilde{f} be a smooth extension to \mathbb{R}^{n}. Now $0=i_{*} v(\tilde{f})=v(\tilde{f} \circ i)=v(f)$.

Manifolds-with-boundary

- Unfortunately, this theorem cannot be directly applied to the boundary points on manifolds-with-boundary. (Because \mathbb{H}^{n} is not an open subset of \mathbb{R}^{n}.) So what is the dimension of $T_{p} M$ for a boundary point? Is it n or $n-1$? (Spoiler alert: It is n.)
- For any $a \in \partial \mathbb{H}^{n},\left(i_{*}\right)_{a}: T_{a} \mathbb{H}^{n} \rightarrow T_{a} \mathbb{R}^{n}$ is an isomorphism.
- Proof: 1-1: Let $v \in T_{a} \mathbb{H}^{n}$ such that $i_{*} v=0$, and $f \in C^{\infty}\left(\mathbb{H}^{n}\right)$. Let \tilde{f} be a smooth extension to \mathbb{R}^{n}. Now $0=i_{*} v(\tilde{f})=v(\tilde{f} \circ i)=v(f)$.
Onto:

Manifolds-with-boundary

- Unfortunately, this theorem cannot be directly applied to the boundary points on manifolds-with-boundary. (Because \mathbb{H}^{n} is not an open subset of \mathbb{R}^{n}.) So what is the dimension of $T_{p} M$ for a boundary point? Is it n or $n-1$? (Spoiler alert: It is n.)
- For any $a \in \partial \mathbb{H}^{n},\left(i_{*}\right)_{a}: T_{a} \mathbb{H}^{n} \rightarrow T_{a} \mathbb{R}^{n}$ is an isomorphism.
- Proof: 1-1: Let $v \in T_{a} \mathbb{H}^{n}$ such that $i_{*} v=0$, and $f \in C^{\infty}\left(\underset{\tilde{f}}{ } \mathbb{H}^{n}\right)$. Let \tilde{f} be a smooth extension to \mathbb{R}^{n}. Now $0=i_{*} v(\tilde{f})=v(\tilde{f} \circ i)=v(f)$.
Onto: Let $w=w^{i} \frac{\partial}{\partial x^{i}} \in T_{a} \mathbb{R}^{n}$.

Manifolds-with-boundary

- Unfortunately, this theorem cannot be directly applied to the boundary points on manifolds-with-boundary. (Because \mathbb{H}^{n} is not an open subset of \mathbb{R}^{n}.) So what is the dimension of $T_{p} M$ for a boundary point? Is it n or $n-1$? (Spoiler alert: It is n.)
- For any $a \in \partial \mathbb{H}^{n},\left(i_{*}\right)_{a}: T_{a} \mathbb{H}^{n} \rightarrow T_{a} \mathbb{R}^{n}$ is an isomorphism.
- Proof: 1-1: Let $v \in T_{a} \mathbb{H}^{n}$ such that $i_{*} v=0$, and $f \in C^{\infty}\left(\mathbb{H}^{n}\right)$. Let \tilde{f} be a smooth extension to \mathbb{R}^{n}. Now $0=i_{*} v(\tilde{f})=v(\tilde{f} \circ i)=v(f)$.
Onto: Let $w=w^{i} \frac{\partial}{\partial x^{i}} \in T_{a} \mathbb{R}^{n}$. Let $f \in C^{\infty}\left(\mathbb{H}^{n}\right)$. Define \tilde{f} as a smooth extension of f to \mathbb{R}^{n} and

Manifolds-with-boundary

- Unfortunately, this theorem cannot be directly applied to the boundary points on manifolds-with-boundary. (Because \mathbb{H}^{n} is not an open subset of \mathbb{R}^{n}.) So what is the dimension of $T_{p} M$ for a boundary point? Is it n or $n-1$? (Spoiler alert: It is n.)
- For any $a \in \partial \mathbb{H}^{n},\left(i_{*}\right)_{a}: T_{a} \mathbb{H}^{n} \rightarrow T_{a} \mathbb{R}^{n}$ is an isomorphism.
- Proof: 1-1: Let $v \in T_{a} \mathbb{H}^{n}$ such that $i_{*} v=0$, and $f \in C^{\infty}\left(\mathbb{H}^{n}\right)$. Let \tilde{f} be a smooth extension to \mathbb{R}^{n}. Now $0=i_{*} v(\tilde{f})=v(\tilde{f} \circ i)=v(f)$.
Onto: Let $w=w^{i} \frac{\partial}{\partial x^{i}} \in T_{a} \mathbb{R}^{n}$. Let $f \in C^{\infty}\left(\mathbb{H}^{n}\right)$. Define \tilde{f} as a smooth extension of f to \mathbb{R}^{n} and $v(f)=w(\tilde{f})=w^{i} \frac{\partial \tilde{f}}{\partial x^{i}}(a)=$ and is hence independent of

