MA 229/MA 235 - Lecture 10

IISc

Tangent spaces

1/12

Recap

< □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ □ ` □ ` □ ` □ `

• Proved existence of partitions of unity.

- Proved existence of partitions of unity.
- Applications:

- Proved existence of partitions of unity.
- Applications: Bump functions,

э

- Proved existence of partitions of unity.
- Applications: Bump functions, Extensions from closed sets,

- Proved existence of partitions of unity.
- Applications: Bump functions, Extensions from closed sets, Smooth exhaustions,

- Proved existence of partitions of unity.
- Applications: Bump functions, Extensions from closed sets, Smooth exhaustions, Level sets.

- Proved existence of partitions of unity.
- Applications: Bump functions, Extensions from closed sets, Smooth exhaustions, Level sets.
- Derivations on \mathbb{R}^n and isomorphism using directional derivatives.

Tangent spaces

3/12

• Let *M* be

문 문 문

• Let *M* be smooth manifold (with or without boundary).

Let M be smooth manifold (with or without boundary). A linear map w : C[∞](M) → ℝ is called

Let M be smooth manifold (with or without boundary). A linear map w : C[∞](M) → ℝ is called a derivation at p,

Let M be smooth manifold (with or without boundary). A linear map w : C[∞](M) → ℝ is called a derivation at p, if w(fg) = w(f)g(p) + f(p)w(g).

- Let M be smooth manifold (with or without boundary). A linear map $w : C^{\infty}(M) \to \mathbb{R}$ is called a derivation at p, if w(fg) = w(f)g(p) + f(p)w(g).
- The set of all derivations at p

- Let M be smooth manifold (with or without boundary). A linear map w : C[∞](M) → ℝ is called a derivation at p, if w(fg) = w(f)g(p) + f(p)w(g).
- The set of all derivations at p can be made into a vector space over $\mathbb R$

- Let M be smooth manifold (with or without boundary). A linear map w : C[∞](M) → ℝ is called a derivation at p, if w(fg) = w(f)g(p) + f(p)w(g).
- The set of all derivations at p can be made into a vector space over ℝ and is denoted as T_pM (the tangent space at p).

- Let M be smooth manifold (with or without boundary). A linear map w : C[∞](M) → ℝ is called a derivation at p, if w(fg) = w(f)g(p) + f(p)w(g).
- The set of all derivations at p can be made into a vector space over ℝ and is denoted as T_pM (the tangent space at p). An element of T_pM is called

- Let M be smooth manifold (with or without boundary). A linear map w : C[∞](M) → ℝ is called a derivation at p, if w(fg) = w(f)g(p) + f(p)w(g).
- The set of all derivations at p can be made into a vector space over ℝ and is denoted as T_pM (the tangent space at p). An element of T_pM is called a tangent vector at p.

- Let M be smooth manifold (with or without boundary). A linear map w : C[∞](M) → ℝ is called a derivation at p, if w(fg) = w(f)g(p) + f(p)w(g).
- The set of all derivations at p can be made into a vector space over ℝ and is denoted as T_pM (the tangent space at p). An element of T_pM is called a tangent vector at p.
- Proposition (how to prove?):

- Let M be smooth manifold (with or without boundary). A linear map w : C[∞](M) → ℝ is called a derivation at p, if w(fg) = w(f)g(p) + f(p)w(g).
- The set of all derivations at p can be made into a vector space over ℝ and is denoted as T_pM (the tangent space at p). An element of T_pM is called a tangent vector at p.
- Proposition (how to prove?): Suppose $p \in M$, $v \in T_pM$, and $f, g \in C^{\infty}(M)$.

- Let M be smooth manifold (with or without boundary). A linear map w : C[∞](M) → ℝ is called a derivation at p, if w(fg) = w(f)g(p) + f(p)w(g).
- The set of all derivations at p can be made into a vector space over ℝ and is denoted as T_pM (the tangent space at p). An element of T_pM is called a tangent vector at p.
- Proposition (how to prove?): Suppose $p \in M$, $v \in T_pM$, and $f, g \in C^{\infty}(M)$. Then, if f is constant, v(f) = 0.

- Let M be smooth manifold (with or without boundary). A linear map w : C[∞](M) → ℝ is called a derivation at p, if w(fg) = w(f)g(p) + f(p)w(g).
- The set of all derivations at p can be made into a vector space over ℝ and is denoted as T_pM (the tangent space at p). An element of T_pM is called a tangent vector at p.
- Proposition (how to prove?): Suppose $p \in M$, $v \in T_pM$, and $f, g \in C^{\infty}(M)$. Then, if f is constant, v(f) = 0. Moreover, if f(p) = g(p) = 0, then v(fg) = 0.

Tangent spaces

4/12

• We need to connect

≣ । ह

• We need to connect T_pM to $T_p\mathbb{R}^n$ using coordinate charts.

 We need to connect T_pM to T_pℝⁿ using coordinate charts. To this end, we need to know

 We need to connect T_pM to T_pℝⁿ using coordinate charts. To this end, we need to know how smooth maps change tangent spaces.

- We need to connect T_pM to T_pℝⁿ using coordinate charts. To this end, we need to know how smooth maps change tangent spaces.
- For maps between \mathbb{R}^n ,

- We need to connect T_pM to T_pℝⁿ using coordinate charts. To this end, we need to know how smooth maps change tangent spaces.
- For maps between \mathbb{R}^n , tangent space changes can be computed

- We need to connect T_pM to T_pℝⁿ using coordinate charts. To this end, we need to know how smooth maps change tangent spaces.
- For maps between ℝⁿ, tangent space changes can be computed using the derivative matrix

- We need to connect T_pM to T_pℝⁿ using coordinate charts. To this end, we need to know how smooth maps change tangent spaces.
- For maps between ℝⁿ, tangent space changes can be computed using the derivative matrix which is a linear map from ℝⁿ to itself.

- We need to connect T_pM to T_pℝⁿ using coordinate charts. To this end, we need to know how smooth maps change tangent spaces.
- For maps between ℝⁿ, tangent space changes can be computed using the derivative matrix which is a linear map from ℝⁿ to itself. Unfortunately, the notion of

- We need to connect T_pM to T_pℝⁿ using coordinate charts. To this end, we need to know how smooth maps change tangent spaces.
- For maps between ℝⁿ, tangent space changes can be computed using the derivative matrix which is a linear map from ℝⁿ to itself. Unfortunately, the notion of a linear map between manifolds makes no sense.

- We need to connect T_pM to T_pℝⁿ using coordinate charts. To this end, we need to know how smooth maps change tangent spaces.
- For maps between ℝⁿ, tangent space changes can be computed using the derivative matrix which is a linear map from ℝⁿ to itself. Unfortunately, the notion of a linear map between manifolds makes no sense. The best we can hope for
- We need to connect T_pM to T_pℝⁿ using coordinate charts. To this end, we need to know how smooth maps change tangent spaces.
- For maps between ℝⁿ, tangent space changes can be computed using the derivative matrix which is a linear map from ℝⁿ to itself. Unfortunately, the notion of a linear map between manifolds makes no sense. The best we can hope for is a linear map between tangent spaces.

- We need to connect T_pM to T_pℝⁿ using coordinate charts. To this end, we need to know how smooth maps change tangent spaces.
- For maps between ℝⁿ, tangent space changes can be computed using the derivative matrix which is a linear map from ℝⁿ to itself. Unfortunately, the notion of a linear map between manifolds makes no sense. The best we can hope for is a linear map between tangent spaces.
- Let *M*, *N* be manifolds (with or without boundary),

- We need to connect T_pM to T_pℝⁿ using coordinate charts. To this end, we need to know how smooth maps change tangent spaces.
- For maps between ℝⁿ, tangent space changes can be computed using the derivative matrix which is a linear map from ℝⁿ to itself. Unfortunately, the notion of a linear map between manifolds makes no sense. The best we can hope for is a linear map between tangent spaces.
- Let M, N be manifolds (with or without boundary), $F: M \rightarrow N$ be a smooth map.

- We need to connect T_pM to T_pℝⁿ using coordinate charts. To this end, we need to know how smooth maps change tangent spaces.
- For maps between ℝⁿ, tangent space changes can be computed using the derivative matrix which is a linear map from ℝⁿ to itself. Unfortunately, the notion of a linear map between manifolds makes no sense. The best we can hope for is a linear map between tangent spaces.
- Let M, N be manifolds (with or without boundary), $F: M \to N$ be a smooth map. The pushforward/differential $(F_*)_p: T_pM \to T_{F(p)}N$ of F at p

- We need to connect T_pM to T_pℝⁿ using coordinate charts. To this end, we need to know how smooth maps change tangent spaces.
- For maps between ℝⁿ, tangent space changes can be computed using the derivative matrix which is a linear map from ℝⁿ to itself. Unfortunately, the notion of a linear map between manifolds makes no sense. The best we can hope for is a linear map between tangent spaces.
- Let M, N be manifolds (with or without boundary), $F: M \to N$ be a smooth map. The pushforward/differential $(F_*)_p: T_pM \to T_{F(p)}N$ of F at p is defined as the derivation $(F_*)_p(v)(f) = v(f \circ F)$. (why is it a derivation?)