Manifolds-with-boundary

- Unfortunately, this theorem cannot be directly applied to the boundary points on manifolds-with-boundary. (Because \mathbb{H}^{n} is not an open subset of \mathbb{R}^{n}.) So what is the dimension of $T_{p} M$ for a boundary point? Is it n or $n-1$? (Spoiler alert: It is n.)
- For any $a \in \partial \mathbb{H}^{n},\left(i_{*}\right)_{a}: T_{a} \mathbb{H}^{n} \rightarrow T_{a} \mathbb{R}^{n}$ is an isomorphism.
- Proof: 1-1: Let $v \in T_{a} \mathbb{H}^{n}$ such that $i_{*} v=0$, and $f \in C^{\infty}\left(\mathbb{H}^{n}\right)$. Let \tilde{f} be a smooth extension to \mathbb{R}^{n}. Now $0=i_{*} v(\tilde{f})=v(\tilde{f} \circ i)=v(f)$.
Onto: Let $w=w^{i} \frac{\partial}{\partial x^{i}} \in T_{a} \mathbb{R}^{n}$. Let $f \in C^{\infty}\left(\mathbb{H}^{n}\right)$. Define \tilde{f} as a smooth extension of f to \mathbb{R}^{n} and $v(f)=w(\tilde{f})=w^{i} \frac{\partial \tilde{f}}{\partial x^{i}}(a)=$ and is hence independent of the choice of \tilde{f} (because of continuity).

Manifolds-with-boundary

- Unfortunately, this theorem cannot be directly applied to the boundary points on manifolds-with-boundary. (Because \mathbb{H}^{n} is not an open subset of \mathbb{R}^{n}.) So what is the dimension of $T_{p} M$ for a boundary point? Is it n or $n-1$? (Spoiler alert: It is n.)
- For any $a \in \partial \mathbb{H}^{n},\left(i_{*}\right)_{a}: T_{a} \mathbb{H}^{n} \rightarrow T_{a} \mathbb{R}^{n}$ is an isomorphism.
- Proof: 1-1: Let $v \in T_{a} \mathbb{H}^{n}$ such that $i_{*} v=0$, and $f \in C^{\infty}\left(\mathbb{H}^{n}\right)$. Let \tilde{f} be a smooth extension to \mathbb{R}^{n}. Now $0=i_{*} v(\tilde{f})=v(\tilde{f} \circ i)=v(f)$.
Onto: Let $w=w^{i} \frac{\partial}{\partial x^{i}} \in T_{a} \mathbb{R}^{n}$. Let $f \in C^{\infty}\left(\mathbb{H}^{n}\right)$. Define \tilde{f} as a smooth extension of f to \mathbb{R}^{n} and $v(f)=w(\tilde{f})=w^{i} \frac{\partial \tilde{f}}{\partial x^{i}}(a)=$ and is hence independent of the choice of \tilde{f} (because of continuity). v is a derivation and hence we are done.

Manifolds-with-boundary

- Unfortunately, this theorem cannot be directly applied to the boundary points on manifolds-with-boundary. (Because \mathbb{H}^{n} is not an open subset of \mathbb{R}^{n}.) So what is the dimension of $T_{p} M$ for a boundary point? Is it n or $n-1$? (Spoiler alert: It is n.)
- For any $a \in \partial \mathbb{H}^{n},\left(i_{*}\right)_{a}: T_{a} \mathbb{H}^{n} \rightarrow T_{a} \mathbb{R}^{n}$ is an isomorphism.
- Proof: 1-1: Let $v \in T_{a} \mathbb{H}^{n}$ such that $i_{*} v=0$, and $f \in C^{\infty}\left(\mathbb{H}^{n}\right)$. Let \tilde{f} be a smooth extension to \mathbb{R}^{n}. Now $0=i_{*} v(\tilde{f})=v(\tilde{f} \circ i)=v(f)$.
Onto: Let $w=w^{i} \frac{\partial}{\partial x^{i}} \in T_{a} \mathbb{R}^{n}$. Let $f \in C^{\infty}\left(\mathbb{H}^{n}\right)$. Define \tilde{f} as a smooth extension of f to \mathbb{R}^{n} and $v(f)=w(\tilde{f})=w^{i} \frac{\partial \tilde{f}}{\partial x^{i}}(a)=$ and is hence independent of the choice of \tilde{f} (because of continuity). v is a derivation and hence we are done.
- Corollary:

Manifolds-with-boundary

- Unfortunately, this theorem cannot be directly applied to the boundary points on manifolds-with-boundary. (Because \mathbb{H}^{n} is not an open subset of \mathbb{R}^{n}.) So what is the dimension of $T_{p} M$ for a boundary point? Is it n or $n-1$? (Spoiler alert: It is n.)
- For any $a \in \partial \mathbb{H}^{n},\left(i_{*}\right)_{a}: T_{a} \mathbb{H}^{n} \rightarrow T_{a} \mathbb{R}^{n}$ is an isomorphism.
- Proof: 1-1: Let $v \in T_{a} \mathbb{H}^{n}$ such that $i_{*} v=0$, and $f \in C^{\infty}\left(\mathbb{H}^{n}\right)$. Let \tilde{f} be a smooth extension to \mathbb{R}^{n}. Now $0=i_{*} v(\tilde{f})=v(\tilde{f} \circ i)=v(f)$.
Onto: Let $w=w^{i} \frac{\partial}{\partial x^{i}} \in T_{a} \mathbb{R}^{n}$. Let $f \in C^{\infty}\left(\mathbb{H}^{n}\right)$. Define \tilde{f} as a smooth extension of f to \mathbb{R}^{n} and $v(f)=w(\tilde{f})=w^{i} \frac{\partial \tilde{f}}{\partial x^{i}}(a)=$ and is hence independent of the choice of \tilde{f} (because of continuity). v is a derivation and hence we are done.
- Corollary: The dimension of $T_{p} M$ even for manifolds-with-boundary is $\operatorname{dim}(M)$.

Examples of tangent spaces

Examples of tangent spaces

- Let V be a f.d normed vector space

Examples of tangent spaces

- Let V be a f.d normed vector space treated as a smooth manifold.

Examples of tangent spaces

- Let V be a f.d normed vector space treated as a smooth manifold. Consider the map $D_{a, v} f=\frac{d f(a+t v)}{d t}$.

Examples of tangent spaces

- Let V be a f.d normed vector space treated as a smooth manifold. Consider the map $D_{a, v} f=\frac{d f(a+t v)}{d t}$. This map gives an isomorphism

Examples of tangent spaces

- Let V be a f.d normed vector space treated as a smooth manifold. Consider the map $D_{a, v} f=\frac{d f(a+t v)}{d t}$. This map gives an isomorphism of V to $T_{a} V$ that

Examples of tangent spaces

- Let V be a f.d normed vector space treated as a smooth manifold. Consider the map $D_{a, v} f=\frac{d f(a+t v)}{d t}$. This map gives an isomorphism of V to $T_{a} V$ that commutes with linear maps to other vector spaces (what does this mean and why?)

Examples of tangent spaces

- Let V be a f.d normed vector space treated as a smooth manifold. Consider the map $D_{a, v} f=\frac{d f(a+t v)}{d t}$. This map gives an isomorphism of V to $T_{a} V$ that commutes with linear maps to other vector spaces (what does this mean and why?)
- Thus we can canonically identify V with $T_{a} V$.

Examples of tangent spaces

- Let V be a f.d normed vector space treated as a smooth manifold. Consider the map $D_{a, v} f=\frac{d f(a+t v)}{d t}$. This map gives an isomorphism of V to $T_{a} V$ that commutes with linear maps to other vector spaces (what does this mean and why?)
- Thus we can canonically identify V with $T_{a} V$. Moreover, if $M \subset V$ is an open submanifold,

Examples of tangent spaces

- Let V be a f.d normed vector space treated as a smooth manifold. Consider the map $D_{a, v} f=\frac{d f(a+t v)}{d t}$. This map gives an isomorphism of V to $T_{a} V$ that commutes with linear maps to other vector spaces (what does this mean and why?)
- Thus we can canonically identify V with $T_{a} V$. Moreover, if $M \subset V$ is an open submanifold, then $T_{a} M=T_{a} V=V$.

Examples of tangent spaces

- Let V be a f.d normed vector space treated as a smooth manifold. Consider the map $D_{a, v} f=\frac{d f(a+t v)}{d t}$. This map gives an isomorphism of V to $T_{a} V$ that commutes with linear maps to other vector spaces (what does this mean and why?)
- Thus we can canonically identify V with $T_{a} V$. Moreover, if $M \subset V$ is an open submanifold, then $T_{a} M=T_{a} V=V$. Thus $T_{a} G L(n, \mathbb{R})=M(n, \mathbb{R})$.