- We need to connect T_pM to T_pℝⁿ using coordinate charts. To this end, we need to know how smooth maps change tangent spaces.
- For maps between ℝⁿ, tangent space changes can be computed using the derivative matrix which is a linear map from ℝⁿ to itself. Unfortunately, the notion of a linear map between manifolds makes no sense. The best we can hope for is a linear map between tangent spaces.
- Let M, N be manifolds (with or without boundary), $F: M \to N$ be a smooth map. The pushforward/differential $(F_*)_p: T_pM \to T_{F(p)}N$ of F at p is defined as the derivation $(F_*)_p(v)(f) = v(f \circ F)$. (why is it a derivation?)
- Properties:

- We need to connect T_pM to T_pℝⁿ using coordinate charts. To this end, we need to know how smooth maps change tangent spaces.
- For maps between ℝⁿ, tangent space changes can be computed using the derivative matrix which is a linear map from ℝⁿ to itself. Unfortunately, the notion of a linear map between manifolds makes no sense. The best we can hope for is a linear map between tangent spaces.
- Let M, N be manifolds (with or without boundary), $F: M \to N$ be a smooth map. The pushforward/differential $(F_*)_p: T_pM \to T_{F(p)}N$ of F at p is defined as the derivation $(F_*)_p(v)(f) = v(f \circ F)$. (why is it a derivation?)
- Properties: F_{*} is linear,

- We need to connect T_pM to T_pℝⁿ using coordinate charts. To this end, we need to know how smooth maps change tangent spaces.
- For maps between ℝⁿ, tangent space changes can be computed using the derivative matrix which is a linear map from ℝⁿ to itself. Unfortunately, the notion of a linear map between manifolds makes no sense. The best we can hope for is a linear map between tangent spaces.
- Let M, N be manifolds (with or without boundary), $F: M \to N$ be a smooth map. The pushforward/differential $(F_*)_p: T_pM \to T_{F(p)}N$ of F at p is defined as the derivation $(F_*)_p(v)(f) = v(f \circ F)$. (why is it a derivation?)
- Properties: F_* is linear, $((G \circ F)_*)_p = (G_*)_{F(p)} \circ (F_*)_p$,

- We need to connect T_pM to T_pℝⁿ using coordinate charts. To this end, we need to know how smooth maps change tangent spaces.
- For maps between ℝⁿ, tangent space changes can be computed using the derivative matrix which is a linear map from ℝⁿ to itself. Unfortunately, the notion of a linear map between manifolds makes no sense. The best we can hope for is a linear map between tangent spaces.
- Let M, N be manifolds (with or without boundary), $F: M \to N$ be a smooth map. The pushforward/differential $(F_*)_p: T_pM \to T_{F(p)}N$ of F at p is defined as the derivation $(F_*)_p(v)(f) = v(f \circ F)$. (why is it a derivation?)
- Properties: F_* is linear, $((G \circ F)_*)_p = (G_*)_{F(p)} \circ (F_*)_p$, $I_* = I$,

- We need to connect T_pM to T_pℝⁿ using coordinate charts. To this end, we need to know how smooth maps change tangent spaces.
- For maps between ℝⁿ, tangent space changes can be computed using the derivative matrix which is a linear map from ℝⁿ to itself. Unfortunately, the notion of a linear map between manifolds makes no sense. The best we can hope for is a linear map between tangent spaces.
- Let M, N be manifolds (with or without boundary), $F: M \to N$ be a smooth map. The pushforward/differential $(F_*)_p: T_pM \to T_{F(p)}N$ of F at p is defined as the derivation $(F_*)_p(v)(f) = v(f \circ F)$. (why is it a derivation?)
- Properties: F_* is linear, $((G \circ F)_*)_p = (G_*)_{F(p)} \circ (F_*)_p$, $I_* = I$, and if F is a diffeo, then

- We need to connect T_pM to T_pℝⁿ using coordinate charts. To this end, we need to know how smooth maps change tangent spaces.
- For maps between ℝⁿ, tangent space changes can be computed using the derivative matrix which is a linear map from ℝⁿ to itself. Unfortunately, the notion of a linear map between manifolds makes no sense. The best we can hope for is a linear map between tangent spaces.
- Let M, N be manifolds (with or without boundary), $F: M \to N$ be a smooth map. The pushforward/differential $(F_*)_p: T_pM \to T_{F(p)}N$ of F at p is defined as the derivation $(F_*)_p(v)(f) = v(f \circ F)$. (why is it a derivation?)
- Properties: F_* is linear, $((G \circ F)_*)_p = (G_*)_{F(p)} \circ (F_*)_p$, $I_* = I$, and if F is a diffeo, then $(F_*)_p^{-1} = ((F^{-1})_*)_{F(p)}$.

Tangent spaces

► < ≣ 5/12 æ

≪ ≣⇒

• Let *M* be a manifold with or without boundary.

- Let *M* be a manifold with or without boundary.
- Locality:

- Let *M* be a manifold with or without boundary.
- Locality: Suppose $v \in T_p M$.

- Let *M* be a manifold with or without boundary.
- Locality: Suppose v ∈ T_pM. If f, g ∈ C[∞](M) agree on a neighbourhood U of p,

- Let *M* be a manifold with or without boundary.
- Locality: Suppose v ∈ T_pM. If f, g ∈ C[∞](M) agree on a neighbourhood U of p, then v(f) = v(g).

- Let *M* be a manifold with or without boundary.
- Locality: Suppose v ∈ T_pM. If f, g ∈ C[∞](M) agree on a neighbourhood U of p, then v(f) = v(g).
- Proof:

- Let *M* be a manifold with or without boundary.
- Locality: Suppose v ∈ T_pM. If f, g ∈ C[∞](M) agree on a neighbourhood U of p, then v(f) = v(g).
- Proof: Let $\rho: M \to \mathbb{R}$ be a bump

- Let *M* be a manifold with or without boundary.
- Locality: Suppose v ∈ T_pM. If f, g ∈ C[∞](M) agree on a neighbourhood U of p, then v(f) = v(g).
- Proof: Let ρ : M → ℝ be a bump such that ρ = 1 on V ⊂ U and supp(ρ) ⊂ U.

- Let *M* be a manifold with or without boundary.
- Locality: Suppose v ∈ T_pM. If f, g ∈ C[∞](M) agree on a neighbourhood U of p, then v(f) = v(g).
- Proof: Let ρ : M → ℝ be a bump such that ρ = 1 on V ⊂ U and supp(ρ) ⊂ U. Then ρ(f − g) = 0 on M.

- Let *M* be a manifold with or without boundary.
- Locality: Suppose v ∈ T_pM. If f, g ∈ C[∞](M) agree on a neighbourhood U of p, then v(f) = v(g).
- Proof: Let $\rho: M \to \mathbb{R}$ be a bump such that $\rho = 1$ on $V \subset U$ and $supp(\rho) \subset U$. Then $\rho(f - g) = 0$ on M. Now $0 = v(\rho(f - g)) = 0 + \rho(p)v(f - g) = v(f - g)$.

- Let *M* be a manifold with or without boundary.
- Locality: Suppose v ∈ T_pM. If f, g ∈ C[∞](M) agree on a neighbourhood U of p, then v(f) = v(g).
- Proof: Let $\rho: M \to \mathbb{R}$ be a bump such that $\rho = 1$ on $V \subset U$ and $supp(\rho) \subset U$. Then $\rho(f - g) = 0$ on M. Now $0 = v(\rho(f - g)) = 0 + \rho(p)v(f - g) = v(f - g)$.
- Identification for open submanifolds:

- Let *M* be a manifold with or without boundary.
- Locality: Suppose v ∈ T_pM. If f, g ∈ C[∞](M) agree on a neighbourhood U of p, then v(f) = v(g).
- Proof: Let $\rho: M \to \mathbb{R}$ be a bump such that $\rho = 1$ on $V \subset U$ and $supp(\rho) \subset U$. Then $\rho(f - g) = 0$ on M. Now $0 = v(\rho(f - g)) = 0 + \rho(p)v(f - g) = v(f - g)$.
- Identification for open submanifolds: Let U ⊂ M be an open subset.

- Let *M* be a manifold with or without boundary.
- Locality: Suppose v ∈ T_pM. If f, g ∈ C[∞](M) agree on a neighbourhood U of p, then v(f) = v(g).
- Proof: Let $\rho: M \to \mathbb{R}$ be a bump such that $\rho = 1$ on $V \subset U$ and $supp(\rho) \subset U$. Then $\rho(f - g) = 0$ on M. Now $0 = v(\rho(f - g)) = 0 + \rho(p)v(f - g) = v(f - g)$.
- Identification for open submanifolds: Let U ⊂ M be an open subset. Then (i_{*})_p : T_pU → T_pM is an isomorphism for all p ∈ U.