Examples of tangent spaces

- Let V be a f.d normed vector space treated as a smooth manifold. Consider the map $D_{a, v} f=\frac{d f(a+t v)}{d t}$. This map gives an isomorphism of V to $T_{a} V$ that commutes with linear maps to other vector spaces (what does this mean and why?)
- Thus we can canonically identify V with $T_{a} V$. Moreover, if $M \subset V$ is an open submanifold, then $T_{a} M=T_{a} V=V$. Thus $T_{a} G L(n, \mathbb{R})=M(n, \mathbb{R})$.
- Let $M_{1}, M_{2}, \ldots, M_{k}$ be smooth manifolds (without boundary).

Examples of tangent spaces

- Let V be a f.d normed vector space treated as a smooth manifold. Consider the map $D_{a, v} f=\frac{d f(a+t v)}{d t}$. This map gives an isomorphism of V to $T_{a} V$ that commutes with linear maps to other vector spaces (what does this mean and why?)
- Thus we can canonically identify V with $T_{a} V$. Moreover, if $M \subset V$ is an open submanifold, then $T_{a} M=T_{a} V=V$. Thus $T_{a} G L(n, \mathbb{R})=M(n, \mathbb{R})$.
- Let $M_{1}, M_{2}, \ldots, M_{k}$ be smooth manifolds (without boundary). Then $\alpha_{p}: T_{p}\left(M_{1} \times M_{2} \ldots\right) \rightarrow T_{p} M_{1} \times T_{p} M_{2} \ldots$ given by $\alpha_{p}(v)=\left(\left(\pi_{1}\right)_{*}(v),\left(\pi_{2}\right)_{*}(v), \ldots\right)$ is an isomorphism.

Tangent spaces and pushforwards in coordinate charts

Tangent spaces and pushforwards in coordinate charts

- Proposition:

Tangent spaces and pushforwards in coordinate charts

- Proposition: Let M be a smooth n-manifold with or without boundary, and $p \in M$.

Tangent spaces and pushforwards in coordinate charts

- Proposition: Let M be a smooth n-manifold with or without boundary, and $p \in M$. For any chart $\left(U, x^{i}\right)$ around p,

Tangent spaces and pushforwards in coordinate charts

- Proposition: Let M be a smooth n-manifold with or without boundary, and $p \in M$. For any chart $\left(U, x^{i}\right)$ around p, the (pushforwards of) the coordinate vectors $\frac{\partial}{\partial x^{i}}$

Tangent spaces and pushforwards in coordinate charts

- Proposition: Let M be a smooth n-manifold with or without boundary, and $p \in M$. For any chart $\left(U, x^{i}\right)$ around p, the (pushforwards of) the coordinate vectors $\frac{\partial}{\partial x^{i}}$ form a basis for $T_{p} M$, i.e.,

Tangent spaces and pushforwards in coordinate charts

- Proposition: Let M be a smooth n-manifold with or without boundary, and $p \in M$. For any chart $\left(U, x^{i}\right)$ around p, the (pushforwards of) the coordinate vectors $\frac{\partial}{\partial x^{\prime}}$ form a basis for $T_{p} M$, i.e., If $f \in C^{\infty}(M)$, then $v(f)=v^{i} \frac{\partial f \circ \phi^{-1}}{\partial x^{i}}(\phi(p))$.

Tangent spaces and pushforwards in coordinate charts

- Proposition: Let M be a smooth n-manifold with or without boundary, and $p \in M$. For any chart $\left(U, x^{i}\right)$ around p, the (pushforwards of) the coordinate vectors $\frac{\partial}{\partial x^{\prime}}$ form a basis for $T_{p} M$, i.e., If $f \in C^{\infty}(M)$, then $v(f)=v^{i} \frac{\partial f \circ \phi^{-1}}{\partial x^{i}}(\phi(p))$. As always, we abuse notation

Tangent spaces and pushforwards in coordinate charts

- Proposition: Let M be a smooth n-manifold with or without boundary, and $p \in M$. For any chart $\left(U, x^{i}\right)$ around p, the (pushforwards of) the coordinate vectors $\frac{\partial}{\partial x^{\prime}}$ form a basis for $T_{p} M$, i.e., If $f \in C^{\infty}(M)$, then $v(f)=v^{i} \frac{\partial f \circ \phi^{-1}}{\partial x^{i}}(\phi(p))$. As always, we abuse notation and drop the ϕ.

Tangent spaces and pushforwards in coordinate charts

- Proposition: Let M be a smooth n-manifold with or without boundary, and $p \in M$. For any chart $\left(U, x^{i}\right)$ around p, the (pushforwards of) the coordinate vectors $\frac{\partial}{\partial x^{\prime}}$ form a basis for $T_{p} M$, i.e., If $f \in C^{\infty}(M)$, then $v(f)=v^{i} \frac{\partial f \circ \phi^{-1}}{\partial x^{i}}(\phi(p))$. As always, we abuse notation and drop the ϕ. So $v(f)=v^{i} \frac{\partial f}{\partial x^{i}}(p)$.

Tangent spaces and pushforwards in coordinate charts

- Proposition: Let M be a smooth n-manifold with or without boundary, and $p \in M$. For any chart (U, x^{i}) around p, the (pushforwards of) the coordinate vectors $\frac{\partial}{\partial x^{\prime}}$ form a basis for $T_{p} M$, i.e., If $f \in C^{\infty}(M)$, then $v(f)=v^{i} \frac{\partial f \circ \phi^{-1}}{\partial x^{i}}(\phi(p))$. As always, we abuse notation and drop the ϕ. So $v(f)=v^{i} \frac{\partial f}{\partial x^{i}}(p)$.
- The vectors $\frac{\partial}{\partial x^{i}}$ are called a coordinate basis for $T_{p} M$.

Tangent spaces and pushforwards in coordinate charts

- Proposition: Let M be a smooth n-manifold with or without boundary, and $p \in M$. For any chart (U, x^{i}) around p, the (pushforwards of) the coordinate vectors $\frac{\partial}{\partial x^{\prime}}$ form a basis for $T_{p} M$, i.e., If $f \in C^{\infty}(M)$, then $v(f)=v^{i} \frac{\partial f \circ \phi^{-1}}{\partial x^{i}}(\phi(p))$. As always, we abuse notation and drop the ϕ. So $v(f)=v^{i} \frac{\partial f}{\partial x^{i}}(p)$.
- The vectors $\frac{\partial}{\partial x^{i}}$ are called a coordinate basis for $T_{p} M$. Since the map $v \rightarrow D_{p, v}$ is an isomorphism in \mathbb{R}^{n},

Tangent spaces and pushforwards in coordinate charts

- Proposition: Let M be a smooth n-manifold with or without boundary, and $p \in M$. For any chart (U, x^{i}) around p, the (pushforwards of) the coordinate vectors $\frac{\partial}{\partial x^{i}}$ form a basis for $T_{p} M$, i.e., If $f \in C^{\infty}(M)$, then $v(f)=v^{i} \frac{\partial f \circ \phi^{-1}}{\partial x^{i}}(\phi(p))$. As always, we abuse notation and drop the ϕ. So $v(f)=v^{i} \frac{\partial f}{\partial x^{i}}(p)$.
- The vectors $\frac{\partial}{\partial x^{i}}$ are called a coordinate basis for $T_{p} M$. Since the map $v \rightarrow D_{p, v}$ is an isomorphism in \mathbb{R}^{n}, these vectors can also be identified with

Tangent spaces and pushforwards in coordinate charts

- Proposition: Let M be a smooth n-manifold with or without boundary, and $p \in M$. For any chart (U, x^{i}) around p, the (pushforwards of) the coordinate vectors $\frac{\partial}{\partial x^{i}}$ form a basis for $T_{p} M$, i.e., If $f \in C^{\infty}(M)$, then $v(f)=v^{i} \frac{\partial f \circ \phi^{-1}}{\partial x^{i}}(\phi(p))$. As always, we abuse notation and drop the ϕ. So $v(f)=v^{i} \frac{\partial f}{\partial x^{i}}(p)$.
- The vectors $\frac{\partial}{\partial x^{i}}$ are called a coordinate basis for $T_{p} M$. Since the map $v \rightarrow D_{p, v}$ is an isomorphism in \mathbb{R}^{n}, these vectors can also be identified with $e_{1}=(1,0,0 \ldots), \ldots$.

Tangent spaces and pushforwards in coordinate charts

- Proposition: Let M be a smooth n-manifold with or without boundary, and $p \in M$. For any chart (U, x^{i}) around p, the (pushforwards of) the coordinate vectors $\frac{\partial}{\partial x^{\prime}}$ form a basis for $T_{p} M$, i.e., If $f \in C^{\infty}(M)$, then $v(f)=v^{i} \frac{\partial f \circ \phi^{-1}}{\partial x^{i}}(\phi(p))$. As always, we abuse notation and drop the ϕ. So $v(f)=v^{i} \frac{\partial f}{\partial x^{i}}(p)$.
- The vectors $\frac{\partial}{\partial x^{i}}$ are called a coordinate basis for $T_{p} M$. Since the map $v \rightarrow D_{p, v}$ is an isomorphism in \mathbb{R}^{n}, these vectors can also be identified with $e_{1}=(1,0,0 \ldots), \ldots$ The components of v in a coordinate chart $\left(U, x^{i}\right)$ are $v^{i}=v\left(x^{i}\right)$.