- Let *M* be a manifold with or without boundary.
- Locality: Suppose v ∈ T_pM. If f, g ∈ C[∞](M) agree on a neighbourhood U of p, then v(f) = v(g).
- Proof: Let $\rho: M \to \mathbb{R}$ be a bump such that $\rho = 1$ on $V \subset U$ and $supp(\rho) \subset U$. Then $\rho(f - g) = 0$ on M. Now $0 = v(\rho(f - g)) = 0 + \rho(p)v(f - g) = v(f - g)$.
- Identification for open submanifolds: Let U ⊂ M be an open subset. Then (i_{*})_p : T_pU → T_pM is an isomorphism for all p ∈ U.
- Proof:

- Let *M* be a manifold with or without boundary.
- Locality: Suppose v ∈ T_pM. If f, g ∈ C[∞](M) agree on a neighbourhood U of p, then v(f) = v(g).
- Proof: Let $\rho: M \to \mathbb{R}$ be a bump such that $\rho = 1$ on $V \subset U$ and $supp(\rho) \subset U$. Then $\rho(f - g) = 0$ on M. Now $0 = v(\rho(f - g)) = 0 + \rho(p)v(f - g) = v(f - g)$.
- Identification for open submanifolds: Let U ⊂ M be an open subset. Then (i_{*})_p : T_pU → T_pM is an isomorphism for all p ∈ U.
- Proof: 1-1: If $(i_*)_p(v) = 0$, then

何 ト イヨ ト イヨ ト

- Let *M* be a manifold with or without boundary.
- Locality: Suppose v ∈ T_pM. If f, g ∈ C[∞](M) agree on a neighbourhood U of p, then v(f) = v(g).
- Proof: Let $\rho: M \to \mathbb{R}$ be a bump such that $\rho = 1$ on $V \subset U$ and $supp(\rho) \subset U$. Then $\rho(f - g) = 0$ on M. Now $0 = v(\rho(f - g)) = 0 + \rho(p)v(f - g) = v(f - g)$.
- Identification for open submanifolds: Let U ⊂ M be an open subset. Then (i_{*})_p : T_pU → T_pM is an isomorphism for all p ∈ U.
- Proof: 1-1: If $(i_*)_p(v) = 0$, then whenever $f \in C^\infty(M)$, and

何 ト イヨ ト イヨ ト

- Let *M* be a manifold with or without boundary.
- Locality: Suppose v ∈ T_pM. If f, g ∈ C[∞](M) agree on a neighbourhood U of p, then v(f) = v(g).
- Proof: Let $\rho: M \to \mathbb{R}$ be a bump such that $\rho = 1$ on $V \subset U$ and $supp(\rho) \subset U$. Then $\rho(f - g) = 0$ on M. Now $0 = v(\rho(f - g)) = 0 + \rho(p)v(f - g) = v(f - g)$.
- Identification for open submanifolds: Let U ⊂ M be an open subset. Then (i_{*})_p : T_pU → T_pM is an isomorphism for all p ∈ U.
- Proof: 1-1: If $(i_*)_p(v) = 0$, then whenever $f \in C^{\infty}(M)$, and $v(f||_U) = 0$, then

何 ト イヨ ト イヨ ト

- Let *M* be a manifold with or without boundary.
- Locality: Suppose v ∈ T_pM. If f, g ∈ C[∞](M) agree on a neighbourhood U of p, then v(f) = v(g).
- Proof: Let $\rho: M \to \mathbb{R}$ be a bump such that $\rho = 1$ on $V \subset U$ and $supp(\rho) \subset U$. Then $\rho(f - g) = 0$ on M. Now $0 = v(\rho(f - g)) = 0 + \rho(p)v(f - g) = v(f - g)$.
- Identification for open submanifolds: Let U ⊂ M be an open subset. Then (i_{*})_p : T_pU → T_pM is an isomorphism for all p ∈ U.
- Proof: 1-1: If $(i_*)_p(v) = 0$, then whenever $f \in C^{\infty}(M)$, and $v(f||_U) = 0$, then suppose $g \in C^{\infty}(U)$.

白をくぼとくほとう

- Let *M* be a manifold with or without boundary.
- Locality: Suppose v ∈ T_pM. If f, g ∈ C[∞](M) agree on a neighbourhood U of p, then v(f) = v(g).
- Proof: Let $\rho: M \to \mathbb{R}$ be a bump such that $\rho = 1$ on $V \subset U$ and $supp(\rho) \subset U$. Then $\rho(f - g) = 0$ on M. Now $0 = v(\rho(f - g)) = 0 + \rho(p)v(f - g) = v(f - g)$.
- Identification for open submanifolds: Let U ⊂ M be an open subset. Then (i_{*})_p : T_pU → T_pM is an isomorphism for all p ∈ U.
- Proof: 1-1: If (i_{*})_p(v) = 0, then whenever f ∈ C[∞](M), and v(f||_U) = 0, then suppose g ∈ C[∞](U). Let ρ : M → ℝ be a bump function equal to 1 in a neighbourhood of p and

- Let *M* be a manifold with or without boundary.
- Locality: Suppose v ∈ T_pM. If f, g ∈ C[∞](M) agree on a neighbourhood U of p, then v(f) = v(g).
- Proof: Let $\rho: M \to \mathbb{R}$ be a bump such that $\rho = 1$ on $V \subset U$ and $supp(\rho) \subset U$. Then $\rho(f - g) = 0$ on M. Now $0 = v(\rho(f - g)) = 0 + \rho(p)v(f - g) = v(f - g)$.
- Identification for open submanifolds: Let U ⊂ M be an open subset. Then (i_{*})_p : T_pU → T_pM is an isomorphism for all p ∈ U.
- Proof: 1-1: If (i_{*})_p(v) = 0, then whenever f ∈ C[∞](M), and v(f||_U) = 0, then suppose g ∈ C[∞](U). Let ρ : M → ℝ be a bump function equal to 1 in a neighbourhood of p and supp(ρ) ⊂ U.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ …

3

- Let *M* be a manifold with or without boundary.
- Locality: Suppose v ∈ T_pM. If f, g ∈ C[∞](M) agree on a neighbourhood U of p, then v(f) = v(g).
- Proof: Let $\rho: M \to \mathbb{R}$ be a bump such that $\rho = 1$ on $V \subset U$ and $supp(\rho) \subset U$. Then $\rho(f - g) = 0$ on M. Now $0 = v(\rho(f - g)) = 0 + \rho(p)v(f - g) = v(f - g)$.
- Identification for open submanifolds: Let U ⊂ M be an open subset. Then (i_{*})_p : T_pU → T_pM is an isomorphism for all p ∈ U.
- Proof: 1-1: If (i_{*})_p(v) = 0, then whenever f ∈ C[∞](M), and v(f||_U) = 0, then suppose g ∈ C[∞](U). Let ρ : M → ℝ be a bump function equal to 1 in a neighbourhood of p and supp(ρ) ⊂ U. Thus ρg : M → ℝ agrees with f in a neighbourhood of p.

(4月) (3日) (3日) 日

- Let *M* be a manifold with or without boundary.
- Locality: Suppose v ∈ T_pM. If f, g ∈ C[∞](M) agree on a neighbourhood U of p, then v(f) = v(g).
- Proof: Let $\rho: M \to \mathbb{R}$ be a bump such that $\rho = 1$ on $V \subset U$ and $supp(\rho) \subset U$. Then $\rho(f - g) = 0$ on M. Now $0 = v(\rho(f - g)) = 0 + \rho(p)v(f - g) = v(f - g)$.
- Identification for open submanifolds: Let U ⊂ M be an open subset. Then (i_{*})_p : T_pU → T_pM is an isomorphism for all p ∈ U.
- Proof: 1-1: If (i_{*})_p(v) = 0, then whenever f ∈ C[∞](M), and v(f||_U) = 0, then suppose g ∈ C[∞](U). Let ρ : M → ℝ be a bump function equal to 1 in a neighbourhood of p and supp(ρ) ⊂ U. Thus ρg : M → ℝ agrees with f in a neighbourhood of p. Hence v(ρg) = 0 = v(g) because ρg agrees with g in a neighbourhood of p.

э

- Let *M* be a manifold with or without boundary.
- Locality: Suppose v ∈ T_pM. If f, g ∈ C[∞](M) agree on a neighbourhood U of p, then v(f) = v(g).
- Proof: Let $\rho: M \to \mathbb{R}$ be a bump such that $\rho = 1$ on $V \subset U$ and $supp(\rho) \subset U$. Then $\rho(f - g) = 0$ on M. Now $0 = v(\rho(f - g)) = 0 + \rho(p)v(f - g) = v(f - g)$.
- Identification for open submanifolds: Let U ⊂ M be an open subset. Then (i_{*})_p : T_pU → T_pM is an isomorphism for all p ∈ U.
- Proof: 1-1: If (i_{*})_p(v) = 0, then whenever f ∈ C[∞](M), and v(f||_U) = 0, then suppose g ∈ C[∞](U). Let ρ : M → ℝ be a bump function equal to 1 in a neighbourhood of p and supp(ρ) ⊂ U. Thus ρg : M → ℝ agrees with f in a neighbourhood of p. Hence v(ρg) = 0 = v(g) because ρg agrees with g in a neighbourhood of p. Thus v = 0.

3

Tangent spaces

► < ≣ 6/12 æ

-≣->
• Onto:

▶ ▲ 문 ▶ ▲ 문 ▶

• Onto: Let $w \in T_p M$. Given $f \in C^{\infty}(U)$,

Tangent spaces

6/12

• Onto: Let $w \in T_p M$. Given $f \in C^{\infty}(U)$, define $v(f) = w(\rho f)$.

Tangent spaces

6/12

▶ < E >

Onto: Let w ∈ T_pM. Given f ∈ C[∞](U), define
v(f) = w(ρf). We claim that w(ρ₁f) = w(ρ₂f) if ρ₁, ρ₂ are two bump functions around p.

 Onto: Let w ∈ T_pM. Given f ∈ C[∞](U), define v(f) = w(ρf). We claim that w(ρ₁f) = w(ρ₂f) if ρ₁, ρ₂ are two bump functions around p. Indeed, w((ρ₁ − ρ₂)f) = 0 because (ρ₁ − ρ₂)f

 Onto: Let w ∈ T_pM. Given f ∈ C[∞](U), define v(f) = w(ρf). We claim that w(ρ₁f) = w(ρ₂f) if ρ₁, ρ₂ are two bump functions around p. Indeed, w((ρ₁ − ρ₂)f) = 0 because (ρ₁ − ρ₂)f agrees with the constant function zero in a neighbourhood of p.