Tangent spaces and pushforwards in coordinate charts

- Proposition: Let M be a smooth n-manifold with or without boundary, and $p \in M$. For any chart $\left(U, x^{i}\right)$ around p, the (pushforwards of) the coordinate vectors $\frac{\partial}{\partial x^{\prime}}$ form a basis for $T_{p} M$, i.e., If $f \in C^{\infty}(M)$, then $v(f)=v^{i} \frac{\partial f \circ \phi^{-1}}{\partial x^{i}}(\phi(p))$. As always, we abuse notation and drop the ϕ. So $v(f)=v^{i} \frac{\partial f}{\partial x^{i}}(p)$.
- The vectors $\frac{\partial}{\partial x^{i}}$ are called a coordinate basis for $T_{p} M$. Since the map $v \rightarrow D_{p, v}$ is an isomorphism in \mathbb{R}^{n}, these vectors can also be identified with $e_{1}=(1,0,0 \ldots), \ldots$ The components of v in a coordinate chart $\left(U, x^{i}\right)$ are $v^{i}=v\left(x^{i}\right)$.
- Let $F: U \subset \mathbb{R}^{m} \rightarrow V \subset \mathbb{R}^{n}$ be a smooth map.

Tangent spaces and pushforwards in coordinate charts

- Proposition: Let M be a smooth n-manifold with or without boundary, and $p \in M$. For any chart $\left(U, x^{i}\right)$ around p, the (pushforwards of) the coordinate vectors $\frac{\partial}{\partial x^{i}}$ form a basis for $T_{p} M$, i.e., If $f \in C^{\infty}(M)$, then $v(f)=v^{i} \frac{\partial f \circ \phi^{-1}}{\partial x^{i}}(\phi(p))$. As always, we abuse notation and drop the ϕ. So $v(f)=v^{i} \frac{\partial f}{\partial x^{i}}(p)$.
- The vectors $\frac{\partial}{\partial x^{i}}$ are called a coordinate basis for $T_{p} M$. Since the map $v \rightarrow D_{p, v}$ is an isomorphism in \mathbb{R}^{n}, these vectors can also be identified with $e_{1}=(1,0,0 \ldots), \ldots$ The components of v in a coordinate chart $\left(U, x^{i}\right)$ are $v^{i}=v\left(x^{i}\right)$.
- Let $F: U \subset \mathbb{R}^{m} \rightarrow V \subset \mathbb{R}^{n}$ be a smooth map. Then $F_{*}\left(\frac{\partial}{\partial x^{i}}\right)(f)=\frac{\partial(f \circ F)}{\partial x^{i}}(p)=\frac{\partial f}{\partial y^{j}}(F(p)) \frac{\partial F^{j}}{\partial x^{i}}(p)$.

Tangent spaces and pushforwards in coordinate charts

- Proposition: Let M be a smooth n-manifold with or without boundary, and $p \in M$. For any chart $\left(U, x^{i}\right)$ around p, the (pushforwards of) the coordinate vectors $\frac{\partial}{\partial x^{i}}$ form a basis for $T_{p} M$, i.e., If $f \in C^{\infty}(M)$, then $v(f)=v^{i} \frac{\partial f \circ \phi^{-1}}{\partial x^{i}}(\phi(p))$. As always, we abuse notation and drop the ϕ. So $v(f)=v^{i} \frac{\partial f}{\partial x^{i}}(p)$.
- The vectors $\frac{\partial}{\partial x^{i}}$ are called a coordinate basis for $T_{p} M$. Since the map $v \rightarrow D_{p, v}$ is an isomorphism in \mathbb{R}^{n}, these vectors can also be identified with $e_{1}=(1,0,0 \ldots), \ldots$ The components of v in a coordinate chart $\left(U, x^{i}\right)$ are $v^{i}=v\left(x^{i}\right)$.
- Let $F: U \subset \mathbb{R}^{m} \rightarrow V \subset \mathbb{R}^{n}$ be a smooth map. Then $F_{*}\left(\frac{\partial}{\partial x^{i}}\right)(f)=\frac{\partial(f \circ F)}{\partial x^{i}}(p)=\frac{\partial f}{\partial y^{j}}(F(p)) \frac{\partial F^{j}}{\partial x^{i}}(p)$. In other words, $F_{*} \frac{\partial}{\partial x^{i}}=\frac{\partial F^{j}}{\partial x^{i}} \frac{\partial}{\partial y^{j}}$.

Tangent spaces and pushforwards in coordinate charts

- Proposition: Let M be a smooth n-manifold with or without boundary, and $p \in M$. For any chart $\left(U, x^{i}\right)$ around p, the (pushforwards of) the coordinate vectors $\frac{\partial}{\partial x^{i}}$ form a basis for $T_{p} M$, i.e., If $f \in C^{\infty}(M)$, then $v(f)=v^{i} \frac{\partial f \circ \phi^{-1}}{\partial x^{i}}(\phi(p))$. As always, we abuse notation and drop the ϕ. So $v(f)=v^{i} \frac{\partial f}{\partial x^{i}}(p)$.
- The vectors $\frac{\partial}{\partial x^{i}}$ are called a coordinate basis for $T_{p} M$. Since the map $v \rightarrow D_{p, v}$ is an isomorphism in \mathbb{R}^{n}, these vectors can also be identified with $e_{1}=(1,0,0 \ldots), \ldots$ The components of v in a coordinate chart $\left(U, x^{i}\right)$ are $v^{i}=v\left(x^{i}\right)$.
- Let $F: U \subset \mathbb{R}^{m} \rightarrow V \subset \mathbb{R}^{n}$ be a smooth map. Then $F_{*}\left(\frac{\partial}{\partial x^{j}}\right)(f)=\frac{\partial(f \circ F)}{\partial x^{i}}(p)=\frac{\partial f}{\partial y^{j}}(F(p)) \frac{\partial F^{j}}{\partial x^{i}}(p)$. In other words, $F_{*} \frac{\partial}{\partial x^{i}}=\frac{\partial F^{j}}{\partial x^{i}} \frac{\partial}{\partial y^{j}}$. Thus if v is treated as column vector \vec{v} with components v^{i},

Tangent spaces and pushforwards in coordinate charts

- Proposition: Let M be a smooth n-manifold with or without boundary, and $p \in M$. For any chart $\left(U, x^{i}\right)$ around p, the (pushforwards of) the coordinate vectors $\frac{\partial}{\partial x^{i}}$ form a basis for $T_{p} M$, i.e., If $f \in C^{\infty}(M)$, then $v(f)=v^{i} \frac{\partial f \circ \phi^{-1}}{\partial x^{i}}(\phi(p))$. As always, we abuse notation and drop the ϕ. So $v(f)=v^{i} \frac{\partial f}{\partial x^{i}}(p)$.
- The vectors $\frac{\partial}{\partial x^{i}}$ are called a coordinate basis for $T_{p} M$. Since the map $v \rightarrow D_{p, v}$ is an isomorphism in \mathbb{R}^{n}, these vectors can also be identified with $e_{1}=(1,0,0 \ldots), \ldots$ The components of v in a coordinate chart $\left(U, x^{i}\right)$ are $v^{i}=v\left(x^{i}\right)$.
- Let $F: U \subset \mathbb{R}^{m} \rightarrow V \subset \mathbb{R}^{n}$ be a smooth map. Then $F_{*}\left(\frac{\partial}{\partial x^{j}}\right)(f)=\frac{\partial(f \circ F)}{\partial x^{i}}(p)=\frac{\partial f}{\partial y^{j}}(F(p)) \frac{\partial F^{j}}{\partial x^{i}}(p)$. In other words, $F_{*} \frac{\partial}{\partial x^{i}}=\frac{\partial F^{j}}{\partial x^{i}} \frac{\partial}{\partial y^{j}}$. Thus if v is treated as column vector \vec{v} with components v^{i}, then $F_{*} v$ is a column vector obtained

Tangent spaces and pushforwards in coordinate charts

- Proposition: Let M be a smooth n-manifold with or without boundary, and $p \in M$. For any chart $\left(U, x^{i}\right)$ around p, the (pushforwards of) the coordinate vectors $\frac{\partial}{\partial x^{i}}$ form a basis for $T_{p} M$, i.e., If $f \in C^{\infty}(M)$, then $v(f)=v^{i} \frac{\partial f \circ \phi^{-1}}{\partial x^{i}}(\phi(p))$. As always, we abuse notation and drop the ϕ. So $v(f)=v^{i} \frac{\partial f}{\partial x^{i}}(p)$.
- The vectors $\frac{\partial}{\partial x^{i}}$ are called a coordinate basis for $T_{p} M$. Since the map $v \rightarrow D_{p, v}$ is an isomorphism in \mathbb{R}^{n}, these vectors can also be identified with $e_{1}=(1,0,0 \ldots), \ldots$ The components of v in a coordinate chart $\left(U, x^{i}\right)$ are $v^{i}=v\left(x^{i}\right)$.
- Let $F: U \subset \mathbb{R}^{m} \rightarrow V \subset \mathbb{R}^{n}$ be a smooth map. Then $F_{*}\left(\frac{\partial}{\partial x^{j}}\right)(f)=\frac{\partial(f \circ F)}{\partial x^{i}}(p)=\frac{\partial f}{\partial y^{j}}(F(p)) \frac{\partial F^{j}}{\partial x^{i}}(p)$. In other words, $F_{*} \frac{\partial}{\partial x^{i}}=\frac{\partial F^{j}}{\partial x^{i}} \frac{\partial}{\partial y^{j}}$. Thus if v is treated as column vector \vec{v} with components v^{i}, then $F_{*} v$ is a column vector obtained by $[D F] \vec{v}$.