Onto: Let w ∈ T_pM. Given f ∈ C[∞](U), define v(f) = w(ρf). We claim that w(ρ₁f) = w(ρ₂f) if ρ₁, ρ₂ are two bump functions around p. Indeed, w((ρ₁ − ρ₂)f) = 0 because (ρ₁ − ρ₂)f agrees with the constant function zero in a neighbourhood of p. Thus,

 $v(fg) = w(\rho fg) = w(\rho^2 fg) = w(\rho f)g(\rho) + w(\rho g)f(\rho).$

 Onto: Let w ∈ T_pM. Given f ∈ C[∞](U), define v(f) = w(ρf). We claim that w(ρ₁f) = w(ρ₂f) if ρ₁, ρ₂ are two bump functions around p. Indeed, w((ρ₁ − ρ₂)f) = 0 because (ρ₁ − ρ₂)f agrees with the constant function zero in a neighbourhood of p. Thus, v(fg) = w(ρfg) = w(ρ²fg) = w(ρf)g(p) + w(ρg)f(p). Thus v ∈ T_pU and

Onto: Let w ∈ T_pM. Given f ∈ C[∞](U), define v(f) = w(ρf). We claim that w(ρ₁f) = w(ρ₂f) if ρ₁, ρ₂ are two bump functions around p. Indeed, w((ρ₁ − ρ₂)f) = 0 because (ρ₁ − ρ₂)f agrees with the constant function zero in a neighbourhood of p. Thus, v(fg) = w(ρfg) = w(ρ²fg) = w(ρf)g(p) + w(ρg)f(p). Thus

$$v \in T_{\rho}U$$
 and $i_*(v)(f) = v(f|_U) = w(\rho f|_U) = w(\rho f).$

- Onto: Let w ∈ T_pM. Given f ∈ C[∞](U), define v(f) = w(ρf). We claim that w(ρ₁f) = w(ρ₂f) if ρ₁, ρ₂ are two bump functions around p. Indeed, w((ρ₁ − ρ₂)f) = 0 because (ρ₁ − ρ₂)f agrees with the constant function zero in a neighbourhood of p. Thus, v(fg) = w(ρfg) = w(ρ²fg) = w(ρf)g(p) + w(ρg)f(p). Thus v ∈ T_pU and i_{*}(v)(f) = v(f|_U) = w(ρf|_U) = w(ρf).
- Since this isomorphism is

- Onto: Let w ∈ T_pM. Given f ∈ C[∞](U), define v(f) = w(ρf). We claim that w(ρ₁f) = w(ρ₂f) if ρ₁, ρ₂ are two bump functions around p. Indeed, w((ρ₁ − ρ₂)f) = 0 because (ρ₁ − ρ₂)f agrees with the constant function zero in a neighbourhood of p. Thus, v(fg) = w(ρfg) = w(ρ²fg) = w(ρf)g(p) + w(ρg)f(p). Thus v ∈ T_pU and i_{*}(v)(f) = v(f|_U) = w(ρf|_U) = w(ρf).
- Since this isomorphism is independent of choices,

- Onto: Let w ∈ T_pM. Given f ∈ C[∞](U), define v(f) = w(ρf). We claim that w(ρ₁f) = w(ρ₂f) if ρ₁, ρ₂ are two bump functions around p. Indeed, w((ρ₁ − ρ₂)f) = 0 because (ρ₁ − ρ₂)f agrees with the constant function zero in a neighbourhood of p. Thus, v(fg) = w(ρfg) = w(ρ²fg) = w(ρf)g(p) + w(ρg)f(p). Thus v ∈ T_pU and i_{*}(v)(f) = v(f|_U) = w(ρf|_U) = w(ρf).
- Since this isomorphism is independent of choices, we abuse notation and

- Onto: Let w ∈ T_pM. Given f ∈ C[∞](U), define v(f) = w(ρf). We claim that w(ρ₁f) = w(ρ₂f) if ρ₁, ρ₂ are two bump functions around p. Indeed, w((ρ₁ − ρ₂)f) = 0 because (ρ₁ − ρ₂)f agrees with the constant function zero in a neighbourhood of p. Thus, v(fg) = w(ρfg) = w(ρ²fg) = w(ρf)g(p) + w(ρg)f(p). Thus v ∈ T_pU and i_{*}(v)(f) = v(f|_U) = w(ρf|_U) = w(ρf).
- Since this isomorphism is independent of choices, we abuse notation and *identify* $T_p U$ with $T_p M$ without mentioning the same.

- Onto: Let w ∈ T_pM. Given f ∈ C[∞](U), define v(f) = w(ρf). We claim that w(ρ₁f) = w(ρ₂f) if ρ₁, ρ₂ are two bump functions around p. Indeed, w((ρ₁ − ρ₂)f) = 0 because (ρ₁ − ρ₂)f agrees with the constant function zero in a neighbourhood of p. Thus, v(fg) = w(ρfg) = w(ρ²fg) = w(ρf)g(p) + w(ρg)f(p). Thus v ∈ T_pU and i_{*}(v)(f) = v(f|_U) = w(ρf|_U) = w(ρf).
- Since this isomorphism is independent of choices, we abuse notation and *identify* $T_p U$ with $T_p M$ without mentioning the same.
- Dimension:

- Onto: Let w ∈ T_pM. Given f ∈ C[∞](U), define v(f) = w(ρf). We claim that w(ρ₁f) = w(ρ₂f) if ρ₁, ρ₂ are two bump functions around p. Indeed, w((ρ₁ − ρ₂)f) = 0 because (ρ₁ − ρ₂)f agrees with the constant function zero in a neighbourhood of p. Thus, v(fg) = w(ρfg) = w(ρ²fg) = w(ρf)g(p) + w(ρg)f(p). Thus v ∈ T_pU and i_{*}(v)(f) = v(f|_U) = w(ρf|_U) = w(ρf).
- Since this isomorphism is independent of choices, we abuse notation and *identify* $T_p U$ with $T_p M$ without mentioning the same.
- Dimension: If *M* is an *n*-dimensional manifold (*without* boundary), then

- Onto: Let w ∈ T_pM. Given f ∈ C[∞](U), define v(f) = w(ρf). We claim that w(ρ₁f) = w(ρ₂f) if ρ₁, ρ₂ are two bump functions around p. Indeed, w((ρ₁ − ρ₂)f) = 0 because (ρ₁ − ρ₂)f agrees with the constant function zero in a neighbourhood of p. Thus, v(fg) = w(ρfg) = w(ρ²fg) = w(ρf)g(p) + w(ρg)f(p). Thus v ∈ T_pU and i_{*}(v)(f) = v(f|_U) = w(ρf|_U) = w(ρf).
- Since this isomorphism is independent of choices, we abuse notation and *identify* $T_p U$ with $T_p M$ without mentioning the same.
- Dimension: If M is an *n*-dimensional manifold (*without* boundary), then T_pM is *n*-dimensional. (

- Onto: Let w ∈ T_pM. Given f ∈ C[∞](U), define v(f) = w(ρf). We claim that w(ρ₁f) = w(ρ₂f) if ρ₁, ρ₂ are two bump functions around p. Indeed, w((ρ₁ − ρ₂)f) = 0 because (ρ₁ − ρ₂)f agrees with the constant function zero in a neighbourhood of p. Thus, v(fg) = w(ρfg) = w(ρ²fg) = w(ρf)g(p) + w(ρg)f(p). Thus v ∈ T_pU and i_{*}(v)(f) = v(f|_U) = w(ρf|_U) = w(ρf).
- Since this isomorphism is independent of choices, we abuse notation and *identify* T_pU with T_pM without mentioning the same.
- Dimension: If M is an n-dimensional manifold (without boundary), then T_pM is n-dimensional. (This is applicable

- Onto: Let w ∈ T_pM. Given f ∈ C[∞](U), define v(f) = w(ρf). We claim that w(ρ₁f) = w(ρ₂f) if ρ₁, ρ₂ are two bump functions around p. Indeed, w((ρ₁ − ρ₂)f) = 0 because (ρ₁ − ρ₂)f agrees with the constant function zero in a neighbourhood of p. Thus, v(fg) = w(ρfg) = w(ρ²fg) = w(ρf)g(p) + w(ρg)f(p). Thus v ∈ T_pU and i_{*}(v)(f) = v(f|_U) = w(ρf|_U) = w(ρf).
- Since this isomorphism is independent of choices, we abuse notation and *identify* $T_p U$ with $T_p M$ without mentioning the same.
- Dimension: If M is an *n*-dimensional manifold (*without* boundary), then T_pM is *n*-dimensional. (This is applicable even to interior points

- Onto: Let w ∈ T_pM. Given f ∈ C[∞](U), define v(f) = w(ρf). We claim that w(ρ₁f) = w(ρ₂f) if ρ₁, ρ₂ are two bump functions around p. Indeed, w((ρ₁ − ρ₂)f) = 0 because (ρ₁ − ρ₂)f agrees with the constant function zero in a neighbourhood of p. Thus, v(fg) = w(ρfg) = w(ρ²fg) = w(ρf)g(p) + w(ρg)f(p). Thus v ∈ T_pU and i_{*}(v)(f) = v(f|_U) = w(ρf|_U) = w(ρf).
- Since this isomorphism is independent of choices, we abuse notation and *identify* T_pU with T_pM without mentioning the same.
- Dimension: If M is an *n*-dimensional manifold (*without* boundary), then T_pM is *n*-dimensional. (This is applicable even to interior points on manifolds-with-boundary.)

- Onto: Let w ∈ T_pM. Given f ∈ C[∞](U), define v(f) = w(ρf). We claim that w(ρ₁f) = w(ρ₂f) if ρ₁, ρ₂ are two bump functions around p. Indeed, w((ρ₁ − ρ₂)f) = 0 because (ρ₁ − ρ₂)f agrees with the constant function zero in a neighbourhood of p. Thus, v(fg) = w(ρfg) = w(ρ²fg) = w(ρf)g(p) + w(ρg)f(p). Thus v ∈ T_pU and i_{*}(v)(f) = v(f|_U) = w(ρf|_U) = w(ρf).
- Since this isomorphism is independent of choices, we abuse notation and *identify* $T_p U$ with $T_p M$ without mentioning the same.
- Dimension: If M is an *n*-dimensional manifold (*without* boundary), then T_pM is *n*-dimensional. (This is applicable even to interior points on manifolds-with-boundary.)
- Proof:

- Onto: Let w ∈ T_pM. Given f ∈ C[∞](U), define v(f) = w(ρf). We claim that w(ρ₁f) = w(ρ₂f) if ρ₁, ρ₂ are two bump functions around p. Indeed, w((ρ₁ − ρ₂)f) = 0 because (ρ₁ − ρ₂)f agrees with the constant function zero in a neighbourhood of p. Thus, v(fg) = w(ρfg) = w(ρ²fg) = w(ρf)g(p) + w(ρg)f(p). Thus v ∈ T_pU and i_{*}(v)(f) = v(f|_U) = w(ρf|_U) = w(ρf).
- Since this isomorphism is independent of choices, we abuse notation and *identify* $T_p U$ with $T_p M$ without mentioning the same.
- Dimension: If M is an *n*-dimensional manifold (*without* boundary), then T_pM is *n*-dimensional. (This is applicable even to interior points on manifolds-with-boundary.)
- Proof:Let (ϕ, U) be a coordinate chart around p.

- Onto: Let w ∈ T_pM. Given f ∈ C[∞](U), define v(f) = w(ρf). We claim that w(ρ₁f) = w(ρ₂f) if ρ₁, ρ₂ are two bump functions around p. Indeed, w((ρ₁ − ρ₂)f) = 0 because (ρ₁ − ρ₂)f agrees with the constant function zero in a neighbourhood of p. Thus, v(fg) = w(ρfg) = w(ρ²fg) = w(ρf)g(p) + w(ρg)f(p). Thus v ∈ T_pU and i_{*}(v)(f) = v(f|_U) = w(ρf|_U) = w(ρf).
- Since this isomorphism is independent of choices, we abuse notation and *identify* $T_p U$ with $T_p M$ without mentioning the same.
- Dimension: If M is an *n*-dimensional manifold (*without* boundary), then T_pM is *n*-dimensional. (This is applicable even to interior points on manifolds-with-boundary.)
- Proof:Let (φ, U) be a coordinate chart around p. Then (φ_{*})_p : T_pU = T_pM → T_{φ(p)}(φ(U)) = T_{φ(p)}ℝⁿ = ℝⁿ is an isomorphism.

Tangent spaces

7/12

• Unfortunately,

æ ≣⇒

• Unfortunately, this theorem cannot be directly applied

≣ । ह

• Unfortunately, this theorem cannot be directly applied to the boundary points on manifolds-with-boundary. (

 Unfortunately, this theorem cannot be directly applied to the boundary points on manifolds-with-boundary. (Because ℍⁿ is not an open subset of ℝⁿ.)

 Unfortunately, this theorem cannot be directly applied to the boundary points on manifolds-with-boundary. (Because ℍⁿ is not an open subset of ℝⁿ.) So what is the dimension of T_pM for a boundary point?

• Unfortunately, this theorem cannot be directly applied to the boundary points on manifolds-with-boundary. (Because \mathbb{H}^n is not an open subset of \mathbb{R}^n .) So what is the dimension of T_pM for a boundary point? Is it *n* or n-1? (

• Unfortunately, this theorem cannot be directly applied to the boundary points on manifolds-with-boundary. (Because \mathbb{H}^n is not an open subset of \mathbb{R}^n .) So what is the dimension of \mathcal{T}_pM for a boundary point? Is it *n* or n - 1? (Spoiler alert: It is *n*.)

Unfortunately, this theorem cannot be directly applied to the boundary points on manifolds-with-boundary. (Because ℍⁿ is not an open subset of ℝⁿ.) So what is the dimension of T_pM for a boundary point? Is it n or n - 1? (Spoiler alert: It is n.)

• For any $a \in \partial \mathbb{H}^n$,

- Unfortunately, this theorem cannot be directly applied to the boundary points on manifolds-with-boundary. (Because \mathbb{H}^n is not an open subset of \mathbb{R}^n .) So what is the dimension of T_pM for a boundary point? Is it *n* or n 1? (Spoiler alert: It is *n*.)
- For any $a \in \partial \mathbb{H}^n$, $(i_*)_a : T_a \mathbb{H}^n \to T_a \mathbb{R}^n$ is an isomorphism.

- Unfortunately, this theorem cannot be directly applied to the boundary points on manifolds-with-boundary. (Because \mathbb{H}^n is not an open subset of \mathbb{R}^n .) So what is the dimension of T_pM for a boundary point? Is it *n* or n 1? (Spoiler alert: It is *n*.)
- For any $a \in \partial \mathbb{H}^n$, $(i_*)_a : T_a \mathbb{H}^n \to T_a \mathbb{R}^n$ is an isomorphism.
- Proof:

- Unfortunately, this theorem cannot be directly applied to the boundary points on manifolds-with-boundary. (Because \mathbb{H}^n is not an open subset of \mathbb{R}^n .) So what is the dimension of T_pM for a boundary point? Is it *n* or n 1? (Spoiler alert: It is *n*.)
- For any $a \in \partial \mathbb{H}^n$, $(i_*)_a : T_a \mathbb{H}^n \to T_a \mathbb{R}^n$ is an isomorphism.
- Proof: 1-1:

- Unfortunately, this theorem cannot be directly applied to the boundary points on manifolds-with-boundary. (Because \mathbb{H}^n is not an open subset of \mathbb{R}^n .) So what is the dimension of T_pM for a boundary point? Is it *n* or n 1? (Spoiler alert: It is *n*.)
- For any $a \in \partial \mathbb{H}^n$, $(i_*)_a : T_a \mathbb{H}^n \to T_a \mathbb{R}^n$ is an isomorphism.
- Proof: 1-1: Let $v \in T_a \mathbb{H}^n$ such that $i_* v = 0$,

- Unfortunately, this theorem cannot be directly applied to the boundary points on manifolds-with-boundary. (Because \mathbb{H}^n is not an open subset of \mathbb{R}^n .) So what is the dimension of T_pM for a boundary point? Is it *n* or n 1? (Spoiler alert: It is *n*.)
- For any $a \in \partial \mathbb{H}^n$, $(i_*)_a : T_a \mathbb{H}^n \to T_a \mathbb{R}^n$ is an isomorphism.
- Proof: 1-1: Let $v \in T_a \mathbb{H}^n$ such that $i_*v = 0$, and $f \in C^{\infty}(\mathbb{H}^n)$.
- Unfortunately, this theorem cannot be directly applied to the boundary points on manifolds-with-boundary. (Because \mathbb{H}^n is not an open subset of \mathbb{R}^n .) So what is the dimension of T_pM for a boundary point? Is it *n* or n 1? (Spoiler alert: It is *n*.)
- For any $a \in \partial \mathbb{H}^n$, $(i_*)_a : T_a \mathbb{H}^n \to T_a \mathbb{R}^n$ is an isomorphism.
- Proof: 1-1: Let $v \in T_a \mathbb{H}^n$ such that $i_*v = 0$, and $f \in C^{\infty}(\mathbb{H}^n)$. Let \tilde{f} be a smooth extension to \mathbb{R}^n .

- Unfortunately, this theorem cannot be directly applied to the boundary points on manifolds-with-boundary. (Because \mathbb{H}^n is not an open subset of \mathbb{R}^n .) So what is the dimension of T_pM for a boundary point? Is it *n* or n 1? (Spoiler alert: It is *n*.)
- For any $a \in \partial \mathbb{H}^n$, $(i_*)_a : T_a \mathbb{H}^n \to T_a \mathbb{R}^n$ is an isomorphism.
- Proof: 1-1: Let $v \in T_a \mathbb{H}^n$ such that $i_*v = 0$, and $f \in C^{\infty}(\mathbb{H}^n)$. Let \tilde{f} be a smooth extension to \mathbb{R}^n . Now $0 = i_*v(\tilde{f}) = v(\tilde{f} \circ i) = v(f)$.

- Unfortunately, this theorem cannot be directly applied to the boundary points on manifolds-with-boundary. (Because \mathbb{H}^n is not an open subset of \mathbb{R}^n .) So what is the dimension of T_pM for a boundary point? Is it *n* or n 1? (Spoiler alert: It is *n*.)
- For any $a \in \partial \mathbb{H}^n$, $(i_*)_a : T_a \mathbb{H}^n \to T_a \mathbb{R}^n$ is an isomorphism.
- Proof: 1-1: Let $v \in T_a \mathbb{H}^n$ such that $i_*v = 0$, and $f \in C^{\infty}(\mathbb{H}^n)$. Let \tilde{f} be a smooth extension to \mathbb{R}^n . Now $0 = i_*v(\tilde{f}) = v(\tilde{f} \circ i) = v(f)$. Onto:

- Unfortunately, this theorem cannot be directly applied to the boundary points on manifolds-with-boundary. (Because \mathbb{H}^n is not an open subset of \mathbb{R}^n .) So what is the dimension of T_pM for a boundary point? Is it *n* or n 1? (Spoiler alert: It is *n*.)
- For any $a \in \partial \mathbb{H}^n$, $(i_*)_a : T_a \mathbb{H}^n \to T_a \mathbb{R}^n$ is an isomorphism.
- Proof: 1-1: Let $v \in T_a \mathbb{H}^n$ such that $i_*v = 0$, and $f \in C^{\infty}(\mathbb{H}^n)$. Let \tilde{f} be a smooth extension to \mathbb{R}^n . Now $0 = i_*v(\tilde{f}) = v(\tilde{f} \circ i) = v(f)$. Onto: Let $w = w^i \frac{\partial}{\partial x^i} \in T_a \mathbb{R}^n$.