Tangent spaces and pushforwards in coordinate charts

- Proposition: Let M be a smooth n-manifold with or without boundary, and $p \in M$. For any chart $\left(U, x^{i}\right)$ around p, the (pushforwards of) the coordinate vectors $\frac{\partial}{\partial x^{i}}$ form a basis for $T_{p} M$, i.e., If $f \in C^{\infty}(M)$, then $v(f)=v^{i} \frac{\partial f \circ \phi^{-1}}{\partial x^{i}}(\phi(p))$. As always, we abuse notation and drop the ϕ. So $v(f)=v^{i} \frac{\partial f}{\partial x^{i}}(p)$.
- The vectors $\frac{\partial}{\partial x^{i}}$ are called a coordinate basis for $T_{p} M$. Since the map $v \rightarrow D_{p, v}$ is an isomorphism in \mathbb{R}^{n}, these vectors can also be identified with $e_{1}=(1,0,0 \ldots), \ldots$ The components of v in a coordinate chart $\left(U, x^{i}\right)$ are $v^{i}=v\left(x^{i}\right)$.
- Let $F: U \subset \mathbb{R}^{m} \rightarrow V \subset \mathbb{R}^{n}$ be a smooth map. Then $F_{*}\left(\frac{\partial}{\partial x^{j}}\right)(f)=\frac{\partial(f \circ F)}{\partial x^{i}}(p)=\frac{\partial f}{\partial y^{j}}(F(p)) \frac{\partial F^{j}}{\partial x^{i}}(p)$. In other words, $F_{*} \frac{\partial}{\partial x^{i}}=\frac{\partial F^{j}}{\partial x^{i}} \frac{\partial}{\partial y^{j}}$. Thus if v is treated as column vector \vec{v} with components v^{i}, then $F_{*} v$ is a column vector obtained by $[D F] \vec{v}$. The same formula (with abuse of notation)holds

Tangent spaces and pushforwards in coordinate charts

- Proposition: Let M be a smooth n-manifold with or without boundary, and $p \in M$. For any chart $\left(U, x^{i}\right)$ around p, the (pushforwards of) the coordinate vectors $\frac{\partial}{\partial x^{\prime}}$ form a basis for $T_{p} M$, i.e., If $f \in C^{\infty}(M)$, then $v(f)=v^{i} \frac{\partial f \circ \phi^{-1}}{\partial x^{i}}(\phi(p))$. As always, we abuse notation and drop the ϕ. So $v(f)=v^{i} \frac{\partial f}{\partial x^{i}}(p)$.
- The vectors $\frac{\partial}{\partial x^{i}}$ are called a coordinate basis for $T_{p} M$. Since the map $v \rightarrow D_{p, v}$ is an isomorphism in \mathbb{R}^{n}, these vectors can also be identified with $e_{1}=(1,0,0 \ldots), \ldots$ The components of v in a coordinate chart $\left(U, x^{i}\right)$ are $v^{i}=v\left(x^{i}\right)$.
- Let $F: U \subset \mathbb{R}^{m} \rightarrow V \subset \mathbb{R}^{n}$ be a smooth map. Then $F_{*}\left(\frac{\partial}{\partial x^{j}}\right)(f)=\frac{\partial(f \circ F)}{\partial x^{i}}(p)=\frac{\partial f}{\partial y^{j}}(F(p)) \frac{\partial F^{j}}{\partial x^{i}}(p)$. In other words, $F_{*} \frac{\partial}{\partial x^{i}}=\frac{\partial F^{j}}{\partial x^{i}} \frac{\partial}{\partial y^{j}}$. Thus if v is treated as column vector \vec{v} with components v^{i}, then $F_{*} v$ is a column vector obtained by $[D F] \vec{v}$. The same formula (with abuse of notation)holds for $F: M \rightarrow N$ and $\left(U, x^{i}\right),\left(V, y^{j}\right)$ are coordinates around $n-E(n)$