- Unfortunately, this theorem cannot be directly applied to the boundary points on manifolds-with-boundary. (Because \mathbb{H}^n is not an open subset of \mathbb{R}^n .) So what is the dimension of T_pM for a boundary point? Is it *n* or n 1? (Spoiler alert: It is *n*.)
- For any $a \in \partial \mathbb{H}^n$, $(i_*)_a : T_a \mathbb{H}^n \to T_a \mathbb{R}^n$ is an isomorphism.
- Proof: 1-1: Let $v \in T_a \mathbb{H}^n$ such that $i_*v = 0$, and $f \in C^{\infty}(\mathbb{H}^n)$. Let \tilde{f} be a smooth extension to \mathbb{R}^n . Now $0 = i_*v(\tilde{f}) = v(\tilde{f} \circ i) = v(f)$. Onto: Let $w = w^i \frac{\partial}{\partial x^i} \in T_a \mathbb{R}^n$. Let $f \in C^{\infty}(\mathbb{H}^n)$. Define \tilde{f} as a smooth extension of f to \mathbb{R}^n and

- Unfortunately, this theorem cannot be directly applied to the boundary points on manifolds-with-boundary. (Because \mathbb{H}^n is not an open subset of \mathbb{R}^n .) So what is the dimension of T_pM for a boundary point? Is it *n* or n 1? (Spoiler alert: It is *n*.)
- For any $a \in \partial \mathbb{H}^n$, $(i_*)_a : T_a \mathbb{H}^n \to T_a \mathbb{R}^n$ is an isomorphism.
- Proof: 1-1: Let v ∈ T_aℍⁿ such that i_{*}v = 0, and f ∈ C[∞](ℍⁿ). Let f̃ be a smooth extension to ℝⁿ. Now 0 = i_{*}v(f̃) = v(f̃ ∘ i) = v(f). Onto: Let w = wⁱ ∂/∂xⁱ ∈ T_aℝⁿ. Let f ∈ C[∞](ℍⁿ). Define f̃ as a smooth extension of f to ℝⁿ and v(f) = w(f̃) = wⁱ ∂f̃/∂xⁱ(a) = and is hence independent of

- Unfortunately, this theorem cannot be directly applied to the boundary points on manifolds-with-boundary. (Because \mathbb{H}^n is not an open subset of \mathbb{R}^n .) So what is the dimension of T_pM for a boundary point? Is it *n* or n 1? (Spoiler alert: It is *n*.)
- For any $a \in \partial \mathbb{H}^n$, $(i_*)_a : T_a \mathbb{H}^n \to T_a \mathbb{R}^n$ is an isomorphism.
- Proof: 1-1: Let v ∈ T_aℍⁿ such that i_{*}v = 0, and f ∈ C[∞](ℍⁿ). Let f̃ be a smooth extension to ℝⁿ. Now 0 = i_{*}v(f̃) = v(f̃ ∘ i) = v(f). Onto: Let w = wⁱ ∂/∂xⁱ ∈ T_aℝⁿ. Let f ∈ C[∞](ℍⁿ). Define f̃ as a smooth extension of f to ℝⁿ and v(f) = w(f̃) = wⁱ ∂f/∂xⁱ(a) = and is hence independent of the choice of f̃ (because of continuity).

- Unfortunately, this theorem cannot be directly applied to the boundary points on manifolds-with-boundary. (Because \mathbb{H}^n is not an open subset of \mathbb{R}^n .) So what is the dimension of T_pM for a boundary point? Is it *n* or n 1? (Spoiler alert: It is *n*.)
- For any $a \in \partial \mathbb{H}^n$, $(i_*)_a : T_a \mathbb{H}^n \to T_a \mathbb{R}^n$ is an isomorphism.
- Proof: 1-1: Let v ∈ T_aℍⁿ such that i_{*}v = 0, and f ∈ C[∞](ℍⁿ). Let f̃ be a smooth extension to ℝⁿ. Now 0 = i_{*}v(f̃) = v(f̃ ∘ i) = v(f). Onto: Let w = wⁱ ∂/∂xⁱ ∈ T_aℝⁿ. Let f ∈ C[∞](ℍⁿ). Define f̃ as a smooth extension of f to ℝⁿ and v(f) = w(f̃) = wⁱ ∂f/∂xⁱ(a) = and is hence independent of the choice of f̃ (because of continuity). v is a derivation and hence we are done.

- Unfortunately, this theorem cannot be directly applied to the boundary points on manifolds-with-boundary. (Because \mathbb{H}^n is not an open subset of \mathbb{R}^n .) So what is the dimension of T_pM for a boundary point? Is it *n* or n 1? (Spoiler alert: It is *n*.)
- For any $a \in \partial \mathbb{H}^n$, $(i_*)_a : T_a \mathbb{H}^n \to T_a \mathbb{R}^n$ is an isomorphism.
- Proof: 1-1: Let $v \in T_a \mathbb{H}^n$ such that $i_*v = 0$, and $f \in C^{\infty}(\mathbb{H}^n)$. Let \tilde{f} be a smooth extension to \mathbb{R}^n . Now $0 = i_*v(\tilde{f}) = v(\tilde{f} \circ i) = v(f)$. Onto: Let $w = w^i \frac{\partial}{\partial x^i} \in T_a \mathbb{R}^n$. Let $f \in C^{\infty}(\mathbb{H}^n)$. Define \tilde{f} as a smooth extension of f to \mathbb{R}^n and $v(f) = w(\tilde{f}) = w^i \frac{\partial \tilde{f}}{\partial x^i}(a) =$ and is hence independent of the choice of \tilde{f} (because of continuity). v is a derivation and hence we are done.
- Corollary:

- Unfortunately, this theorem cannot be directly applied to the boundary points on manifolds-with-boundary. (Because \mathbb{H}^n is not an open subset of \mathbb{R}^n .) So what is the dimension of T_pM for a boundary point? Is it *n* or n 1? (Spoiler alert: It is *n*.)
- For any $a \in \partial \mathbb{H}^n$, $(i_*)_a : T_a \mathbb{H}^n \to T_a \mathbb{R}^n$ is an isomorphism.
- Proof: 1-1: Let v ∈ T_aℍⁿ such that i_{*}v = 0, and f ∈ C[∞](ℍⁿ). Let f̃ be a smooth extension to ℝⁿ. Now 0 = i_{*}v(f̃) = v(f̃ ∘ i) = v(f). Onto: Let w = wⁱ ∂/∂xⁱ ∈ T_aℝⁿ. Let f ∈ C[∞](ℍⁿ). Define f̃ as a smooth extension of f to ℝⁿ and v(f) = w(f̃) = wⁱ ∂f/∂xⁱ(a) = and is hence independent of the choice of f̃ (because of continuity). v is a derivation and hence we are done.
- Corollary: The dimension of T_pM even for manifolds-with-boundary is dim(M).

 < □ > < □ > < □ > < ⊇ > < ⊇ > < ⊇ > < ⊇</td>
 ⊇

 Tangent spaces
 8/12

• Let V be a f.d normed vector space

• Let V be a f.d normed vector space treated as a smooth manifold.

• Let V be a f.d normed vector space treated as a smooth manifold. Consider the map $D_{a,v}f = \frac{df(a+tv)}{dt}$.

• Let V be a f.d normed vector space treated as a smooth manifold. Consider the map $D_{a,v}f = \frac{df(a+tv)}{dt}$. This map gives an isomorphism

• Let V be a f.d normed vector space treated as a smooth manifold. Consider the map $D_{a,v}f = \frac{df(a+tv)}{dt}$. This map gives an isomorphism of V to T_aV that

• Let V be a f.d normed vector space treated as a smooth manifold. Consider the map $D_{a,v}f = \frac{df(a+tv)}{dt}$. This map gives an isomorphism of V to T_aV that commutes with linear maps to other vector spaces (what does this mean and why?)

- Let V be a f.d normed vector space treated as a smooth manifold. Consider the map $D_{a,v}f = \frac{df(a+tv)}{dt}$. This map gives an isomorphism of V to T_aV that commutes with linear maps to other vector spaces (what does this mean and why?)
- Thus we can canonically identify V with T_aV .

- Let V be a f.d normed vector space treated as a smooth manifold. Consider the map $D_{a,v}f = \frac{df(a+tv)}{dt}$. This map gives an isomorphism of V to T_aV that commutes with linear maps to other vector spaces (what does this mean and why?)
- Thus we can canonically identify V with T_aV. Moreover, if M ⊂ V is an open submanifold,

- Let V be a f.d normed vector space treated as a smooth manifold. Consider the map $D_{a,v}f = \frac{df(a+tv)}{dt}$. This map gives an isomorphism of V to T_aV that commutes with linear maps to other vector spaces (what does this mean and why?)
- Thus we can canonically identify V with T_aV. Moreover, if M ⊂ V is an open submanifold, then T_aM = T_aV = V.

- Let V be a f.d normed vector space treated as a smooth manifold. Consider the map $D_{a,v}f = \frac{df(a+tv)}{dt}$. This map gives an isomorphism of V to T_aV that commutes with linear maps to other vector spaces (what does this mean and why?)
- Thus we can canonically identify V with T_aV . Moreover, if $M \subset V$ is an open submanifold, then $T_aM = T_aV = V$. Thus $T_aGL(n,\mathbb{R}) = M(n,\mathbb{R})$.

- Let V be a f.d normed vector space treated as a smooth manifold. Consider the map $D_{a,v}f = \frac{df(a+tv)}{dt}$. This map gives an isomorphism of V to T_aV that commutes with linear maps to other vector spaces (what does this mean and why?)
- Thus we can canonically identify V with T_aV . Moreover, if $M \subset V$ is an open submanifold, then $T_aM = T_aV = V$. Thus $T_aGL(n,\mathbb{R}) = M(n,\mathbb{R})$.
- Let M_1, M_2, \ldots, M_k be smooth manifolds (without boundary).

- Let V be a f.d normed vector space treated as a smooth manifold. Consider the map $D_{a,v}f = \frac{df(a+tv)}{dt}$. This map gives an isomorphism of V to T_aV that commutes with linear maps to other vector spaces (what does this mean and why?)
- Thus we can canonically identify V with T_aV . Moreover, if $M \subset V$ is an open submanifold, then $T_aM = T_aV = V$. Thus $T_aGL(n,\mathbb{R}) = M(n,\mathbb{R})$.
- Let M_1, M_2, \ldots, M_k be smooth manifolds (without boundary). Then $\alpha_p : T_p(M_1 \times M_2 \ldots) \to T_pM_1 \times T_pM_2 \ldots$ given by $\alpha_p(v) = ((\pi_1)_*(v), (\pi_2)_*(v), \ldots)$ is an isomorphism.

Tangent spaces

9/12

• Proposition:

Tangent spaces

9/12

Proposition: Let *M* be a smooth *n*-manifold with or without boundary, and *p* ∈ *M*.

Proposition: Let *M* be a smooth *n*-manifold with or without boundary, and *p* ∈ *M*. For any chart (*U*, *xⁱ*) around *p*,

Proposition: Let *M* be a smooth *n*-manifold with or without boundary, and *p* ∈ *M*. For any chart (*U*, *xⁱ*) around *p*, the (pushforwards of) the coordinate vectors ∂/∂*xⁱ*

Proposition: Let *M* be a smooth *n*-manifold with or without boundary, and *p* ∈ *M*. For any chart (*U*, *xⁱ*) around *p*, the (pushforwards of) the coordinate vectors ∂/∂*xⁱ* form a basis for *T_pM*, i.e.,

Proposition: Let *M* be a smooth *n*-manifold with or without boundary, and *p* ∈ *M*. For any chart (*U*, *xⁱ*) around *p*, the (pushforwards of) the coordinate vectors ∂/∂*xⁱ* form a basis for *T_pM*, i.e., If *f* ∈ *C*[∞](*M*), then *v*(*f*) = *vⁱ* ∂*f*oφ⁻¹/∂*xⁱ*(φ(*p*)).

Proposition: Let M be a smooth n-manifold with or without boundary, and p ∈ M. For any chart (U, xⁱ) around p, the (pushforwards of) the coordinate vectors ∂/∂xⁱ form a basis for T_pM, i.e., If f ∈ C[∞](M), then v(f) = vⁱ ∂f o φ⁻¹/∂xⁱ (φ(p)). As always, we abuse notation

Proposition: Let *M* be a smooth *n*-manifold with or without boundary, and *p* ∈ *M*. For any chart (*U*, *xⁱ*) around *p*, the (pushforwards of) the coordinate vectors ∂/∂xⁱ form a basis for *T_pM*, i.e., If *f* ∈ *C*[∞](*M*), then *v*(*f*) = *vⁱ* ∂*f* ∘ φ⁻¹/∂xⁱ (φ(*p*)). As always, we abuse notation and drop the φ.

Proposition: Let *M* be a smooth *n*-manifold with or without boundary, and *p* ∈ *M*. For any chart (*U*, *xⁱ*) around *p*, the (pushforwards of) the coordinate vectors ∂/∂*xⁱ* form a basis for *T_pM*, i.e., If *f* ∈ *C*[∞](*M*), then *v*(*f*) = *vⁱ* ∂*f*oφ⁻¹/∂*xⁱ*(φ(*p*)). As always, we abuse notation and drop the φ. So *v*(*f*) = *vⁱ* ∂*f*(*p*).

Proposition: Let *M* be a smooth *n*-manifold with or without boundary, and *p* ∈ *M*. For any chart (*U*, *xⁱ*) around *p*, the (pushforwards of) the coordinate vectors ∂/∂xⁱ form a basis for *T_pM*, i.e., If *f* ∈ *C*[∞](*M*), then *v*(*f*) = *vⁱ* ∂*f* ∘ φ⁻¹/∂xⁱ(φ(*p*)). As always, we abuse notation and drop the φ. So *v*(*f*) = *vⁱ* ∂*f*/∂xⁱ(*p*).
The vectors ∂/∂xⁱ are called a coordinate basis for *T_pM*.

Tangent spaces

- Proposition: Let *M* be a smooth *n*-manifold with or without boundary, and *p* ∈ *M*. For any chart (*U*, *xⁱ*) around *p*, the (pushforwards of) the coordinate vectors ∂/∂*xⁱ* form a basis for *T_pM*, i.e., If *f* ∈ *C*[∞](*M*), then *v*(*f*) = *vⁱ* ∂*foφ⁻¹*/∂*xⁱ*(φ(*p*)). As always, we abuse notation and drop the φ. So *v*(*f*) = *vⁱ* ∂*f*/∂*xⁱ*(*p*).
 The unstant ∂/∂*x* are called a coordinate basis for *T M*. Since
- The vectors $\frac{\partial}{\partial x^i}$ are called a coordinate basis for $T_p M$. Since the map $v \to D_{p,v}$ is an isomorphism in \mathbb{R}^n ,

- Proposition: Let *M* be a smooth *n*-manifold with or without boundary, and *p* ∈ *M*. For any chart (*U*, *xⁱ*) around *p*, the (pushforwards of) the coordinate vectors ∂/∂*xⁱ* form a basis for *T_pM*, i.e., If *f* ∈ *C*[∞](*M*), then *v*(*f*) = *vⁱ* ∂*foφ⁻¹*/∂*xⁱ*(φ(*p*)). As always, we abuse notation and drop the φ. So *v*(*f*) = *vⁱ* ∂*f*/∂*xⁱ*(*p*).
 The vectors ∂/∂*x* are called a secondinate basis for *T M*. Since
- The vectors $\frac{\partial}{\partial x^i}$ are called a coordinate basis for $T_p M$. Since the map $v \to D_{p,v}$ is an isomorphism in \mathbb{R}^n , these vectors can also be identified with
- Proposition: Let *M* be a smooth *n*-manifold with or without boundary, and *p* ∈ *M*. For any chart (*U*, *xⁱ*) around *p*, the (pushforwards of) the coordinate vectors ∂/∂*xⁱ* form a basis for *T_pM*, i.e., If *f* ∈ *C*[∞](*M*), then *v*(*f*) = *vⁱ* ∂*foφ⁻¹*/∂*xⁱ*(φ(*p*)). As always, we abuse notation and drop the φ. So *v*(*f*) = *vⁱ* ∂*f*/∂*xⁱ*(*p*).
- The vectors $\frac{\partial}{\partial x^i}$ are called a coordinate basis for $T_p M$. Since the map $v \to D_{p,v}$ is an isomorphism in \mathbb{R}^n , these vectors can also be identified with $e_1 = (1, 0, 0...), \ldots$

- Proposition: Let *M* be a smooth *n*-manifold with or without boundary, and *p* ∈ *M*. For any chart (*U*, *xⁱ*) around *p*, the (pushforwards of) the coordinate vectors ∂/∂*xⁱ* form a basis for *T_pM*, i.e., If *f* ∈ *C*[∞](*M*), then *v*(*f*) = *vⁱ* ∂/∂*xⁱ*(φ(*p*)). As always, we abuse notation and drop the φ. So *v*(*f*) = *vⁱ* ∂/∂*xⁱ*(*p*).
- The vectors ∂/∂xⁱ are called a coordinate basis for T_pM. Since the map v → D_{p,v} is an isomorphism in ℝⁿ, these vectors can also be identified with e₁ = (1,0,0...),.... The components of v in a coordinate chart (U, xⁱ) are vⁱ = v(xⁱ).

- Proposition: Let M be a smooth n-manifold with or without boundary, and $p \in M$. For any chart (U, x^i) around p, the (pushforwards of) the coordinate vectors $\frac{\partial}{\partial x^i}$ form a basis for T_pM , i.e., If $f \in C^{\infty}(M)$, then $v(f) = v^i \frac{\partial f \circ \phi^{-1}}{\partial x^i}(\phi(p))$. As always, we abuse notation and drop the ϕ . So $v(f) = v^i \frac{\partial f}{\partial x^i}(p)$.
- The vectors $\frac{\partial}{\partial x^i}$ are called a coordinate basis for $T_p M$. Since the map $v \to D_{p,v}$ is an isomorphism in \mathbb{R}^n , these vectors can also be identified with $e_1 = (1, 0, 0...), \ldots$. The components of v in a coordinate chart (U, x^i) are $v^i = v(x^i)$.
- Let $F: U \subset \mathbb{R}^m \to V \subset \mathbb{R}^n$ be a smooth map.

- Proposition: Let M be a smooth n-manifold with or without boundary, and p ∈ M. For any chart (U, xⁱ) around p, the (pushforwards of) the coordinate vectors ∂/∂xⁱ form a basis for T_pM, i.e., If f ∈ C[∞](M), then v(f) = vⁱ ∂f oφ⁻¹/∂xⁱ (φ(p)). As always, we abuse notation and drop the φ. So v(f) = vⁱ ∂f/∂xⁱ(p).
- The vectors ∂/∂xⁱ are called a coordinate basis for T_pM. Since the map v → D_{p,v} is an isomorphism in ℝⁿ, these vectors can also be identified with e₁ = (1,0,0...),.... The components of v in a coordinate chart (U, xⁱ) are vⁱ = v(xⁱ).
- Let $F: U \subset \mathbb{R}^m \to V \subset \mathbb{R}^n$ be a smooth map. Then $F_*(\frac{\partial}{\partial x^i})(f) = \frac{\partial (f \circ F)}{\partial x^i}(p) = \frac{\partial f}{\partial y^j}(F(p))\frac{\partial F^j}{\partial x^i}(p).$

- Proposition: Let M be a smooth n-manifold with or without boundary, and p ∈ M. For any chart (U, xⁱ) around p, the (pushforwards of) the coordinate vectors ∂/∂xⁱ form a basis for T_pM, i.e., If f ∈ C[∞](M), then v(f) = vⁱ ∂f oφ⁻¹/∂xⁱ (φ(p)). As always, we abuse notation and drop the φ. So v(f) = vⁱ ∂f/∂xⁱ(p).
- The vectors ∂/∂xⁱ are called a coordinate basis for T_pM. Since the map v → D_{p,v} is an isomorphism in ℝⁿ, these vectors can also be identified with e₁ = (1,0,0...),.... The components of v in a coordinate chart (U, xⁱ) are vⁱ = v(xⁱ).
- Let $F: U \subset \mathbb{R}^m \to V \subset \mathbb{R}^n$ be a smooth map. Then $F_*(\frac{\partial}{\partial x^i})(f) = \frac{\partial (f \circ F)}{\partial x^i}(p) = \frac{\partial f}{\partial y^j}(F(p))\frac{\partial F^j}{\partial x^i}(p)$. In other words, $F_*\frac{\partial}{\partial x^i} = \frac{\partial F^j}{\partial x^i}\frac{\partial}{\partial y^j}$.

- Proposition: Let M be a smooth n-manifold with or without boundary, and p ∈ M. For any chart (U, xⁱ) around p, the (pushforwards of) the coordinate vectors ∂/∂xⁱ form a basis for T_pM, i.e., If f ∈ C[∞](M), then v(f) = vⁱ ∂f oφ⁻¹/∂xⁱ (φ(p)). As always, we abuse notation and drop the φ. So v(f) = vⁱ ∂f/∂xⁱ(p).
- The vectors $\frac{\partial}{\partial x^i}$ are called a coordinate basis for $T_p M$. Since the map $v \to D_{p,v}$ is an isomorphism in \mathbb{R}^n , these vectors can also be identified with $e_1 = (1, 0, 0...), \ldots$. The components of v in a coordinate chart (U, x^i) are $v^i = v(x^i)$.
- Let $F: U \subset \mathbb{R}^m \to V \subset \mathbb{R}^n$ be a smooth map. Then $F_*(\frac{\partial}{\partial x^i})(f) = \frac{\partial (f \circ F)}{\partial x^i}(p) = \frac{\partial f}{\partial y^j}(F(p))\frac{\partial F^j}{\partial x^i}(p)$. In other words, $F_*\frac{\partial}{\partial x^i} = \frac{\partial F^j}{\partial x^i}\frac{\partial}{\partial y^j}$. Thus if v is treated as column vector \vec{v} with components v^i ,

- Proposition: Let M be a smooth n-manifold with or without boundary, and p ∈ M. For any chart (U, xⁱ) around p, the (pushforwards of) the coordinate vectors ∂/∂xⁱ form a basis for T_pM, i.e., If f ∈ C[∞](M), then v(f) = vⁱ ∂f oφ⁻¹/∂xⁱ (φ(p)). As always, we abuse notation and drop the φ. So v(f) = vⁱ ∂f/∂xⁱ(p).
- The vectors $\frac{\partial}{\partial x^i}$ are called a coordinate basis for $T_p M$. Since the map $v \to D_{p,v}$ is an isomorphism in \mathbb{R}^n , these vectors can also be identified with $e_1 = (1, 0, 0...), \ldots$. The components of v in a coordinate chart (U, x^i) are $v^i = v(x^i)$.
- Let $F: U \subset \mathbb{R}^m \to V \subset \mathbb{R}^n$ be a smooth map. Then $F_*(\frac{\partial}{\partial x^i})(f) = \frac{\partial (f \circ F)}{\partial x^i}(p) = \frac{\partial f}{\partial y^j}(F(p))\frac{\partial F^j}{\partial x^i}(p)$. In other words, $F_*\frac{\partial}{\partial x^i} = \frac{\partial F^j}{\partial x^i}\frac{\partial}{\partial y^j}$. Thus if v is treated as column vector \vec{v} with components v^i , then F_*v is a column vector obtained

- Proposition: Let M be a smooth n-manifold with or without boundary, and p ∈ M. For any chart (U, xⁱ) around p, the (pushforwards of) the coordinate vectors ∂/∂xⁱ form a basis for T_pM, i.e., If f ∈ C[∞](M), then v(f) = vⁱ ∂f(φ)⁻¹/∂xⁱ (φ(p)). As always, we abuse notation and drop the φ. So v(f) = vⁱ ∂f/∂xⁱ(p).
- The vectors $\frac{\partial}{\partial x^i}$ are called a coordinate basis for $T_p M$. Since the map $v \to D_{p,v}$ is an isomorphism in \mathbb{R}^n , these vectors can also be identified with $e_1 = (1, 0, 0...), \ldots$. The components of v in a coordinate chart (U, x^i) are $v^i = v(x^i)$.
- Let $F: U \subset \mathbb{R}^m \to V \subset \mathbb{R}^n$ be a smooth map. Then $F_*(\frac{\partial}{\partial x^i})(f) = \frac{\partial (f \circ F)}{\partial x^i}(p) = \frac{\partial f}{\partial y^j}(F(p))\frac{\partial F^j}{\partial x^i}(p)$. In other words, $F_*\frac{\partial}{\partial x^i} = \frac{\partial F^j}{\partial x^i}\frac{\partial}{\partial y^j}$. Thus if v is treated as column vector \vec{v} with components v^i , then F_*v is a column vector obtained by $[DF]\vec{v}$.

- Proposition: Let M be a smooth n-manifold with or without boundary, and p ∈ M. For any chart (U, xⁱ) around p, the (pushforwards of) the coordinate vectors ∂/∂xⁱ form a basis for T_pM, i.e., If f ∈ C[∞](M), then v(f) = vⁱ ∂f(φ)⁻¹/∂xⁱ (φ(p)). As always, we abuse notation and drop the φ. So v(f) = vⁱ ∂f/∂xⁱ(p).
- The vectors $\frac{\partial}{\partial x^i}$ are called a coordinate basis for $T_p M$. Since the map $v \to D_{p,v}$ is an isomorphism in \mathbb{R}^n , these vectors can also be identified with $e_1 = (1, 0, 0...), \ldots$. The components of v in a coordinate chart (U, x^i) are $v^i = v(x^i)$.
- Let $F: U \subset \mathbb{R}^m \to V \subset \mathbb{R}^n$ be a smooth map. Then $F_*(\frac{\partial}{\partial x^i})(f) = \frac{\partial (f \circ F)}{\partial x^i}(p) = \frac{\partial f}{\partial y^j}(F(p))\frac{\partial F^j}{\partial x^i}(p)$. In other words, $F_*\frac{\partial}{\partial x^i} = \frac{\partial F^j}{\partial x^i}\frac{\partial}{\partial y^j}$. Thus if v is treated as column vector \vec{v} with components v^i , then F_*v is a column vector obtained by $[DF]\vec{v}$. The same formula (with abuse of notation)holds

- Proposition: Let M be a smooth n-manifold with or without boundary, and p ∈ M. For any chart (U, xⁱ) around p, the (pushforwards of) the coordinate vectors ∂/∂xⁱ form a basis for T_pM, i.e., If f ∈ C[∞](M), then v(f) = vⁱ ∂f(φ)⁻¹/∂xⁱ (φ(p)). As always, we abuse notation and drop the φ. So v(f) = vⁱ ∂f/∂xⁱ(p).
- The vectors $\frac{\partial}{\partial x^i}$ are called a coordinate basis for $T_p M$. Since the map $v \to D_{p,v}$ is an isomorphism in \mathbb{R}^n , these vectors can also be identified with $e_1 = (1, 0, 0...), \ldots$. The components of v in a coordinate chart (U, x^i) are $v^i = v(x^i)$.
- Let $F: U \subset \mathbb{R}^m \to V \subset \mathbb{R}^n$ be a smooth map. Then $F_*(\frac{\partial}{\partial x^i})(f) = \frac{\partial (f \circ F)}{\partial x^i}(p) = \frac{\partial f}{\partial y^j}(F(p))\frac{\partial F^j}{\partial x^i}(p)$. In other words, $F_*\frac{\partial}{\partial x^i} = \frac{\partial F^j}{\partial x^i}\frac{\partial}{\partial y^j}$. Thus if v is treated as column vector \vec{v} with components v^i , then F_*v is a column vector obtained by $[DF]\vec{v}$. The same formula (with abuse of notation)holds for $F: M \to N$ and (U, x^i) , (V, y^j) are coordinates around p, F(p)

9/12